
Helper-in-the-Middle: Supporting Web Application Scanners Targeting
Industrial Control Systems

Anne Borcherding1 a, Steffen Pfrang1 b, Christian Haas1, Albrecht Weiche1 and Jürgen Beyerer1,2

1Fraunhofer IOSB, Karlsruhe, Germany
2Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Keywords: Industrial Control Systems, Black Box Security Testing, Web Application Scanners, Proxy, Usability.

Abstract: Web applications on industrial control systems (ICS) provide functionality such as obtaining status information
or updating configurations. However, a web application possibly adds additional attack vectors to the ICS. In
order to find existing vulnerabilities of web applications, automated black box web application scanners (WAS)
can be used. Evaluations of existing scanners show similar limitations in their applicability. For example, ICS
often crash during a scan. If the used scanner does not recognize and handle this issue, it is not able to
finish the test. We present HelpMeICS which makes improvements available for different scanners without
the need to adapt the specific scanner. It is implemented as a proxy-based solution which is transparent for the
scanners and handles different aspects such as error-handling, authentication, and replacement of contents. Our
evaluation with five different ICS shows an improvement of applicability as well as a reduction of additional
limitations of WAS. As an example, our improvements increased the URL coverage from 8% to 100%. For
one of the ICS, a complete scan was only made possible by HelpMeICS since the ICS crashed irrecoverably
during the scans without HelpMeICS.

1 INTRODUCTION

ICS play an elementary role in making production
faster, more reliable and more flexible. Correspond-
ing device classes are, amongst others, programmable
logic controllers (PLC), bus couplers, gateways, and
industrial firewalls. Most ICS include a communica-
tion interface over Ethernet to transfer process data
or status information, either to a local communica-
tion partner or even to a communication partner in the
cloud. Due to a high priority on improving the fea-
tures of ICS, security often gets neglected during the
development process.

The lack of security is critical since ICS pose an
interesting target for attackers. With their two com-
munication channels, ICS possibly build a bridge for
an attacker trying to attack the production process
from the Internet. In a simple case – as discovered
during this work – a single HTTP packet suffices
to stop a production process from anywhere in the
world. A more advanced case is pivoting in the au-
tomation network which may also lead to data leak-
age, disruption of safety systems, damage to facilities

a https://orcid.org/0000-0002-8144-2382
b https://orcid.org/0000-0001-7768-7259

Automation Network

ICS1WA1 ...

...

...

ICS2

ICS3Attacker

HTTP(S)

Figure 1: An attacker uses the web application (WA) of
ICS1 as an entry point to the automation network.

or even human harm. This situation is presented in
Figure 1: The attacker uses the web application of an
ICS as an entry point. Based on this, the attacker can
start pivoting using, for example, unsecured industrial
communication protocols such as PROFINET.

Security testing is a major measure to improve the
security of software in general and of ICS in partic-
ular. It aims at revealing vulnerabilities in an early
stage of the development life cycle as well as find-
ing vulnerabilities in a later stage. There exist differ-
ent security testing approaches, ranging from model
based tests of the architecture to penetration tests of
the already published product (Felderer et al., 2016).
The requirement to perform security testing is also
postulated in the IEC 62443 standard (IEC62443,

Borcherding, A., Pfrang, S., Haas, C., Weiche, A. and Beyerer, J.
Helper-in-the-Middle: Supporting Web Application Scanners Targeting Industrial Control Systems.
DOI: 10.5220/0009517800270038
In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 27-38
ISBN: 978-989-758-446-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

27



2019) which targets security for industrial automation
and control systems.

The aim of this work is to detect vulnerabilities in
ICS using automated black box WAS. WAS provide
a cost-efficient approach on finding vulnerabilities of
a web application. Since they run automatically, they
can be used to conduct tests on a regular basis (Bau
et al., 2010). However, literature shows various simi-
lar limitations of WAS, many of them concerning the
methodology and applicability of WAS.

This work presents a comprehensive solution ap-
proaching many of these limitations. Note that we
are not presenting a new WAS since we are con-
vinced that there are plenty sophisticated WAS out
there. Instead, we are presenting a framework to im-
prove the methodology and applicability of existing
WAS: HelpMeICS. With HelpMeICS, it is possible
to make improvements transparently available for ar-
bitrary WAS. It consists of a proxy, which is located
between the WAS and the device under test (DUT),
containers in which the WAS run, and an integration
into the industrial security testing framework ISuTest
(Pfrang et al., 2017).

In summary, the main contributions of this paper
are the following:

• Review of limitations identified and improve-
ments achieved by existing evaluations of WAS.

• HelpMeICS: A system to make improvements of
methodology and applicability available for exist-
ing WAS.

• Extensive evaluation of HelpMeICS using real
ICS as targets that shows reduced limitations, in-
creased number of true positive reports as well as
a higher URL coverage.

• Publication of the source code of the developed
add-ons for the open source proxy mitmproxy,
which also can be run as a stand-alone system1,2.

Following this introduction, Section 2 provides more
information on ICS and security testing. In Section 3,
we present a review to show limitations identified and
improvements achieved by literature. Building upon
this background, we present the design of HelpMeICS
in Section 4. A qualitative and quantitative evaluation
is shown in Section 5. Finally, our conclusions are
presented in Section 6.

1https://github.com/mitmproxy/mitmproxy/pull/3961
2https://github.com/mitmproxy/mitmproxy/pull/3962

2 BACKGROUND

Automated black box security testing of all commu-
nication interfaces plays an important role in improv-
ing ICS security. This includes web security testing
if the DUT provides a web interface. The following
provides some context on ICS and security testing as
well as on ISuTest, a security testing framework that
serves as a building block for HelpMeICS.

2.1 Industrial Control Systems

The main task of ICS is to control and monitor pro-
cesses in industrial environments. In order to achieve
this task or to provide additional services, ICS need
to communicate to other nodes in the industrial net-
work. In former times, industrial networks have been
set up using proprietary communication protocols and
corresponding wiring. Nowadays, the communica-
tion is performed using Ethernet wiring and Ethernet-
based protocols. By using these Ethernet-based proto-
cols such as PROFINET or EtherCat, requirements of
industrial communication such as real-time commu-
nication can be fulfilled using standardized Ethernet
hardware (Galloway and Hancke, 2012).

Next to these specialized protocols, ICS commu-
nicate using standard Internet protocols such as UDP
or TCP. For an attacker, the barrier to attack these
protocol stacks is especially small, since well known
techniques and tools exist. In addition, the possible
outcome of an successful attack is enormous. An suc-
cessful attack can lead to an interruption of produc-
tion, data leakage as well as physical damage to the
production or humans (BSI, 2019).

Awareness for security issues in the industrial do-
main is rising steadily. One of the triggers for this
surely was Stuxnet (Langner, 2011). By now, the
International Electrotechnical Commission (IEC) has
published several standards concerning the security
for ICS (IEC62443, 2019). But still, the implemen-
tation and integration of security in industrial net-
works and systems is an ongoing process that just has
started. To keep this process going, practicable solu-
tions to find vulnerabilities need to be offered. Our
work contributes to the fulfilment of this need.

2.2 Security Testing

Security testing can be categorized and arranged us-
ing various metrics and dimensions. A full descrip-
tion of these categories is beyond the scope of this
work which is focussed on automated black box
web application scanning of ICS. Nevertheless, the
specifics of our point of view on security testing for

SECRYPT 2020 - 17th International Conference on Security and Cryptography

28



ICS are to be elaborated. Felderer et al. give a
good overview on the categorization of security test-
ing (Felderer et al., 2016).

Automated: This keyword refers to the meaning of
automated as opposed to manual. Automated security
testing is easier to integrate into a development life
cycle, since tests can be run on a regular basis and the
security status of the DUT can be monitored easily.

Black Box: For black box testing, only the ex-
ternal inputs and outputs of the DUT are considered.
With this, no internal information of the DUT needs
to be disclosed. Simplified, input is sent to the DUT
and the following reaction of the DUT is monitored
based on its output. In the case of ICS testing, the in-
puts are network packets and the output may be any
external interface of the DUT. This includes digital or
analog I/O as well as various network protocol stacks.

Web Application Scanning: Each additional fea-
ture of an ICS poses an additional attack vector. This
also holds for the web applications many ICS are
running for maintenance purposes. Web applications
simplify maintenance tasks such as obtaining status
information or updating the firmware. Additionally,
they often simplify attacking the ICS. Many hacking
tools are available for the web domain since web ap-
plication hackers have existed almost as long as the
web exists. This makes hacking web applications eas-
ier than hacking an industrial protocol for which an
attacker needs special domain knowledge. It follows
that the existence of web applications on ICS makes
hacking ICS much easier.

2.3 ISuTest

ISuTest is a security testing framework for ICS
(Pfrang et al., 2017). We use its different features for
black box testing of ICS for HelpMeICS. One fea-
ture of ISuTest is to configure and start so called test
scripts which define the parameters and specifications
of test sequences. For example, a test sequence might
be a fuzzing test for UDP or a test sequence probing
the DUT for a specific vulnerability in its PROFINET
protocol stack. During a test, the DUT is monitored
continuously using different outputs such as digital or
analog I/O as well as network protocols such as ICMP,
TCP, HTTP, and PROFINET. In addition, ISuTest is
able to restart a DUT by switching the power off and
on. With this, ISuTest is able to reset the DUT before
each test and is also able to restart the DUT after a
crash. We are using these features of ISuTest as one
building block for HelpMeICS.

3 REVIEW

This work addresses the following requirements: (I)
reducing the limitations of existing WAS regarding
their applicability, while (II) not restricting this re-
duction to some WAS, but by making improvements
available independently of the specific WAS, and (III)
making the code publicly available. To the best of our
knowledge, no existing open source tool fulfills all of
the formulated requirements. For the usage against
web applications on industrial hardware, DUT spe-
cific changes are often necessary. Because of this,
public availability of the code is a fundamental re-
quirement. As a result, we do not include commercial
solutions but focus on results from literature.

Literature includes various evaluations of WAS
which show limitations as well as improvements. The
following review is based on 15 papers aiming at
comparing different black box WAS (Bau et al., 2010;
Pfrang et al., 2019; Makino and Klyuev, 2015; Idrissi
et al., 2017; Vega et al., 2017; Doupé et al., 2010; Fer-
reira and Kleppe, 2011; Suteva et al., 2013; Alassmi
et al., 2012; Fonseca et al., 2007; Khoury et al., 2011;
McAllister et al., 2008; Doupé et al., 2012; Deepa
et al., 2018; Esposito et al., 2018). In total, these pa-
pers evaluated 25 WAS using 25 targets.

In summary, it shows (I) that there are many dif-
ferent WAS relevant enough to be considered, (II) that
none of the WAS clearly stands out, and (III) that a
combination of WAS leads to better results. From
these insights, we derived the necessity of a system
which improves and orchestrates existing WAS.

Next to the comparisons of WAS, literature shows
various limitations that are similar for many WAS, as
well as work to reduce these limitations. In the fol-
lowing, we present a classification of the limitations
identified and improvements made (see Sections 3.1
and 3.2). It shows that a significant part of limitations
concerns the applicability of WAS, but that there has
been only little effort to reduce these limitations. Nev-
ertheless, applicability of WAS is an important factor
in their usefulness and, consequently, for their spread-
ing. Based upon this insight, we focus on reducing the
limitations of WAS regarding their applicability.

3.1 Limitations Identified

In order to give a better understanding of the limita-
tions of WAS revealed by literature, we collected and
classified them. We identified the following clusters:
target, vulnerability classes, methodology and appli-
cability. In fact, the cluster target includes limitations
of the targets used for the evaluation instead of lim-
itations of the WAS itself. This cluster includes the

Helper-in-the-Middle: Supporting Web Application Scanners Targeting Industrial Control Systems

29



limitations that targets exhibit unintended vulnerabil-
ities (Makino and Klyuev, 2015) and that the exhib-
ited vulnerabilities are outdated (Suteva et al., 2013).
For the sake of completeness we included them in our
classification but we will not go into it any further in
the following since they are not concerned with the
WAS itself.

The clusters as well as the classified limitations
and the corresponding papers are shown in Table 1.
The cluster vulnerability classes includes types of
vulnerabilities WAS have shown to struggle with es-

Table 1: Limitations of WAS as shown by literature.

Vulnerability Classes

Stored XSS (Bau et al., 2010; Doupé et al., 2010;
Alassmi et al., 2012)

Stored SQL (Bau et al., 2010; Doupé et al., 2010;
Khoury et al., 2011)

Remote File Inclusion (Makino and Klyuev, 2015;
Doupé et al., 2010)

Local File Inclusion (Idrissi et al., 2017)
Path Disclosure (Doupé et al., 2010)

Methodology

Crawling (Esposito et al., 2018; Doupé et al.,
2010; Idrissi et al., 2017; Ferreira and Kleppe,
2011; Khoury et al., 2011)

Fuzzing (Idrissi et al., 2017)
Periodically Changing Content (Pfrang et al.,

2019)
Attack Code Selection (Ferreira and Kleppe, 2011;

Khoury et al., 2011)
User Login (Pfrang et al., 2019; Doupé et al.,

2010; Khoury et al., 2011)
Second Order Vulnerabilities (Bau et al., 2010;

Doupé et al., 2010)
Application Logic (Doupé et al., 2010)
JavaScript / Flash / HTML5 (Doupé et al., 2010;

Idrissi et al., 2017; Doupé et al., 2012)
Categorization of Findings (Khoury et al., 2011)

Applicability

Parameter Understandability (Esposito et al.,
2018)

Reproducibility (Pfrang et al., 2019)
Conduction of Single Tests (Pfrang et al., 2019)
Load Reduction (Pfrang et al., 2019)
Pause and Resume a Scan (Pfrang et al., 2019)
Behavior in Case of an Error (Pfrang et al., 2019)
Different Scanners Necessary (Esposito et al.,

2018; Pfrang et al., 2019; Idrissi et al., 2017)
Runtime (Pfrang et al., 2019; Doupé et al., 2010;

Suteva et al., 2013)

pecially. In the cluster methodology, limitations of
general approaches of WAS are collected. For exam-
ple, this includes Crawling and Fuzzing capabilities,
handling of Periodically Changing Content, and Ap-
plication Logic limitations. The limitation of Peri-
odically Changing Content refers to web applications
that include regularly changing content such as the
current time. This content can pose a problem for
WAS while they are probing the DUT for injection
vulnerabilities. To find out if injections are possible,
WAS first try to inject code to a web application. Sec-
ond, they check if the content of the web application
is different to what it had been before the injection.
If the web application contains content that changes
regularly, WAS assume they were able to change the
content and they reason that they were able to inject
code. However, in reality only the regularly changing
content such as the current time has changed. Ap-
plication Logic limitations include the checking and
detection of application specific vulnerabilities.

The cluster applicability refers to limitations of
WAS concerning the practical handling of WAS. Load
Reduction refers to limitations in specifying the load
to be sent to the DUT. Especially when using ICS, a
crash of the DUT because of a high load is probable.
Behavior in Case of an Error is connected to this. If
the DUT crashes and the WAS does not recognize the
problem, the WAS will send its probes into the empti-
ness. Literature has shown that different scanners are
necessary to generate a good coverage. Another im-
portant point is the Runtime of a WAS. It has a high
impact on how often a test of the DUT is conducted.

Note that the presented limitations are not spe-
cific to the domain of ICS. However, some of the
limitations become more prominent while using WAS
against ICS.

3.2 Improvements Achieved

Building upon the revealed limitations, researchers
have worked on reducing these limitations. The fol-
lowing describes works in this domain and correlates
them to the limitations described in Section 3.1.

McAllister et al. built a WAS enhanced by tech-
niques to detect more entry points for the scan. This
includes the recording and replaying of use cases,
fuzzing various forms at the same time to increase
testing breadth, and stateful fuzzing. Note that the
stateful fuzzing is only possible if the WAS is able to
control the web application. They find that their solu-
tion is able to identify more entry points and bugs than
the other evaluated WAS (McAllister et al., 2008).

Doupé et al. present a state-aware WAS. Through
sending packets to the DUT and interpreting the re-

SECRYPT 2020 - 17th International Conference on Security and Cryptography

30



sponses, it builds a model of the internal states of the
web application. Using this model, new entry points
are derived and tested. Additionally, the model is used
to build new payloads for the included fuzzer. Their
evaluation shows that the code coverage as well as
the effectiveness of vulnerability tests are improved
by their system (Doupé et al., 2012).

Deepa et al. present a WAS that is using the data
and control flow of a web application to build a model
of its behavior. With this model, logic vulnerabilities
like parameter manipulation, access control and work
flow bypass vulnerabilities are targeted. The authors
show that their system results in a high precision and
a high true positive rate (Deepa et al., 2018).

In contrast to the solutions above, Esposito et al.
present a proxy to improve the capabilities of WAS
instead of building a new WAS. The proxy is used to
improve the crawling capabilities as well as the au-
thentication of the WAS against the target. Crawling
is improved by injecting known URLs into places the
WAS will look into for crawling information. Addi-
tionally, the proxy is able to authenticate the origi-
nally unauthenticated requests sent by the WAS. The
authors show in their evaluation that the presented
proxy increases the number of detected vulnerabilities
without having a significant impact on the reported
false positives (Esposito et al., 2018).

In summary, literature has improved WAS in their
limitations of Crawling (McAllister et al., 2008; Es-
posito et al., 2018; Doupé et al., 2012), Fuzzing
(McAllister et al., 2008; Doupé et al., 2012), Applica-
tion Logic (Deepa et al., 2018), and User Login (Es-
posito et al., 2018; McAllister et al., 2008). All these
improvements focus on the methodology of the WAS
and not on their applicability. As we have learned
from our practical work with WAS, the applicability
of WAS is an important factor in their usefulness and
spreading. That is why there should be improvements
in this cluster as well.

4 OUR APPROACH

Our approach is to support and improve arbitrary
WAS through a transparent helper-in-the-middle. The
following presents the concept of HelpMeICS as well
as the extensions we designed and implemented. The
goal of HelpMeICS is to improve the following ap-
plicability limitations of WAS: Crawling, Periodically
Changing Content, User Login, Reproducibility, Con-
duction of Single Tests, Load Reduction, Pause and
Resume a Scan, Behavior in Case of an Error, and
Different Scanners Necessary.

WAS Proxy DuT

ISuTest

a
le
rt

interrupt /

resume
monitor

Figure 2: Overview over HelpMeICS. At a given time, one
WAS running in a container can communicate with the DUT
using the proxy. When ISuTest receives an alert by the
watchdog of the proxy, it interrupts the currently running
WAS and monitors the DUT. All components except the
DUT run on one computer.

4.1 Basic Idea

The basic idea of HelpMeICS is to combine the ad-
vantages of a proxy, ISuTest, and containers to sup-
port WAS during their testing. Our concept for this
combination is presented in Figure 2. The three com-
ponents proxy, WAS, and ISuTest run on one com-
puter which is called test device (TD).

The proxy is located in between the WAS and the
DUT. With this, it is able to read, interpret and change
the packets sent between the WAS and the DUT. The
extensions of the proxy are implemented as add-ons
which are presented in detail later in this section.

The WAS run in containers which results in the
following two main advantages: First, it is now possi-
ble to pause and resume the WAS. Second, if the con-
tainer is not updated, scans can be run in a more repro-
ducible way since the WAS can be reset to a known
state. The third component of HelpMeICS is ISuTest.

We use ISuTest to orchestrate the WAS and to
monitor the DUT. In order to orchestrate the WAS, we
added the possibility to integrate external tools into
ISuTest. This is not restricted to WAS. In addition,
we use the monitoring of ISuTest. The monitoring
is supported by the so-called watchdog add-on of the
proxy which alerts ISuTest if the DUT gives the im-
pression of no longer reacting properly to HTTP re-
quests. When the watchdog of the proxy detects a
possible error of the DUT, it alerts ISuTest. ISuTest
then performs a monitoring cycle and checks if the
DUT indeed has an error. Refer to the description of
the watchdog later in this section for more informa-
tion on the monitoring.

Our solution can be used by proxy-aware WAS
as well as by WAS that are not proxy-aware. For
those WAS that are not proxy-aware, we implemented
a transparent proxy mode. The challenge for the
transparent proxy mode is to differentiate between the
packets to be routed to the proxy and the ones that
should not be routed to the proxy. This is made possi-

Helper-in-the-Middle: Supporting Web Application Scanners Targeting Industrial Control Systems

31



ble by HelpMeICS because of the containers the WAS
run in. We added a virtual network bridge to the TD
which redirects all traffic from and to the containers
to the proxy. With this, HelpMeICS can be used even
with WAS that are not proxy-aware. Note that Help-
MeICS can also be used if it is not possible to run
the WAS in a container. However, this reduces the
impact of HelpMeICS (see Section 5) and the trans-
parent proxy mode is not possible.

Esposito et al. present a proxy-based solution to
improve WAS as well (Esposito et al., 2018). The
authors show that their approach is able to improve
Crawling and User Login. HelpMeICS goes beyond
this approach and addresses more limitations of WAS.
We present a full integration of the WAS into a secu-
rity testing system without the need to adapt the WAS.
This includes ISuTest, running the WAS in a container
and additional add-ons for the proxy. In addition, we
publish the add-ons to make them available for further
research. Note that the proxy can also be used stand-
alone. As a result, many of our improvements can be
used just by installing and configuring the proxy.

4.2 Extensions

We built the containers for the WAS using LXD3. Our
decision was mainly based on the fact that LXD pro-
vides an easy configuration and manipulation of the
forwarding for virtual network bridges. This is neces-
sary for the transparent proxy mode.

As a basis for the proxy included in HelpMeICS,
mitmproxy4 is used. We chose this proxy since it is
easily extensible and its code is open source under the
MIT license. In addition, it supports HTTP as well as
HTTPS. With this, it builds a good base for this work.
In the following, we present the additional features
for mitmproxy we designed and implemented.

Watchdog. The watchdog add-on addresses the
limitation of crashing DUTs during a test (Behavior
in Case of an Error). For this, it monitors whether
the DUT shows errors in the communication with the
WAS using the error method provided by mitmproxy.
This method is called if an error occurs during the
transmission or reception of an HTTP packet. Serv-
ing as a connection between mitmproxy and ISuTest,
the watchdog alerts ISuTest and such informs about
the error. In Figure 2 this process is presented through
dashed arrows. When receiving an alert, ISuTest in-
terrupts the WAS. This interruption is made possible
because of the container the WAS runs in. The next
step for ISuTest is to conduct a monitoring cycle. A

3https://linuxcontainers.org/
4https://mitmproxy.org/

monitoring cycle consists of a check if the DUT re-
sponds to requests of different protocols. If the check
shows that the DUT is indeed not responding, ISuTest
restarts the DUT and checks it again. Then, the WAS
is resumed and the test is continued. Note that this
process is completely transparent for the WAS.

Mapping. The mapping add-on aims at reducing
the false positives resulting from changing content
(Periodically Changing Content). It provides the pos-
sibility to replace or delete content of a web page, for
example regularly changing content such as the cur-
rent time. Content referred to by a CSS selector is
replaced by a given HTML code.

User Login. We present two different approaches
to address the limitation concerning user login or au-
thentication (User Login). The first approach imple-
ments different authentication schemes and executes
the authentication if necessary. With this, the re-
quests of the WAS are being authenticated transpar-
ently. One limitation of this approach is that it does
not have access to a browser instance. With this, it
is not possible to fully retrieve and execute the web
page. The second approach addresses this limitation
of the first approach by using selenium5. Selenium in-
cludes a browser instance with which we can simulate
a login by a user. Afterwards, the login information
such as cookies or session IDs need to be transferred
to the requests of the WAS. Both approaches share
the need to detect if a request is authenticated or not.
This check is performed during a request of the WAS
as well as during a response of the DUT.

URL Injection. In order to improve the Crawling
capabilities of the WAS, we present an URL injec-
tion add-on. With this add-on, URLs are injected into
the responses sent by the DUT. As has been shown
by Esposito et al., this improves the crawling perfor-
mance of the WAS since the WAS are able to find
more links and pages. We implemented the four dif-
ferent approaches suggested by the authors: inject-
ing the URLs using (I) robots.txt, (II) sitemap.xml,
(III) a landing page, and (IV) an index page (Esposito
et al., 2018). The difference between their approach
and our approach is the extraction of URLs used for
the injection (URL index). Esposito et al. created the
URL index for their evaluation using endpoint extrac-
tion of URLs. Since our work is placed in an au-
tomated black-box setting, this is not realistic. We
performed the generation of the URL index automati-
cally using HelpMeICS. We first automatically run all

5https://selenium.dev/

SECRYPT 2020 - 17th International Conference on Security and Cryptography

32



WAS against a target and recorded all requests and re-
sponses made. Afterwards, we extracted all requests
to which the DUT responded with a non-error code
which then built the URL index. For an evaluation,
please refer to Sections 5.2 and 5.3.

Logging. To be able to narrow down a vulnerabil-
ity, it is necessary to know which requests and re-
sponses have been sent between the WAS and the
DUT. The logging add-on addresses this by logging
each response and request seen by the proxy.

5 EVALUATION

To evaluate HelpMeICS, we conducted a qualita-
tive evaluation as well as a quantitative evaluation.
This section describes our evaluation setting (Sec-
tion 5.1), presents the results of the quantitative evalu-
ation (Section 5.2), and shows the results of the qual-
itative evaluation (Section 5.3). Our qualitative eval-
uation shows that HelpMeICS reduces the following
limitations of WAS: Crawling, Periodically Chang-
ing Content, User Login, Reproducibility, Pause and
Resume a Scan, Conduction of Single Tests, Load Re-
duction, Behavior in Case of an Error, and Differ-
ent Scanners Necessary. The quantitative evaluation
shows an increase of true positive reports as well as a
higher URL coverage. For one of the used DUTs, a
security test was only possible using HelpMeICS be-
cause it crashes irrecoverably during web application
scans without HelpMeICS.

5.1 Evaluation Setting

For our evaluation we selected six WAS to be run
against five real ICS. The aim of the evaluation is to
evaluate HelpMeICS and not to evaluate the ICS used.
That is why we decided not to reveal the manufactur-
ers and versions of the ICS. Instead, we describe the
device class as well as the properties of the ICS which
are relevant for the evaluation. In the following, we

Table 2: WAS used for the evaluation.

Scanner Version

Arachni 1.5.1
Nikto 2.1
Skipfish 2.10
Subgraph Vega 1.0
Wapiti commit1 0bf7g7
ZAP 2.8.0
[1] https://git.code.sf.net/p/wapiti/git

describe the ICS, WAS, and configurations of Help-
MeICS used for the evaluation.

Web Application Scanners. In order to evaluate
the impact of HelpMeICS, we used HelpMeICS with
six WAS against five ICS. In Table 2 the WAS we
used are shown. We selected six open source WAS
which have already been used for many evaluations
by literature. To be able to integrate the GUI-based
WAS Vega, we created a customized version which
allows controlling the conducted tests via a python
API. We made this customized version of Vega pub-
licly available6. Arachni differs from the other WAS
since it includes a browser engine. With this, it is able
to investigate web applications which include tech-
nologies like JavaScript, HTML5, DOM manipula-
tion and AJAX. Nikto also shows a special behavior.
For its tests, Nikto uses a fixed database of URLs and
checks. With this, Nikto is the only one of the consid-
ered WAS which conducts highly reproducible tests.

Devices Under Test. We selected five ICS with dif-
ferent functions and properties as realistic targets.
The first DUT, DUT1, is a PROFINET bus cou-
pler. Bus couplers translate communication between
different bus systems and architectures. For exam-
ple, bus couplers can serve as a provider of addi-
tional input and output interfaces for a PLC. DUT1
provides a web application that uses HTTP-Basic-
Authentication. One characteristic of this web appli-
cation is that it includes a vulnerability which can be
used to crash DUT1. The DUT needs to be restarted
by switching the power off and on to be functional
again. This poses a problem for WAS, since each
WAS detecting this vulnerability will crash DUT1.
The WAS are not able to detect and recover from this
issue since they are not able to restart DUT1.

The second ICS, DUT2, is a gateway for OPC
UA, a machine-to-machine communication protocol
for industrial automation. DUT2 connects different
communication protocols to OPC UA in order to com-
bine the data from different sources. Its web applica-
tion uses a form based user login. The identifiers of
the input fields used for login are changed on a regu-
lar basis. WAS which are able to perform form based
authentication are not able to login to the web applica-
tion without help since they assume fixed identifiers.

DUT3 is a firewall which connects two networks
and restricts the traffic in between. In contrast to the
other DUTs, the web application of DUT3 only al-
lows HTTPS. To login to the web application, the user
needs to provide only a password but no user name.

6https://github.com/subgraph/Vega/pull/184

Helper-in-the-Middle: Supporting Web Application Scanners Targeting Industrial Control Systems

33



Since the WAS which are able to perform form based
authentication expect a password field as well as a
field for the user name, they are not able to login.

Similar to DUT1, DUT4 is a PROFINET bus cou-
pler. The web application of DUT4 shows the special
feature that it first delivers a JavaScript program to
a user. Afterwards, this program loads the actual user
interface. This makes it more complicated for a proxy
to interpret and manipulate the packets.

DUT5 is a thermometer which distributes its mea-
surements over different communication protocols
such as MQTT, SNMP, FTP, and Mail. In addition,
the measurements are presented on a web application
as a dynamically updated graph as well as a XML-
Feed. This data is of that kind of Periodically Chang-
ing Content that can mislead WAS (see Section 3.1).

Configurations. In order to be able to compare the
performance of the add-ons (see Section 4), we de-
fined different configurations of our system for the
evaluation. An overview of these configurations is
given in Table 3. The configuration bare names
the execution of the WAS without HelpMeICS. The
configuration using our system without the proxy is
called virtualised. That means that the WAS are run
in a container and are configured by ISuTest. All other
configurations refer to the usage of all components of
the system with different add-ons used by the proxy.

5.2 Qualitative Evaluation

HelpMeICS reduces the limitations of WAS by three
means: proxy add-ons, containers, and ISuTest. In
the following, we present our solutions for improved
limitations, including potential restrictions.

Table 3: Configurations used for the evaluation. bare corre-
sponds to an execution without HelpMeICS, virtualised to
WAS running in a container, and all other configurations to
an execution using a different subset of proxy add-ons.

configuration co
nt

ai
ne

r

pr
ox

y

lo
gg

in
g

w
at

ch
do

g

us
er

lo
gi

n

U
R

L
in

je
ct

io
n

bare - - - - - -
virtualised X - - - - -
proxy X X X - - -
proxy W X X X X - -
proxy WL X X X X X -
proxy WI X X X X - X
proxy WLI X X X X X X

Crawling. The crawling capabilities by a WAS are
improved by the URL injection add-on (see also Sec-
tion 5.3). Recall that the used URL index is crafted
automatically based on the requests from all WAS.
In a special case, this automatic approach increases
the number of indexed URLs unnecessarily. Given a
WAS that randomly changes a parameter in the URL
and a web application that does not care about this
parameter but delivers always a positive response, it
follows that each of these URLs are indexed. An
automatic reduction of URLs is difficult since other
web applications might react to changing parameters.
Nevertheless, the injection of crawled URLs increases
the coverage tremendously (see Section 5.3).

Periodically Changing Content. The mapping
add-on allows for replacing or removing periodically
changing contents that might mislead WAS. A user
needs to specify the content to be replaced using a
CSS selector. The positive impact of this add-on
has been confirmed by the evaluation of ZAP against
DUT5. As has already been stated, the web appli-
cation of DUT5 provides a XML-feed of the mea-
sured temperatures. Since this feed is updated once a
minute, ZAP is convinced that its tests for SQL injec-
tion have been successful. Using the mapping add-on,
the feed can be set to a fixed value. With this, ZAP no
longer reports the false positive SQL injection.

User Login. On some DUTs, logged-in users can
access more websites than unauthenticated users.
Even though most WAS provide different authenti-
cation mechanisms, they still struggle to authenti-
cate against some of the ICS as has been described
in Section 5.1. In order to support the WAS during
their scan, login add-ons have been implemented and
tested. Using the selenium add-on, the WAS are now
able to scan web applications only asking for a pass-
word and no user name (DUT5) as well as web appli-
cations with changing session IDs (DUT3). The user
needs to record the login process only once using a
selenium recorder and is able to reuse it for all WAS
afterwards. Nevertheless, the add-on fails on DUTs
whose websites contain logic to answer a specific call
regularly in the background (DUT2 and DUT4). In
order to overcome this issue, one would have to im-
plement a DUT-specific solution.

Reproducibility. The reproducibility of tests is
reached by running the WAS in containers and taking
snapshots on a regular basis. However, some WAS
generate their random data used for fuzzing on the
fly. In this case, two test runs from the same snap-

SECRYPT 2020 - 17th International Conference on Security and Cryptography

34



shot can produce two different testing processes. This
issue can only be solved by the specific WAS.

Pause and Resume a Scan. Especially when using
WAS against ICS, pausing a scan might be necessary,
for example to restart the DUT. The use of contain-
ers with snapshots allows for stopping the scan and
resuming the scan afterwards.

Conduction of Single Tests. Using only a subset of
security tests is partly supported by the use of con-
tainers. With the granularity of snapshots, only some
tests can be conducted. This improves WAS which do
not support the feature to run single tests.

Load Reduction. High loads of network traffic can
overstrain some DUTs. The container solution allows
for stopping and resuming a security test by stopping
and resuming the container. For example, this helps in
the case of limited TCP connections. If the proxy de-
tects too many concurrent TCP requests, it can pause
the WAS. Due to this pause, the DUT is able to handle
the remaining TCP requests and is able to free enough
sources to handle new requests by the WAS.

Behavior in Case of an Error. In case of a crash of
the DUT which requires a restart of the device, WAS
get stuck. This means that they discovered one vul-
nerability but cannot test for more. HelpMeICS em-
ploys the combination of ISuTest and the containers
which improves this situation enormously. At first,
the WAS gets stopped for the regular monitoring. If
ISuTest detects that the DUT does not respond any-
more, it executes a restart by switching the power off
and on. Then, the container of the WAS can be re-
sumed and thus the test can be continued. In the con-
crete example of DUT1, testing with HelpMeICS has
two advantages: The first one is that DUT1 will be
restarted after the crash and the test can be continued
until it finishes. With this, only possibly a few tests in
the time period between the crash and the monitoring
are lost. The second advantage is that HelpMeICS
logs the information about the packages sent during
the test as well as generating a report about the crash.
With this information, a security tester is able to com-
prehend the vulnerability reported.

Different Scanners Necessary. The need to con-
duct security tests with many different WAS is ad-
dressed by ISuTest. Once integrated in HelpMeICS,
many scans with different WAS can be scheduled one
after another.

DUT1 DUT2 DUT3
0

200

400

600

800

1,000

143 133

35

143 177

40

928

743

73

Devices under test

N
um

be
ro

ft
ru

e
po

si
tiv

e
re

po
rt

s

bare proxy W proxy WLI

Figure 3: Number of true positive reports summarized over
the WAS for the different configurations, excluding false
positives but including duplicates. Using more add-ons of
the proxy leads to more true positive reports.

DUT1 DUT2 DUT3
0%

20%

40%

60%

80%

100%

0.7

14.7
5.4

1.4 3.8
0

27.2

1.6

63.5

Devices under test

Fa
ls

e
po

si
tiv

e
ra

te
of

re
po

rt
s

bare proxy W proxy WLI

Figure 4: False positive rate of reports summarized over the
WAS. Depending on the DUT, using more add-ons of the
proxy decreases or increased the rate.

5.3 Quantitative Evaluation

The quantitative evaluation includes an analysis of the
true positive reports given by the WAS, the URL cov-
erage, the performance of the watchdog, as well as the
impact on the runtime of the tests. For the evaluation,
we executed each of the presented WAS against each
ICS using each of the configurations (see Section 5.1).

Reported Vulnerabilities. The first evaluation
analyses the number of true positive reports given
by the WAS. Note that this number excludes false
positives but includes duplicates. Since our work is

Helper-in-the-Middle: Supporting Web Application Scanners Targeting Industrial Control Systems

35



DUT1 DUT2 DUT3
0%

20%

40%

60%

80%

100%

8 6

88

19

100100

88

100

Devices under test

U
R

L
co

ve
ra

ge

bare proxy W proxy WLI

Figure 5: Percentage of existing URLs on a DUT that have
been visited by at least one WAS. Using more add-ons of
the proxy leads to a higher percentage of vistited URLs.

situated in a black-box setting, it is not possible to
identify the number of concrete vulnerabilities the re-
ports correspond to. This would be necessary in or-
der to eliminate duplicates. In Figure 3, the num-
ber of true positive reports given by all WAS together
is depicted for each DUT. The configurations shown
are bare (execution of the WAS without HelpMeICS),
proxy W (usage of HelpMeICS including the logging
and watchdog add-on), and proxy WLI (additional us-
age of the login and the URL injection add-on). For
DUT2 and DUT3, the number of reports rises steadily
with the number of add-ons. For DUT1, the number
of reports stays the same for the configurations bare
and proxy W but rises as well for proxy WLI. Even
tough the number of true positive reports does not di-
rectly correspond to the number of vulnerabilities, it
gives an evidence for the effectiveness of HelpMeICS.

Complementary, the false positive rate of the re-
ports is analysed. As shown by Figure 4, the false pos-
itive rate of the given reports is decreased by the us-
age of HelpMeICS in the configuration proxy W for
DUT2 and DUT3. In contrast, using the configuration
proxy WLI, the false positive rate increases for DUT1
and DUT3. Regarding DUT2, the false positive rate
decreases the more add-ons are used.

The analysis of the number of reports shows that
more true positive reports are given by the WAS the
more add-ons of the proxy are used. In some cases,
the trade-off for more true positives is an increased
false positive rate. Our findings coincide with the re-
sults of Esposito et al. (Esposito et al., 2018). The
authors state as well that adding URL injection and
user login leads to an increased number of reports.

URL Coverage. One indicator of an improved se-
curity test is the number of called URLs. If a WAS
does not call a URL, it is surely not able to find vul-
nerabilities on this URL. It follows that visiting more
URLs generally means a higher probability to find
more vulnerabilities. In the following, the percentage
of URLs of a DUT visited by at least one WAS will be
analysed. Since we are conducting black box security
tests, we are not able to monitor the internal coverage
of the web application of the DUT. This is why we
compare the URLs existing on a DUT with the URLs
visited by the WAS. We define the URLs existing on a
DUT as the URL index generated by the logging add-
on of the proxy (see Section 4). For the configuration
proxy WLI it follows that we check which percentage
of injected URLs are actually tested.
The results of this evaluation are presented in Fig-
ure 5. Note that for DUT3 it shows no value for
the bare configuration since DUT3 uses HTTPS. This
results in encrypted traffic that can not be analysed
without using the proxy. Since our proxy supports
HTTPS, we are able to analyse the packets sent when
using the proxy. For DUT1 and DUT2, the percentage
of URLs visited increases with the number of add-
ons used. For DUT3, the percentage stays constant
at 100%. The results of DUT2 for proxy WLI show
the challenge of automatically creating URL indices
using non-reproducible WAS (see Section 4.2). The
URL index of DUT2 contains some URLs the WAS
visited during the generation of the URL index but
not during the evaluation. Nevertheless, the analysis
of the percentage of URLs visited by the WAS shows
that it is increased with the number of add-ons used.

Runtime. Since HelpMeICS adds functionality and
computations to the WAS, its impact on the runtime
needs to be analysed. For this analysis we chose Nikto
as WAS and DUT2 as target. As has already been
stated in Section 5.1, Nikto creates its tests from a
static database of URLs and checks. With this, the
runtime of Nikto is relatively stable. This allows us
to analyse the impact of HelpMeICS. To make the re-
sults even more reliable, we executed Nikto ten times
with each configuration of HelpMeICS. The medium
value of these ten runs as well as the minimum and
maximum runtime is shown in Figure 6.

A first insight from this analysis is that the virtual-
isation has no great impact on the runtime of Nikto. A
second insight is that the proxy increases the runtime
of Nikto by the factor of 9. A third insight is that the
addition of add-ons has again no great impact.

However, for some cases using other WAS and
DUTs, HelpMeICS was able to reduce the runtime.
For example, this has been the case for Arachni

SECRYPT 2020 - 17th International Conference on Security and Cryptography

36



bare
virtualised

proxy
proxy

W

proxy
W

I

proxy
W

L

proxy
W

LI

0

500

1,000

1,500

2,000

2,500

Configurations of HelpMeICS

R
un

tim
e

in
se

co
nd

s

Figure 6: Runtime of Nikto against DUT2 using different
configurations of HelpMeICS. Presented are medium values
of ten runs as well as minimum and maximum. The proxy
itself has a high impact on the runtime, the additional add-
ons of the proxy do have a smaller impact.

against DUT4. Arachni opens many TCP connections
and such reaches the maximum number of TCP con-
nections accepted by DUT4 after roughly 31 seconds.
During the remainder of the test, Arachni tries to es-
tablish new connections to DUT4 unavailingly until
the maximum time of the test is reached. If HelpMe-
ICS is used, the watchdog detects this problem and
alerts ISuTest. ISuTest then restarts DUT4. As a re-
sult, DUT4 is able to accept new TCP connections
again and Arachni can finish its tests successfully. In
this case, the runtime has been reduced by a factor
of 68 comparing the bare configuration to proxy W.
In summary, the analysis of the runtime shows an in-
crease of runtime in most cases but also a decrease
of runtime in some cases. The proxy itself has the
most impact on the runtime, which means the runtime
might be improved by improving the used proxy.

Watchdog Performance. Depending on the behav-
ior of the DUT, the watchdog can have a high impact
on the runtime of a test. If the watchdog produces
many false positive alerts, the runtime increases un-
necessarily since ISuTest will conduct a monitoring
cycle after every alert. In the case of a true positive
alert from the watchdog, the runtime is increased even
more since the DUT is restarted. Note that this in-
crease of runtime is necessary to improve the quality
of the test, but the increase of runtime caused by false
positives is unnecessary. Because of this, the false
positive rate of the watchdog is analysed.

Our analysis shows high variance in the false pos-
itive rate of the watchdog depending on the WAS and
the DUT. For example, the combination of Nikto and

DUT1 shows a false positive rate of 8%. In contrast,
the combination of Skipfish and DUT4 results in a
false positive rate of 96%. Even though the watch-
dog shows a good performance in some cases, it still
might be improved further. Note that we are currently
using the error function given by mitmproxy as trigger
for alerts. One cause of false positive alerts are mal-
formed HTTP packets sent by the WAS. These could
be excluded in a post processing step of the error trig-
ger given by mitmproxy.

In summary, the watchdog possibly increases the
runtime unnecessarily but helps to improve the tests
by detecting crashes of the DUT. For DUT1, a full
test without the watchdog is not even possible since
DUT1 crashes before the tests might be completed.

6 CONCLUSIONS

We presented HelpMeICS, a Helper-in-the-Middle
for ICS, which improves different limitations of ex-
isting WAS. HelpMeICS consists of a proxy, which
is placed between the WAS and the DUT, containers
the WAS run in, and ISuTest as an industrial security
testing framework that orchestrates all components.

Particularly, the applicability and the methodol-
ogy have been enhanced notably by HelpMeICS. Ad-
vanced crawling features, authentication and the pos-
sibility to test with many different WAS improve the
methodology. The usage of ISuTest and containers
enhance the applicability of WAS. It enhances the re-
producibility of tests and the scanner behavior in case
of DUT crashes. As significant result, more true pos-
itive reports have been generated by the WAS and
even one severe vulnerability which crashed one DUT
completely has been found.

The evaluation showed that not every limitation
of the WAS could be solved by HelpMeICS. Script-
based authentication systems turned out to be very
DUT-specific. With this, it was not possible to create
an universal solution for every web application. The
reproducibility of security tests posed another prob-
lem after the introduction of snapshots: Some WAS
produced different test sequences even when being
started from the same snapshot. This problem cannot
be solved by HelpMeICS, it needs to be solved by the
particular WAS. Nevertheless, for most of the WAS
the snapshot feature proved to be very valuable. One
last limitation consists of a trade-off: The additional
features and improvements of the WAS increase the
runtime of the tests in most cases.

Concluding, HelpMeICS allows for conducting
automated web security tests using different existing
WAS. It improves the performance of WAS in con-

Helper-in-the-Middle: Supporting Web Application Scanners Targeting Industrial Control Systems

37



trast to their single use. Discovered vulnerabilities
help manufacturers and integrators of ICS to reduce
the attack vectors of their web applications and im-
proves their security in general.

Future work comprises the improvement of URL
indices in order to reduce false positives. The au-
thentication add-on for selenium needs some work to
extract session data from the used browser engine to
pass them to the WAS. More WAS can be evaluated
and integrated in HelpMeICS to improve its perfor-
mance. Finally, more DUTs can be tested to detect
and analyze even more vulnerabilities.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Min-
istry of Education and Research within the frame-
work of the project KASTEL SKI in the Competence
Center for Applied Security Technology (KASTEL)
and by the Ministry of Economy, Labor and Hous-
ing, Baden-Württemberg, within the research project
CyberProtect.

REFERENCES

Alassmi, S., Zavarsky, P., Lindskog, D., Ruhl, R., Alasiri,
A., and Alzaidi, M. (2012). An analysis of the ef-
fectiveness of black-box web application scanners in
detection of stored xssi vulnerabilities. International
Journal of Information Technology and Computer Sci-
ence, 4(1).

Bau, J., Bursztein, E., Gupta, D., and Mitchell, J. (2010).
State of the art: Automated black-box web applica-
tion vulnerability testing. In 2010 IEEE Symposium
on Security and Privacy, pages 332–345. IEEE.

BSI (2019). Industrial control system security. Technical
report, German Federal Office for Information Secu-
rity, Publications on Cyber-Security.

Deepa, G., Thilagam, P. S., Praseed, A., and Pais, A. R.
(2018). Detlogic: A black-box approach for detecting
logic vulnerabilities in web applications. Journal of
Network and Computer Applications, 109:89–109.

Doupé, A., Cavedon, L., Kruegel, C., and Vigna, G. (2012).
Enemy of the state: A state-aware black-box web vul-
nerability scanner. In Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12),
pages 523–538.

Doupé, A., Cova, M., and Vigna, G. (2010). Why johnny
can’t pentest: An analysis of black-box web vulner-
ability scanners. In International Conference on De-
tection of Intrusions and Malware, and Vulnerability
Assessment, pages 111–131. Springer.

Esposito, D., Rennhard, M., Ruf, L., and Wagner, A.
(2018). Exploiting the potential of web application
vulnerability scanning. In ICIMP 2018, Spain, July
22-26, 2018, pages 22–29. IARIA.

Felderer, M., Büchler, M., Johns, M., Brucker, A. D., Breu,
R., and Pretschner, A. (2016). Security testing: A sur-
vey. In Advances in Computers, volume 101, pages
1–51. Elsevier.

Ferreira, A. M. and Kleppe, H. (2011). Effectiveness of
automated application penetration testing tools.

Fonseca, J., Vieira, M., and Madeira, H. (2007). Testing and
comparing web vulnerability scanning tools for sql in-
jection and xss attacks. In 13th Pacific Rim interna-
tional symposium on dependable computing (PRDC
2007), pages 365–372. IEEE.

Galloway, B. and Hancke, G. P. (2012). Introduction to
industrial control networks. IEEE Communications
surveys & tutorials, 15(2):860–880.

Idrissi, S., Berbiche, N., Guerouate, F., and Shibi, M.
(2017). Performance evaluation of web application se-
curity scanners for prevention and protection against
vulnerabilities. International Journal of Applied En-
gineering Research, 12(21):11068–11076.

IEC62443 (2019). IEC-62443: Security for industrial au-
tomation and control systems. Standard, International
Electrotechnical Commission.

Khoury, N., Zavarsky, P., Lindskog, D., and Ruhl, R.
(2011). An analysis of black-box web application se-
curity scanners against stored sql injection. In 2011
IEEE Third International Conference on Privacy, Se-
curity, Risk and Trust and 2011 IEEE Third Interna-
tional Conference on Social Computing, pages 1095–
1101. IEEE.

Langner, R. (2011). Stuxnet: Dissecting a cyberwarfare
weapon. IEEE Security & Privacy, 9(3):49–51.

Makino, Y. and Klyuev, V. (2015). Evaluation of web vul-
nerability scanners. In 2015 IEEE 8th International
Conference on Intelligent Data Acquisition and Ad-
vanced Computing Systems: Technology and Applica-
tions (IDAACS), volume 1, pages 399–402. IEEE.

McAllister, S., Kirda, E., and Kruegel, C. (2008). Lever-
aging user interactions for in-depth testing of web
applications. In International Workshop on Recent
Advances in Intrusion Detection, pages 191–210.
Springer.

Pfrang, S., Borcherding, A., Meier, D., and Beyerer, J.
(2019). Automated security testing for web applica-
tions on industrial automation and control systems. at-
Automatisierungstechnik, 67(5):383–401.

Pfrang, S., Meier, D., and Kautz, V. (2017). Towards a mod-
ular security testing framework for industrial automa-
tion and control systems: Isutest. 2017 22nd IEEE
International Conference on Emerging Technologies
and Factory Automation (ETFA).

Suteva, N., Zlatkovski, D., and Mileva, A. (2013). Evalu-
ation and testing of several free/open source web vul-
nerability scanners.

Vega, E. A. A., Orozco, A. L. S., and Villalba, L. J. G.
(2017). Benchmarking of pentesting tools. Inter-
national Journal of Computer and Information Engi-
neering, 11(5):602–605.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

38


