
SAS vs. NSAS: Analysis and Comparison of Self-Adaptive Systems and
Non-Self-Adaptive Systems based on Smells and Patterns

Claudia Raibulet a, Francesca Arcelli Fontana b and Simone Carettoni
DISCo-Dipartimento di Informatica, Sistemistica e Comunicazione, Universita’ Degli Studi di Milano - Bicocca,

Viale Sarca, 336, Edificio 14, Milan, Italy

Keywords: Self-Adaptive Systems, Non-Self-Adaptive Systems, Software Quality, Architectural Smells, Code Smells,
Design Patterns.

Abstract: Self-Adaptive Systems are usually built of a managed part, implementing their functionality, and a manag-
ing part, implementing their self-adaptation. The complexity of self-adaptive systems results also from the
existence of the managing part and the interaction between the managed and the managing parts. The non-
self-adaptive systems may be seen as the managed part of self-adaptive systems. The self-adaptive systems are
evaluated based on their performances resulted from the self-adaptation. However, self-adaptive systems are
software systems, hence, also their software quality is equally important. Our analysis compares the internal
quality of self-adaptive and non-self-adaptive systems by considering code smells, architectural smells, and
GoF’s design patterns. This comparison provides an insight to the health of the self-adaptive systems with
respect to the non-self-adaptive systems (the last being considered as a quality reference).

1 INTRODUCTION

Software systems able to manage changes and uncer-
tainties during their execution (1) based on knowledge
about their environment and about themselves, and
(2) using mechanisms to reason about this knowledge
and to use it properly, are considered as self-adaptive
(de Lemos et al., 2013; Weyns, 2018). Self-adaptive
systems (SAS) have usually bigger dimensions than
non-self-adaptive systems (NSAS), when two ver-
sions of the same system, one with and one without
self-adaptive mechanisms, are considered. Further,
SAS may have more complex structures than equiva-
lent NSAS (i.e., implementing similar functionalities
without being self-adaptive). Self-adaptation may be
performed at various abstraction levels and through
different mechanisms (de Lemos et al., 2013). There-
fore, its understanding and evaluation is an important
and challenging task (Kaddoum et al., 2010).

The quality of software systems may be evaluated
from various points of view and in various ways con-
sidering quality attributes, software metrics, design
patterns, and anti-patterns. Architectural smells (Ar-
celli Fontana et al., 2017; Martini et al., 2018) and

a https://orcid.org/0000-0002-7194-3159
b https://orcid.org/0000-0002-1195-530X

code smells (Fowler, 1999) are emerging as useful
indicators about the internal quality of software sys-
tems. These smells identify recurring design and ar-
chitectural problems which may lead to high main-
tenance and evolution costs if not addressed timely.
There are several works on smells detection (Chatzi-
georgiou and Manakos, 2010; Peters and Zaidman,
2012). Different works have also considered the im-
pact of design patterns on software quality, by consid-
ering metrics and code smells (Walter and Alkhaeir,
2016). Only few works analyzed architectural smells
for software quality aims (Martini et al., 2018).

For SAS evaluation there have been proposed var-
ious mechanisms including quality attributes, soft-
ware metrics, and design patterns (Raibulet and Ar-
celli Fontana, 2017). Some of them are applied for
NSAS evaluation concerning performance, depend-
ability, robustness, security, complexity. Many ap-
proaches introduce novel mechanisms focused on the
specificity of self-adaptivity, i.e., degree of autonomy,
time for adaptivity, adaptability of services, support
for detecting anomalous system behavior. Further,
one of the first catalogs identifying 12 adaptation-
oriented design patterns which capture the adaptation
expertise is presented in (Ramirez and Cheng, 2010).

In this context, the contribution of this paper con-
cerns the (1) identification of architectural and code

490
Raibulet, C., Fontana, F. and Carettoni, S.
SAS vs. NSAS: Analysis and Comparison of Self-Adaptive Systems and Non-Self-Adaptive Systems based on Smells and Patterns.
DOI: 10.5220/0009513504900497
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 490-497
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



smells, as well as the GoF’s design patterns in six SAS
and NSAS examples, and (2) analysis of SAS in front
of NSAS to observe possible variations (i.e., due to
the presence of the self-adaptive part) in the occur-
rences of the quality issues. All SAS and NSAS are
written in Java freely available and/or open source.

The rest of the paper is organized as follows. Sec-
tion 2 presents our study design. Results are shown in
Section 3. Section 4 addresses the threats to validity.
Section 5 presents the conclusions and future work.

2 STUDY DESIGN

2.1 Context

In this paper, we analyze SAS by identifying code
and architectural smells, and design patterns. We also
compare SAS with NSAS, which are considered here
as a quality reference. To achieve this objective, we
propose the following research questions (RQ):

RQ1: How can SAS be evaluated in terms of code
smells?

RQ2: How can SAS be evaluated in terms of ar-
chitectural smells?

RQ3: How can SAS be evaluated in terms of de-
sign patterns?

RQ4: Which is the difference in terms of code
smells and architectural smells occurrence/presence
in SAS and NSAS?

RQ5: Which is the difference in terms of design
patterns occurrence/presence in SAS and NSAS?

The answer to RQ1 and RQ2 may be exploited
by developers/maintainers to have an idea of the most
common code smells and architectural smells in SAS
and focus their attention on the refactoring of these
smells. The answer to RQ3 helps to understand some
of the design decisions (due to the intent of the design
patterns) and to further reuse or extend SAS.

The answer to RQ4 may indicate hints on the
prevalence of some smells with respect to other ac-
cording to SAS and NSAS. A developer can pay par-
ticular attentions to the most frequent ones. Some
smells may be generated by the intrinsic nature of a
category of systems, such as SAS; thus, such smells
may be considered as false positive. In this case, de-
velopers may consider to implement filters to remove
the false positive smells in the detection process.

The answer to RQ5 provides an overview of the
design patterns commonly used by SAS and NSAS.
This result may be used to address further design is-
sues in SAS already experienced in NSAS. In case of
differences, this result is a valuable indicator of the
specific features and design solutions for SAS.

2.2 Analyzed Systems

For the analysis of the quality of SAS in front of
NSAS we have chosen 6 examples from each cate-
gory. All examples are available on Web sites and
repositories which collect systems and make them
available for usage, empirical studies, results compar-
ison, or other research activities.

SAS considered in this paper are available at
the Exemplars web site (i.e., https://www.hpi.uni-
potsdam.de/giese/public/selfadapt/exemplars/):

• Adasim is a simulator for the Automated Traffic
Routing Problem (ATRP). Adaptivity addresses
scalability and environmental changes.

• DeltaIoT enables the evaluation and compari-
son of self-adaptive mechanisms for Internet of
Things (IoT). It addresses performance and en-
ergy consumption issues.

• Intelligent Ensembles (IE) is a framework for
dynamic cooperation groups (e.g.,, smart cyber-
physical systems, smart mobility, smart cities).

• Lotus (Lotus@Runtime) uses models@runtime to
monitor the execution traces and to verify reacha-
bility properties of SAS at runtime.

• Rainbow supports the development of SAS
through architectural mechanisms, i.e., feedback
control loops based on the MAPE-K (monitor, an-
alyze, plan, execute, using knowledge) steps.

• Tele Assistance System (TAS) is a service-based
health-care application for distance assistance.
Self-adaptivity is used for uncertainties generated
by third-party services (e.g., service failure).

A summary of SAS considering the architectural
model used, the adaptive mechanisms, the application
domain, the year of their publication, and the number
of Java classes is shown in Table 1.

NSAS considered in this paper are available in the
QualitasCorpus1 and in the MavenRepository2 sites:

• Apache ANT is a Java library which provides a
series of automatisms that allow the programmers
to compile, test, and run Java applications.

• Apache PDFBOX is an open source library that
can be used to create, render, print, split, merge,
edit, and extract text and metadata from PDF files.

• Cobertura calculates the percentage of Java code
that can be covered by test implementation. It is
based on JScoverage.

1http://qualitascorpus.com/
2https://mvnrepository.com/

SAS vs. NSAS: Analysis and Comparison of Self-Adaptive Systems and Non-Self-Adaptive Systems based on Smells and Patterns

491



• JHotDraw is a Java GUI framework for graphic
design and object manipulation projects.

• ProGuard is a software that optimizes, reduces,
and obscures Java code.

• Sunflow is a rendering system for the synthesis of
photorealistic images through the implementation
of global illumination algorithms.

A summary of NSAS considering their type and main
objective, the number of their Java classes, and the
year of the last version is shown in Table 2.

2.3 Collected Data

We present the data we collected on the SAS and
NSAS described in Section 2.2. The data concerns
code smells, architectural smells, and design patterns.

2.3.1 Code Smells

Code smells are indicators of possible problems at the
code or design level (e.g., large classes or methods)
(Fowler, 1999). They provide hints on parts of code
which may be characterized by a poor quality, and
may lead to negative effects on the maintenance and
evolution of the software. The definition and details
of the code smells considered in our study are avail-
able on the plug-in3 Web site for their detection. They
are briefly introduced as follows:

• AntiSingleton (AS): a class that provides mutable
class variables, which consequently could be used
as global variables.

• BaseClassKnowsDerivedClass (BCKDC): a class
that invokes or has at least binary-class relation-
ship pointing to one of its subclasses.

• BaseClassShouldBeAbstract (BCSBA): a class
with many subclasses without being abstract.

• Blob (B): a large controller class that depends on
data stored in surrounding data classes. A large
class declares many fields and methods with a low
cohesion.

• ClassDataSouldBePrivate (CDSBP): a class that
exposes its fields, thus violating the principle of
encapsulation.

• ComplexClass (CC): a class that has (at least) one
large and complex method, in terms of cyclomatic
complexity and lines of code.

• FunctionalDecomposition (FD): a main class, i.e.,
a class with a procedural name, such as Compute

3https://github.com/davidetaibi/sonarqube-anti-patterns
-code-smells

or Display, in which inheritance and polymor-
phism are scarcely used, that is associated with
small classes, which declare many private fields
and implement only few methods.

• LargeClass (LC): a class that has grown too large
in term of lines of code.

• LazyClass (LzzC): a class that has few fields and
methods.

• LongMethod (LM): a class that has (at least) a very
long method in terms of lines of code.

• LongParameterList (LPL): a class that has (at
least) one method with a too long list of param-
eters in comparison to the average number of pa-
rameters per methods in the system.

• ManyFieldAttributesButNotComplex (MFABNC):
a class that declares many attributes but which is
not complex and, hence, more likely to be a kind
of data class holding values without providing be-
haviour.

• MessageChains (MC): a class that uses a long
chain of method invocations to implement (at
least) one of its functionality.

• RefusedPatternBequest (RPB): a class that rede-
fines inherited methods using empty bodies, thus
breaking polymorphism.

• SpaghettiCode (SC): a class with no structure,
declaring long methods with no parameters, and
using global variables.

• SpeculativeGenerality (SG): a class that is defined
as abstract having few children, which do not
make use of its methods.

• SwissArmyKnife (SAK): a complex class that of-
fers a high number of services, e.g., a complex
class implementing a high number of interfaces.

• TraditionBreaker (TB): a class that inherits from a
large parent class but that provides little behaviour
and without subclasses.

2.3.2 Architectural Smells

An architectural smell results from a common archi-
tectural decision, intentional or not, that negatively
impacts the internal software quality (Garcia et al.,
2009; Macia et al., 2012). The architectural smells
considered in our study are:

• Unstable Dependency (UD): describes a subsys-
tem (component) that depends on other subsys-
tems less stable than itself. UD is detected on
packages.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

492



Table 1: SAS Systems.

SAS Architectural Model Adaptive
Mechanisms

Application Domain Year No. of Classes

Adasim Agent-based Parameter-based Automated Traffic Routing 2012 64
DeltaIoT IoT four tier Parameter-based Smart University Campus 2017 82

IE Cyber-Physical Architecture-based
Parameter-based

Smart Cities/Mobility 2017 825

Lotus Component-based Parameter-based Travel Planner 2017 51
Rainbow Component-and-connector Architecture-based News Web Site 2005 1707

TAS Service-based Service dynamic com-
position

Healthcare 2012 765

Table 2: NSAS Systems.

NSAS Type Objective Year No. of Classes

ANT Java library Build Java and non-Java applications (e.g.,
compile, test, run)

2018 962

PDFBOX Java library Create and manipulate PDF files 2018 388

Cobertura Java tool Calculate the percentage of code accessed by
tests

2018 172

JHotDraw Java GUI framework Create technical and structural graphics 2018 346
ProGuard Java tool Optimize, reduce, and obscure code 2005 707
Sunflow Photo rendering system Synthesize photo-realistic images through

global illumination algorithms
2017 209

• Hub-Like Dependency (HL): arises when an ab-
straction has (outgoing and ingoing) dependencies
with a large number of other abstractions (Surya-
narayana et al., 2015). HL is detected on classes.

• Cyclic Dependency (CD): refers to a subsystem
involved in a chain of relations that breaks the
acyclic nature of a subsystem dependency struc-
ture. CD is detected on classes.

We have considered these architectural smells since
they represent critical problems related to dependency
issues. Components highly coupled and with a high
number of dependencies cost more to maintain and
hence can be considered more critical.

2.3.3 Design Patterns

Design patterns may provide significant hints on the
development and quality of a system by capturing
indications about the design decisions due to their
semantic. They provide enhanced and verified so-
lutions to common design problems (Gamma et al.,
1994). Their detection may be very useful for the
understanding, maintaining, and evolving a system
(Arcelli Fontana et al., 2011; Arcelli Fontana et al.,
2013). Here, we have considered the following 13
GoF’s design patterns (Gamma et al., 1994):

• Creational: Factory Method, Prototype, Single-
ton.

• Structural: Bridge, Composite, Decorator, Object
Adapter, Command, Proxy.

• Behavioral: Chain of Responsibility, Observer,
State-Strategy (they are considered together be-
cause of their identical structure; only their be-
havior is different), Template Method, Visitor.

State and Strategy have identical structures with dif-
ferent behaviors; in this study they are considered as
a single pattern.

2.4 Tools

To collect the data described above we employed
the following tools: (1) SonarQube4 and an external
plug-in5 to collect the code smells (Raibulet and Ar-
celli Fontana, 2018; Lenarduzzi et al., 2019), (2) Ar-
can6 to collect architectural smells (Arcelli Fontana
et al., 2017), and (3) DPDT (Design Pattern Detec-
tion Tool)7 to detect patterns (Tsantalis et al., 2006).

4https://www.sonarqube.org
5https://github.com/davidetaibi/sonarqube-anti-patterns

-code-smells
6https://http://essere.disco.unimib.it/wiki/arcan
7https://users.encs.concordia.ca/˜nikolaos/pattern

detection.html

SAS vs. NSAS: Analysis and Comparison of Self-Adaptive Systems and Non-Self-Adaptive Systems based on Smells and Patterns

493



Figure 1: Box-Plot Results of Code Smells.

3 RESULTS

The results concerning the collected data about SAS
and NSAS shown in the tables in this section, have
been normalized based on the size, i.e., number of
classes or packages of each system so that the various
observations and comparisons can be made easily.

3.1 Results on Code Smell Detection

The code smells revealed in SAS and NSAS are sum-
marized in Table 3. 10 out of 18 code smells have not
been detected in SAS. The most detected code smells
in SAS are: ComplexClass, LongMethod, and Long-
ParameterList. Also AntiSingleton and LazyClass are
present in almost all SAS (except Lotus). The less
present code smells are: BaseClassShouldBeAbstract
and RefusedParentBequest (detected only in IE).

Looking at NSAS, there is one code smell present,
i.e., SwissArmyKnife in addition to the ones detected
in SAS. Also in NSAS, the most present code smells
are: ComplexClass, LongMethod, and LongParame-
terList. The less present code smells are: AntiSingle-
ton, LazyClass, and RefusedParentBequest.

Figure 1 shows the box-plots associated to the
values in Table 3. AntiSingleton, LazyClass,
and LongMethod occur more frequently in SAS
than in NSAS. BaseClassShouldBeAbstract, Class-
DataShouldBePrivate, and RefusedParentBequest oc-
cur seldom in SAS, while are frequent in NSAS.

3.2 Results on Architectural Smell
Detection

The architectural smells detected in SAS and NSAS
are summarized in Table 4. All are present in all SAS
and NSAS. From the results in Table 4 and Figure

Figure 2: Box-Plot Results of Architectural Smells.

2, the most interesting data concern the disparity be-
tween the number of CD present in SAS and NSAS.
The high number of CD is harmful: a single change
or bug in a package/class can have a strong effect on
many others parts of the project, due to the cyclic de-
pendencies.

UD and HL are more present in SAS than NSAS.
Their greater presence can be traced back to the intrin-
sic nature of SAS. UD, in fact, describes a subsystem
that depends on other subsystems that are less stable
than itself. The presence of instability is presumably
due to the fact that SAS must adapt and change their
behavior based on changing internal or external sys-
tem variables, this means that the various classes and
packages of the system have to be able to maintain the
highest possible degree of flexibility. Also the number
of HD smells is a little higher because SAS operate in
dynamic environments and interact with other com-
ponents; they need to be able to analyze and adapt to
the changes in the surrounding environment simulta-
neously to ensure the quality of the provided services.

3.3 Results on Design Pattern Detection

The creational design patterns detected in the SAS
and NSAS are summarized in Table 5. There are three
SAS with no creational patterns: Adasim, DeltaIoT,
and Lotus. The most detected pattern is Singleton.
This may be mostly due to the implementation of the
MAPE-K managers. The less used pattern is Proto-
type. Looking at NSAS, most of them implement at
least a couple of creational patterns. Also in NSAS,
the most detected pattern is Singleton, while Proto-
type occurs only in JHotDraw.

The structural design patterns detected in the SAS
and NSAS are summarized in Table 6. The most de-
tected structural pattern in all SAS is Adapter. Com-
posite occurs in Lotus and Rainbow, while Proxy has
been detected in Rainbow. Looking at NSAS, the
most detected pattern is Adapter, while the less de-
tected are Composite and Proxy.

The behavioral design patterns detected in SAS

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

494



Table 3: Code Smells Detected in SAS and NSAS.

SAS NAME Adasim DeltaIoT IE Lotus Rainbow TAS
AntiSingleton 0.0310 0.0121 0.0157 0 0.0058 0.0078

BaseClassShouldBeAbstract 0 0 0.0012 0 0 0
ClassDataShouldBePrivate 0 0.0243 0.0787 0 0.0117 0.0156

ComplexClass 0.1718 0.1341 0.1393 0.0980 0.0386 0.0261
LazyClass 0.0625 0.0609 0.0157 0 0.0011 0.0052

LongMethod 0.2187 0.0975 0.0921 0.1372 0.0287 0.0209
LongParameterList 0.0156 0.0853 0.0387 0.0392 0.0093 0.0156

RefusedParentBequest 0 0 0.0012 0 0 0
NSAS NAME ANT PDFBOX Cobertura JHotDraw ProGuard Sunflow
AntiSingleton 0.0031 0 0.0174 0 0.0014 0

BaseClassShouldBeAbstract 0.0176 0.0154 0 0.0028 0.0169 0
ClassDataShouldBePrivate 0.0093 0 0.1511 0.0056 0.1244 0.0191

ComplexClass 0.1434 0.2164 0.2325 0.1797 0.2531 0.1961
LazyClass 0.0363 0.0128 0.0523 0 0 0

LongMethod 0.1663 0.2164 0.1744 0.1882 0.1753 0.1770
LongParamaterList 0.0301 0.1932 0.0406 0.0702 0.0664 0.1052

RefusedParentBequest 0.1850 0.0128 0 0 0.1244 0
SwissArmyKnife 0.0010 0 0 0 0.0990 0

Table 4: Architectural Smell Detected in SAS and NSAS.

SAS NAME Adasim DeltaIoT IE Lotus Rainbow TAS
UD 0.0156 0.0126 0.0036 0.0196 0.0005 0.0013
HL 0.0781 0.0366 0.0278 0.0784 0.0193 0.0130
CD 0.5312 0.4024 0.4048 0.5490 0.5530 0.1241

NSAS NAME ANT PDFBOX Cobertura JHotDraw ProGuard Sunflow
UD 0.0062 0.0257 0.0058 0.7556 0.4031 5.1483
HL 0.0062 0.0412 0.0406 0.0196 0.0198 0.0430
CD 0.8492 2.0644 0.2965 0.7556 0.4031 5.1483

and NSAS are summarized in Table 7. There are
three SAS (i.e., Adasim, DeltaIoT, and Lotus) im-
plementing only one behavioral pattern, i.e., State-
Strategy. The most detected behavioral pattern is
State-Strategy, while the less used are Chain of Re-
sponsibility and Visitor. Looking at NSAS, the most
detected behavioral patterns are State-Strategy and
Template Method, while the less detected ones are
Chain of Responsibility and Visitor.

Figure 3 shows the box-plots of the detection of
patterns grouped in categories. The use of creational
patterns is similar, while SAS implement less struc-
tural and behavioral patterns than NSAS.

4 THREATS TO VALIDITY

Different threats can be considered in this study. First,
we analyzed a small number of projects made avail-
able by the ICSE-SEAMS community. We work on
extending the number of analyzed SAS as new exem-
plars are added every year (Raibulet et al., 2020).

According to the results validity of the tools, we

Figure 3: Box-Plot Results for Design Patterns.

used tools largely spread, e.g., SonarQube, or tools for
which papers on the validity of their results have been
published, e.g., DPDT (Tsantalis et al., 2006) and Ar-
can (Arcelli Fontana et al., 2017; Martini et al., 2018).
For the detection of the design patterns, we have used
DPDT, which detects 13 out of the 24 GoF’s patterns.
To detect all the GoF’s patterns we need various tools,
a single tool recognizes only a subset of patterns.

SAS vs. NSAS: Analysis and Comparison of Self-Adaptive Systems and Non-Self-Adaptive Systems based on Smells and Patterns

495



Table 5: Creational Design Patterns Detected in SAS and NSAS.

SAS NAME Adasim DeltaIoT IE Lotus Rainbow TAS
Factory Method 0 0 0.0060 0 0.0052 0.0013

Prototype 0 0 0 0 0.0005 0
Singleton 0 0 0.0218 0 0.0193 0.0039

NSAS NAME ANT PDFBOX Cobertura JHotDraw ProGuard Sunflow
Factory Method 0 0.0051 0 0.0084 0.0070 0.1913

Prototype 0 0 0 0.2528 0 0
Singleton 0.0062 0.0180 0.0116 0.0056 0.0028 0.0478

Table 6: Structural Design Pattern Detected in SAS and NSAS.

SAS NAME Adasim DeltaIoT IE Lotus Rainbow TAS
Object Adapter 0.0156 0.0121 0.0484 0.1764 0.0527 0.0052

Bridge 0.0156 0 0.0012 0 0.0046 0.0013
Composite 0 0 0 0.0196 0.0005 0
Decorator 0 0 0.0036 0 0.0076 0.0065

Proxy 0 0 0 0 0.0011 0
NSAS NAME ANT PDFBOX Cobertura JHotDraw ProGuard Sunflow
Object Adapter 0.0166 0.0154 0.0290 0.0730 0.1145 0.2344

Bridge 0.0010 0 0 0.0365 0.0014 0.0047
Composite 0 0 0 0.0056 0.0099 0
Decorator 0.0010 0 0 0.0117 0.1131 0.0239

Proxy 0 0.0051 0 0 0.0248 0.0143

5 CONCLUDING REMARKS

In this paper we analyzed which code and architec-
tural smells, and design patterns may be detected in
six SAS and outlined possible differences of the pres-
ence of these issues in SAS and NSAS. We provide
below the answers to the RQ defined in Section 2.

RQ1: Less than half of the considered code smells
have been detected. In our opinion this is a positive
result. The most present code smells are: Complex-
Class, LongMethod, and LongParameterList. A pos-
sible explanation of this presence is that some classes
have management roles for the steps of the MAPE-
K loop and have more complex and long methods.
The less present code smells are BaseClassKnows-
DerivedClass and RefusedParentBequest.

RQ2: All the considered architectural smells have
been found in SAS, in particular UD and HD. Prob-
ably some of these smells are present for some spe-
cific features of SAS; thus, for the detection of these
smells in SAS, it may be useful to implement filters
to remove possible false positive instances.

RQ3: All the design patterns have been detected
in SAS and all SAS implement pattern. In partic-
ular, Object Adapter and State-Strategy patterns are
present in all the analyzed SAS. The two patterns suit
well with self-adaptivity because they enable struc-

tural and behavioral modifications at runtime.
RQ4: The detected code smells is similar in

SAS and NSAS. In NSAS, we detected also the
SwissArmyKnife smell. The presence of Complex-
Class, LongMethod, and LongParameterList should
be avoided in both SAS and NSAS. Further, architec-
tural smells are present both in SAS and NSAS: more
CD in NSAS, and more UD and HD in SAS. False
positive instances may be present in SAS, but they
may not represent real quality issues.

RQ5: The results on pattern detection are similar
in SAS and NSAS. The most used patterns are Single-
ton, Adapter, and State-Strategy; the less applied pat-
terns are Prototype, Composite, Proxy, Chain of Re-
sponsibility, and Visitor. However, the number of in-
stances of patterns detected in SAS and NSAS differs
(also because of the dimension of SAS): there are al-
most four times more structural, and three times more
beavioural instances in NSAS than in SAS.

In the future, we aim to extend our analysis to a
larger set of systems and to consider other software
quality metrics. We plan to analyze how the refac-
toring of the different kinds of smells may impact on
a set of software quality metrics. A future work will
concern the identification of smells or anti-patterns, as
well as design patterns specific to SAS. The automate
detection of self-adaptive related issues is not yet sup-

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

496



Table 7: Behavioural Design Patterns Detected in SAS and NSAS.

SAS NAME Adasim DeltaIoT IE Lotus Rainbow TAS
Chain of Responsibility 0 0 0 0 0 0.0039

Observer 0 0 0.0763 0 0.0082 0
State-Strategy 0.0312 0.0609 0.0084 0.1372 0.0500 0.0013

Template Method 0 0 0 0 0.0222 0.0156
Visitor 0 0 0 0 0.0005 0

NSAS NAME ANT PDFBOX Cobertura JHotDraw ProGuard Sunflow
Chain of Responsibility 0 0 0 0 0.0028 0.0095

Observer 0.0031 0 0 0.0056 0.1032 0
State-Strategy 0.0155 0.0128 0.0232 0.1432 0.1060 0.1722

Template Method 0.0051 0.0154 0.0058 0.0337 0.0198 0.0813
Visitor 0 0.0257 0 0 0.0919 0.3301

ported by tools, as far as concerns our knowledge.

REFERENCES
Arcelli Fontana, F., Maggioni, S., and Raibulet, C. (2011).

Understanding the relevance of micro-structures for
design patterns detection. Journal of Systems and Soft-
ware, 84(12):2334–2347.

Arcelli Fontana, F., Maggioni, S., and Raibulet, C.
(2013). Design patterns: a survey on their micro-
structures. Journal of Software: Evolution and Pro-
cess, 25(1):27–52.

Arcelli Fontana, F., Pigazzini, I., Roveda, R., Tamburri,
D. A., Zanoni, M., and Nitto, E. D. (2017). Arcan: A
tool for architectural smells detection. In Intl Conf on
Software Architecture Workshops, Sweden, April 5-7,
2017, pages 282–285.

Chatzigeorgiou, A. and Manakos, A. (2010). Investigating
the Evolution of Bad Smells in Object-Oriented Code.
In 2010 Seventh Int’l Conf. the Quality of Information
and Communications Tech, pages 106–115. IEEE.

de Lemos, R., Giese, H., Müller, H. A., and Shaw, M., ed-
itors (2013). Software Engineering for Self-Adaptive
Systems II - Intl Seminar, Dagstuhl Castle, Germany,
October 24-29, 2010 Revised Selected and Invited Pa-
pers, volume 7475 of LNCS. Springer.

Fowler, M. (1999). Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston, MA, USA.

Gamma, E., Helm, R., Johnson, R. E., and Vlissides,
J. M. (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N.
(2009). Identifying architectural bad smells. In Con-
ference on Software Maintenance and Reengineering,
pages 255–258, Germany. IEEE.

Kaddoum, E., Raibulet, C., Georgé, J., Picard, G., and
Gleizes, M. P. (2010). Criteria for the evaluation of
self-* systems. In 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
South Africa, May 3-4, 2010, pages 29–38.

Lenarduzzi, V., Lomio, F., Taibi, D., and Huttunen, H.
(2019). On the fault proneness of sonarqube techni-
cal debt violations: A comparison of eight machine
learning techniques. CoRR, abs/1907.00376.

Macia, I., Arcoverde, R., Cirilo, E., Garcia, A., and von
Staa, A. (2012). Supporting the identification of
architecturally-relevant code anomalies. In Proc. 28th
IEEE Int’l Conf. Software Maintenance (ICSM 2012),
pages 662–665, Trento, Italy. IEEE.

Martini, A., Arcelli Fontana, F., Biaggi, A., and Roveda, R.
(2018). Identifying and prioritizing architectural debt
through architectural smells: a case study in a large
software company. In European Conf. on Software
Architecture, Spain, pages 320–335.

Peters, R. and Zaidman, A. (2012). Evaluating the Lifes-
pan of Code Smells using Software Repository Min-
ing. In 2012 16th European Conf. Softw. Maintenance
and ReEng., pages 411–416. IEEE.

Raibulet, C. and Arcelli Fontana, F. (2017). Evaluation
of self-adaptive systems: a women perspective. In
11th European Conf on Software Architecture, UK,
September 11-15, 2017, pages 23–30.

Raibulet, C. and Arcelli Fontana, F. (2018). Collaborative
and teamwork software development in an undergrad-
uate software engineering course. Journal of Systems
and Software, 144:409–422.

Raibulet, C., Arcelli Fontana, F., and Carettoni, S. (2020). A
preliminary analysis and comparison of self-adaptive
systems according to different issues. Software Qual-
ity Journal, In press.

Ramirez, A. J. and Cheng, B. H. C. (2010). Design patterns
for developing dynamically adaptive systems. In ICSE
Workshop on Software Engineering for Adaptive and
Self-Managing Systems, South Africa, pages 49–58.

Suryanarayana, G., Samarthyam, G., and Sharma, T.
(2015). Refactoring for Software Design Smells. Mor-
gan Kaufmann, 1 edition.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., and
Halkidis, S. T. (2006). Design pattern detection us-
ing similarity scoring. IEEE Transaction on Software
Engineering, 32(11):896–909.

Walter, B. and Alkhaeir, T. (2016). The relationship
between design patterns and code smells: An ex-
ploratory study. Information and Software Technol-
ogy, 74:127 – 142.

Weyns, D. (2018). Software engineering of self-adaptive
systems: An organized tour and future challenges. El-
sevier, 19(1-–12):888–896.

SAS vs. NSAS: Analysis and Comparison of Self-Adaptive Systems and Non-Self-Adaptive Systems based on Smells and Patterns

497


