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Abstract: Artificial Neural Networks have been broadly used in several domains of engineering and typical 
applications involving signal processing. In this paper a channel equalizer using radial basis function neural 
networks is proposed, on symbol by symbol basis. The radial basis function neural network is trained by an 
extended Kalman filter including evolutionary techniques. The key motivation for the equalizer application 
is the neural network capability to establish complex decision regions that are important for estimating the 
transmitted symbols appropriately. The neural network training process using evolutionary techniques 
including an extended Kalman filter enables a fast training for the radio basis function neural network. 
Simulation results are included comparing the proposed method with traditional ones indicating the 
suitability of the application. 

1 INTRODUCTION 

Channel equalization is intended to mitigate the 
effects of the transmitted media on the transmitted 
symbol sequence, known as the inter-symbol 
interference (ISI). Adaptive equalizers are essential 
in these communications systems to achieve reliable 
data transmission. Usually two approaches are used: 
sequence estimation equalizers and the symbol 
decision equalizers. The optimal sequence 
estimation is yielded by MLSE (Maximum 
Likelihood Sequence Estimation) (Chen et. al., 
1995), (Gibson and Cowan, 1989) implemented by 
the Viterbi algorithm. It is optimal for detecting the 
full transmitted sequence. High complexity in 
connection with the MLSE are however usually 
unacceptable in many typical communication 
systems. Most of the practical equalizers therefore 
employ a structure of making decision symbol by 
symbol. Symbol decision equalizers can still be 
classified into two categories according to whether 
they estimate a channel model explicitly. One is the 
direct-modelling equalizer which is not widely used 
once the knowledge of the channel model is needed. 
The other category is the indirect modelling 
equalizer that does not require the knowledge of the 
channel model. In this category, we mention among 
others, the linear transverse adaptive equalizers that 

are required in these communications systems to 
obtain reliable data transmission. Among the effects 
of wireless channels is delay dispersion, due to Multi 
Path Components (MPCs) having different runtimes 
from the transmitter (TX) to the receiver (RX). 
Delay dispersion causes ISI, which can largely 
degrade the transmission of digital signals. It is 
worth mention that even a delay spread that is 
smaller than the symbol duration can cause a 
significant Bit Error Rate (BER) degradation. If the 
delay spread becomes comparable with or larger 
than the symbol duration, as occurs often in third 
and fourth generation cellular systems, then the BER 
turns unacceptably large if no compensation are 
performed. Also when a signal is transmitted 
through wireless medium then due to multipath 
effect there is fluctuation in signal amplitude, phase, 
and time delay. This effect is often known as fading 
(Proakis, 2001). The use of coding and diversity can 
decrease, but not fully eliminate, errors due to ISI.  
However, delay dispersion can also be a positive 
effect. Since fading of the distinct MPCs is 
statistically independent, resolvable MPCs can be 
modeled as diversity paths. So, delay dispersion 
allows the possibility of delay diversity, if the RX 
can extract, and exploit, the resolvable MPCs. 
Equalizers can be interpreted as devices that work 
both ways - they decrease or eliminate ISI, and 
simultaneously exploit the delay diversity inherent 
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in the channel. The principle of an equalizer can be 
analyzed either in the time or frequency domain. In 
the present work the time-domain method is taken 
which is feasible in most of the applications. 
Usually, the channel response may not be known at 
startup. Besides, the channel may be time-varying, 
so an adaptive structure of the equalizer is essential.  
One can identify distinct modes of adaptation: 

• A training signal aided adaptation; 
• Decision directed adaptation - An error signal 

defined by comparing input and output of the 
decision device; 

• Blind adaptation: Signal properties aided 
adaptation instead of making use an error signal; 

A training signal is considered in this article for 
the equalizer adaptation. It should be stressed that, 
digital communication systems typically operate on 
time varying dispersive channels which usually 
employ a signaling format in such way that user data 
are set up in blocks preceded by a known training 
sequence. That training sequence at the beginning of 
each block is used to estimate channel or train an 
adaptive equalizer. Depending on the rate at which 
the channel changes with time, there may not be a 
need to further track the channel variations during 
the user data sequence. The present article proposes 
a channel equalizer for wireless channels using 
Radial Basis Function (RBF) neural networks 
including evolutionary techniques on a symbol by 
symbol decision basis. Their use was spread by 
(Moody and Darken, 1989), and has proven to be 
useful neural network architecture. The major 
difference between RBF networks and back 
propagation networks is the behavior of the single 
hidden layer. Rather than using the sigmoidal or S-
shaped activation function as in back propagation, 
the hidden units in RBF networks use a Gaussian or 
some other basis kernel function. Each hidden unit 
acts as a locally tuned processor that computes a 
score for the match between the input vector and its 
connection weights or centers. In effect, the basis 
units are highly specialized pattern detectors. The 
weights connecting the basis units to the outputs are 
used to take linear combinations of the hidden units 
to product the final classification or output. The RBF 
equalizer classifies the received signal according to 
the class of the center closest to the received vector 
(Assaf et al, 2005), (Burse et al, 2010). The output 
of the RBF equalizer offers an attractive alternative 
to the Multi-Layer Perceptron (MLP) type of Neural 
Network for channel equalization problems because 
the structure of the RBF network has a close 
relationship to Bayesian methods for channel 
equalization and interference exclusion. RBF 

networks comprise three layers: the input layer, the 
hidden layer with the RBF nonlinearity, and a linear 
output layer, as shown in Fig. 1(Burse et al, 2010). 
This paper is divided into four sections. Section 2 
does a brief discussion of RBF artificial neural 
networks. Section 3 presents the RBF neural net 
equalizer and case studies and section 4 ends the 
paper with conclusions. 

2 RBF NEURAL NETS 

RBF neural networks are a very popular architecture 
only surpassed by feedforward neural networks. 
Denoting the input (vector) as x and the output as 
y(x) (scalar), the architecture of a RBF neural 
network is given by 
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using Gaussian function as basis functions. Observe 
that, ci are called centers and  is called the width. 
There are M basis functions centered at ci

 , and wi 
are named weights. 
RBF neural networks are very popular for function 
approximation, curve fitting, time series prediction, 
control and classification problems. The radial basis 
function network differs from other neural networks, 
showing many distinctive features. Due to their 
universal approximation, more concise topology and 
quicker learning speed, RBF networks have attracted 
considerable attention and they have been widely 
used in many science and engineering fields (Oyang 
et al., 2005), (Fu et al., 2005), (Devaraj et al., 2002), 
(Du et al., 2008), (Han et al., 2004). The 
determination of the number of neurons in the 
hidden layer in RBF networks is somewhat 
important because it affects the network complexity 
and the generalizing capability of the network. In 
case the number of the neurons in the hidden layer is 
insufficient, the RBF network cannot learn the data 
adequately. On the other hand, if the number of 
neurons is too high, poor generalization or an 
overlearning situation may take place (Liu et al., 
2004). The position of the centers in the hidden layer 
also influences the network performance 
significantly (Simon, 2002), so determination of the 
optimal locations of centers is an important job. 
Each neuron has an activation function in the hidden 
layer. The Gaussian function, which has a spread 
parameter that controls the behavior of the function, 
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is the most preferred activation function. The 
training method of RBF networks also includes the 
optimization of spread parameters of each neuron. 
Later on, the weights between the hidden layer and 
the output layer must be selected suitably. Finally, 
the bias values which are added with each output are 
determined in the RBF network training procedure. 
In the literature, several algorithms were proposed 
for training RBF networks, such as the gradient 
descent (GD) algorithm (Karayiannis, 1999) and 
Extended Kalman filtering (EKF) (Simon, 2002). 
Several global optimization methods have been used 
for training RBF networks for different science and 
engineering problems such as genetic algorithms 
(GA) (Barreto et al., 2002), the particle swarm 
optimization (PSO) algorithm (Liu et al., 2004), the 
artificial immune system (AIS) algorithm (De Castro 
et al., 2001) and the differential evolution (DE) 
algorithm (Yu et al., 2006). The Artificial Bee 
Colony (ABC) algorithm is a population based 
evolutional optimization algorithm that can be used 
to various types of problems. The ABC algorithm 
has been used for training feed forward multi-layer 
perceptron neural networks by using test problems 
such as XOR, 3-bit parity and 4-bit encoder/decoder 
problems (Karaboga et al., 2007). Due to the need of 
fast convergence, EKF training was chosen for the 
RBF equalizer reported in this paper including 
evolutionary techniques briefly depicted in the next 
section. Details on the training process can be found 
in (Simon, 2002). 

3 RBF EQUALIZATION DEVICE 

Radial Basis Function Neural Networks have been 
used for channel equalization purposes (Lee et al., 
1999), (Gan et al., 1999), (Kumar et al. 2000), (Xie 
and Leung, 2005). Typically, such networks have 
three layers: the input layer, the hidden layer with 
the RBF nonlinearity, and a linear output layer, as 
shown in Fig. 1 (Burse et al., 2010).  Simulations 
carried out on time-varying channels using a 
Rayleigh fading channel model to compare the 
performance of RBF with an adaptive maximum 
likelihood sequence estimator (MLSE) show that the 
RBF equalizer produces superior performance with 
less computational complexity (Mulgrew, 1996). 
Several techniques have been developed in literature 
to solve the problem of blind equalization using 
RBF (Tan et al., 2001), (Uncini et al., 2003) and 
others. RBF equalizers require less computing 
demands than other equalizers (Burse et al., 2010). 
 

 
Figure 1: RBF neural network (from Burse et al., 2010). 

A comprehensive review on channel equalization 
can be found in (Qhreshi, 1985). A recent review on 
Neural Equalizers can be found in (Burse et al., 
2010). The equalization scheme can be seen in Fig. 2 
(taken from (Molisch, 2011)). The adaptive 
equalizer in the figure is the RBF Neural equalizer 
trained by EKF according to (Simon, 2002) 
including evolutionary techniques. The considered 
channel uses the Rayleigh model (Molisch, 2011) 
using QPSK modulation. 

 
Figure 2: Equalization procedure (from Molisch, 2011). 

The QPSK ideal constellation symbols are shown in 
figure 3. In other words when the communications 
channel is ideal, there is no distortion or noise so 
that the symbols are always received with no error. 
For a real channel the received symbols will show 
some dispersion as shown in figure 4. 

 
Figure 3: QPSK ideal constellation. 
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Figure 4: QPSK real scenario constellation. 

The evolutionary techniques used in connection to 
extended Kalman filtering training of the RBF 
equalizer take into account the differential 
evolutionary (DE) approach (Brownlee, 2011).  
(Souza et al., 2007) used it in a Kalman filter trained 
RBF arrangement for forecasting the soybean price. 
The DE technique basically involved the estimation 
of the main diagonal of matrices P, Q and R that are 
respectfully the filter error covariance matrix, the 
system noise covariance matrix and the observation 
noise covariance matrix. The fitness function for the 
DE technique is the multiple correlation coefficient 
which measures the fitness of the model with 
measured data. A value close to 1 indicates the 
model is adequate (Brownee, 2011).  Several 
simulations were carried out for realistic channel 
characteristics. Two case studies were considered. 
For the first case study, a flat fading channel was 
considered. Flat fading channels have amplitude 
varying channel characteristics and are narrowband 
(Molisch, 2011). A transmission of an image was 
considered in both case studies. The transmitted 
image is depicted in figure 5. 

 

Figure 5: Original transmitted image in case studies. 

The simulations also made possible to plot results 
for comparing the performance in terms of Bit Error 
Rate (BER) against Signal to Noise Ratio (SNR) and 
Symbol Error Rate (SER) against SNR. The 
received image for the RBF equalizer and the 
Decision Feedback Equalizer (DFB) which is a quite 

popular traditional equalizer is shown in figures 6 
and 7. The simulated RBF equalizer produced an 
average correlation coefficient of 0.993 with 
standard deviation of 0.085 and used 7 Gaussian 
functions in the hidden layer. The computational 
complexity of the DFB was chosen to be comparable 
to the RBF equalizer.  

 

Figure 6: RBF received image for flat fading. 

 

Figure 7: DFB received image for flat fading. 

In a qualitative way, one can see that the RBF 
equalizes better. For a quantitative description figure 
8 shows the BER x SNR and SER x SNR for the two 
equalizers. The theoretical curve is also shown for 
comparative purposes. One can see that the RBF 
equalizer performs better as the images of the 
received figures indicated. It can be also seen that 
for low SNRs the performance of the RBF equalizer 
is very close the theoretical performance. As SNR 
values increase the equalizer begins to get away 
from the theoretical model. Figure 9 shows a 
constellation diagram for the equalizers in case study 
1, and it can be seen a cluster formation around the 
original symbols for both equalizers, indicating that 
errors might occur in the receiver output. The 
constellation diagram is a qualitative way of 
comparing the performance of received symbols and 
complements the information given by the curves 
BER x SNR. Usually are made available in displays 
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of measurements instruments for maintenance 
purposes. 

 

Figure 8: BER x SNR for case study 1. 

Figure 9 shows a constellation diagram for the 
equalizers in case study 1, and it can be seen a 
cluster formation around the original symbols for 
both equalizers, indicating that errors might occur in 
the receiver output. 

 

Figure 9: Constellation diagram for case study 1. 

In case study 2, a frequency selective fading was 
considered which is a more severe type of fading 
(Moslisch, 2010). Figures 10 and 11 show the 
received images corresponding to RFB and DFB  
 

 

Figure 10: RBF received image for case study 2. 

equalizers. One can see a more intensive degradation 
in the image for both equalizers, although the DFB 
is still worse. The performance curves are depicted 
in figure 12 which shows clearly the degradation in 
performance for both equalizers as far as frequency 
selective fading is concerned. 

 

Figure 11: DFB received image for case study 2. 

 

Figure 12: BER x SNR for case study 2. 

4 CONCLUSIONS 

This paper proposed a radial basis function (RBF) 
equalizer trained by an extended Kalman filter 
(EKF) using DE techniques. The advantages of 
using a Kalman filter for training the RBF neural 
equalizer are that it provides the same performance 
as gradient descent training, but with much less of 
the computational effort. Moreover if the decoupled 
Kalman filter is used in connection with DE 
techniques, the same performance is guaranteed with 
further decrease on the computational effort for large 
computational demand problems. The equalizer was 
tested and two case studies were carried out where 
its performance was compared with the popular 
Decision feedback equalizer and the results 
indicated the proposed equalizer performed better. 
For future work the authors intend to consider 
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hybrid solutions involving the RBF and other 
equalizer architectures as far as the tracking of time-
variations is concerned. In this respect the use of 
deep learning techniques might be an attractive way 
of achieving such a purpose. 
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