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Abstract: Any source code can be represented as a graph. This kind of representation allows capturing the interaction
between the elements of a program, such as functions, variables, etc. Modeling these interactions can enable
us to infer the purpose of a code snippet, a function, or even an entire program. Lately, more and more
work appear, where source code is represented in the form of a graph. One of the difficulties in evaluating the
usefulness of such representation is the lack of a proper dataset and an evaluation metric. Our contribution is in
preparing a dataset that represents programs written in Python and Java source codes in the form of dependency
and function call graphs. In this dataset, multiple projects are analyzed and united into a single graph. The
nodes of the graph represent the functions, variables, classes, methods, interfaces, etc. Nodes for functions
carry information about how these functions are constructed internally, and where they are called from. Such
graphs enable training hierarchical vector representations for source code. Moreover, some functions come
with textual descriptions (docstrings), which allows learning useful tasks such as API search and generation
of documentation.

1 INTRODUCTION

Given the current rate of software development, it is
desirable to develop instruments that can assist the
development process and help to bring more quality
software to life. Specifically, when considering the
development tasks associated with source code docu-
mentation. Very often, parts of a software project lack
necessary documentation. Combining text and source
code analysis together can enable search through un-
documented code or even facilitate the process of cre-
ating the documentation.

Unfortunately, modern instruments for software
analysis are limited. The reason for this is simply that
those tools are unable to understand the purpose of a
program. In this situation, analysis tools are unable to
provide relevant recommendations or feedback.

Another area that lacks proper instruments is the
creation of the documentation. Source code docu-
mentation is an important factor for software quality,
especially in the case of long-term development and
collaboration. Often, it is necessary to understand the
purpose of the program to get any valuable insight.
However, without proper documentation, it is some-
times hard to do even for experienced programmers.
A tool that can facilitate the interpretation of an un-
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Figure 1: Source code graph that captures definition and us-
age of a simple Python class. Original source code is given
in Listing 1.

documented code will make this process easier.
Lately, there were some developments in the ap-
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plications of statistical learning and deep learning
techniques for solving tasks that are related to pro-
gram interpretation. Such tasks include generation of
software description (Yao et al., 2019) (Matskevich
and Gordon, 2018) (Alon et al., 2018a) (Aghamoham-
madi et al., 2018), API search (Gu et al., 2018) (Hu-
sain et al., 2019), bug detection (Henkel et al., 2018)
(Li et al., 2019) (Pradel and Sen, 2018) and others.
These problems are hard to formalize, and there is a
general consensus that they are better addressed with
the use of deep learning techniques.

One of the possible improvements that can be
done in the area of source code modeling with deep
learning techniques is changing the representation of
the code. Oftentimes, the code is treated as a sequence
of tokens. Such representation loses a lot of useful
structure in the code that is available to a human since
the human knows programming language grammar.
Another, more natural approach to source code rep-
resentation, is with graphs (Alon et al., 2018b). Re-
cently, due to the advancements in the area of graph
modeling with deep learning, the approaches that rep-
resent the source code in the form of graphs started to
emerge (Allamanis et al., 2017), (Alon et al., 2019),
(Nguyen et al., 2017).

Source code has an inherently hierarchical struc-
ture. A program consists of a sequence of functions
calls. A function can be implemented with the help of
other functions or simply using the standard library of
a programming language. Thus, any program can be
represented with a hierarchy of function calls. We be-
lieve that understanding how to model this hierarchy
will enable interpreting the program’s purpose.

Unfortunately, it is hard to evaluate how useful
a graph representation can be using only existing
datasets. Most published datasets aim at modeling ab-
stract syntax tree (AST) of a function without consid-
ering how this function is used in the rest of the code.
We believe that to understand the purpose of a func-
tion, one should inspect both how the function is used
throughout the source code and the body text of the
function itself. Moreover, when a textual description
of a function is added, a statistical model receives the
maximum amount of information that a programmer
can receive. Considering these three properties of a
function, in our opinion, should give a full description
of its purpose, and enable learning more expressive
vector representations (embeddings) for source code.

The understanding of the purpose of a function en-
ables solving multiple tasks that can facilitate the soft-
ware development process and reduce the risk of er-
ror. The use of textual descriptions can enable the use
of natural language interfaces in the software devel-
opment process, such as API search. The contribution

of this paper is in preparing datasets for representing
source code for Python and Java as dependency and
function call graphs 1. Besides a more conventional
function call graph, this dataset contains information
about the dependencies of a particular function. The
list of dependencies can include types of variables,
references for variables, or class fields. We plan to use
this dataset for learning hierarchical embeddings and
studying the application of such embeddings for solv-
ing different machine learning (ML) tasks for source
code.

The rest of the paper is organized as follows.
Section 2 describes the idea behind the proposed
approach. Section 3 explains how we created the
datasets for Python and Java. Section 4 explores the
related work. Section 5 concludes the paper.

2 METHOD DESCRIPTION

The approach is based on the idea that information
about the function body, how and where the function
is used, and the textual description of a function pro-
vide full information necessary to determine the pur-
pose of a function. We draw inspiration from the area
of natural language processing. Given that the source
code, written in any programming language, can be
treated as a form of language, we can apply existing
NLP techniques to create a language model (Hindle
et al., 2012). However, some differences make the
source code very different from natural language.

First, the source code usually describes a sequence
of transformations. Unlike in natural language, where
there is a significant prevalence of nouns, source code
is mostly described by actions, and the intent of a pro-
gram is mostly defined through the composition of
these actions (Hindle et al., 2012).

The second difference is related to the language
vocabulary. Natural languages usually have an evolv-
ing but relatively stable vocabulary with a wide vari-
ety of concepts. In source code, on the other hand, vo-
cabulary can change significantly from a program to a
program due to different naming of variables. More-
over, the variables that are essentially the same can
have different names in different scopes. In the case
of natural language, such situations are handled by
co-reference resolution, which is a probabilistic tech-
nique. In the case of source code, those references, in
most of the cases, can be resolved in a deterministic
way (at least in the run-time). This creates an oppor-
tunity to track how different variables and objects are

1https://github.com/VitalyRomanov/source-graph-
dataset
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used across the entire program, discern between them,
and identify their purpose.

Despite the long history, many natural language
models are limited in a way that they primarily oper-
ate on the token level. Creating a programming lan-
guage model creates a unique opportunity to utilize
the graph-like hierarchical structure of a program. It
is a known fact that programs are often organized in
a fashion that allows reusing the source code. In the
graph of an entire program, functions represent sub-
graphs.

Computing embeddings for subgraphs is an open
problem. Source code graphs allow addressing this
problem in an interesting way. The problem of learn-
ing the embeddings for subgraphs can be interpreted
as a problem of learning a composition function that
accepts nodes and edges as inputs and produces an
embedding for the entire subgraph. In the case of the
source code graph, the entire subgraph is addition-
ally represented as a single node (function) that has
connections with the rest of the source code. Being
able to learn the composition function allows find-
ing the representation for new functions that were
not present in the dataset, and, in general, opens up
an opportunity for more intuitive transfer learning on
source code, which is different from more conven-
tional sequence-to-sequence approaches for transfer
learning (Devlin et al., 2017).

In our opinion, the best way to measure how well
a model captures the purpose of a program or function
is by evaluating the tasks of generating the annotation
and API search. Both of these tasks require textual
descriptions attached to nodes (functions, modules) in
the graph. One of the advantages of textual descrip-
tions, often given as docstring for functions, is that
they enable the use of more advanced and established
NLP techniques for comparing the similarity of text.
Thus, textual descriptions can be used as additional
regularization for learning graph embeddings. Nodes
that have similar textual descriptions should have sim-
ilar graph embeddings.

With the progress of deep learning, vector repre-
sentations became a widely applied tool for solving
varieties of ML tasks. The advantage of vector repre-
sentations is that they automatically encode properties
of an object, that are useful for solving downstream
tasks. Currently, there is a growing list of problems
that can be solved by learning vector representations
for source code. Some of them include:

• Auto-completion and API Suggestion
In this task, a program tries to recommend addi-
tional API that can be useful for completing the
current program. This task can be viewed as link
prediction in graphs. This is also a variant of API

# ExampleModule2.py
from ExampleModule1 import ExampleClass

instance = ExampleClass(None)

def main():
print(instance.method1())

main()

# ExampleModule1.py

class ExampleClass:
def __init__(self , argument):

self.field = argument

def method1(self):
return self.method2()

def method2(self):
variable1 = 2
variable2 = str(2)
return variable2

Listing 1: A simple class definition and use in Python.
Source code graph for this code is given in Figure 1.

search;

• API search
Usually involves searching for API using a query
in natural language. Embeddings for functions are
used for creating a search index and learning rank-
ing function;

• Bug Detection
Involves finding bugs that can be revealed from
the statistical analysis of the code. Embeddings
are used to represent elements of a program;

• Generating Annotations
Generating textual description for a function or
separate lines in the code

• Program Translation
Translation between programming languages

By utilizing the hierarchical structure of a program,
we can regularize embeddings of functions to encode
the operations and other methods that are used inside
this function. Some work on modeling hierarchy of
graphs was done in (Ribeiro et al., 2017), (Chen et al.,
2018),(Ying et al., 2018). At the same time, the de-
pendency links in the source code graph can be used
to learn how and where a specific function can be
used without even looking at the implementation of
this function.

Based on the ideas described above, we propose
a list of criteria that should be met in order for the
source code graph to be useful:
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1. Presence of the Hierarchy. The graph should con-
tain a hierarchy of function calls. Otherwise, it
becomes hard to model how other functions are
used;

2. Clarity. Functions in the graph mostly should
have a single purpose;

3. Multiple Usages. Functions should ideally be
reused from different parts of the code. Other-
wise, it becomes hard for a statistical model to
understand the purpose of the function;

4. Connectivity. Functions should be connected with
the rest of the program through input arguments
and return values2.

All of the tasks described above require some addi-
tional level of understanding of the program’s pur-
pose. In our opinion, tasks like API search and code
annotation are the best for evaluating the ability of a
statistical model to capture the program’s purpose. If
a model can correctly generate different textual de-
scriptions for two similar functions, then it is able to
interpret the code. Similarly, one can evaluate how
well a model understands the source code using the
task of API search.

3 DATASET DESCRIPTION

We constructed a source code graph with the help of
an open-source source code indexing tool – Source-
trail 3. This tool is capable of creating a graph for
C, C++, Java, and Python. The main advantage of
Sourcetrail over its competitors is the possibility of
exporting nodes and edges of a source code graph
with minimal effort. Moreover, it provides a unified
interface for creating graphs for several programming
languages at once. This utility can capture different
kinds of relationships between source code units. The
source code units, such as modules, classes, meth-
ods, fields, and variables, are treated as nodes in the
graph. There are several types of relationships. The
list of available relationships depends on the program-
ming language. Despite different kinds of relation-
ships present, the main goal is to capture the function
call graph. Other types of connections can still be
useful for modeling the source code in the future. We
applied the source code indexing tool Sourcetrail to
a set of Python packages and their dependencies and
also to a set of open-source Java repositories. The de-
tails of the resulting datasets are given below. The

2This property is not yet fully satisfied in the current
version of the dataset.

3www.sourcetrail.com

Table 1: Node types present in Python source graph.

Node Type Count
Function 221822
Class field 83077
Class 35798
Module 18097
Class method 14953
Non-indexed symbol 853

Table 2: Edge count in Python graph by edge type.

Edge Type Count
Call 614621
Define/Contain 431115
Type Use 239543
Import 121752
Inheritance 26525

example of a graph constructed in such way can be
found on Figure 1.

Dataset construction process included several
steps. First, the data was exported from Sourcetrail
format. The resulting graphs were analyzed for con-
nected components. Only the largest component re-
mained, and the rest were filtered out. Sometimes in-
dexing tools can produce erroneous edges. The cor-
rectness of graphs was verified manually on a small
subsample of nodes and edges. With 99% confidence
source graph for Python has less than 8% of incorrect
connections, and for Java – less than 5%. The esti-
mate was performed on a very small subsample and
is expected to go down as more data is manually ver-
ified.

Python Dataset.
To create the Python source graph dataset, we cre-

ated a virtual environment and installed a collection
of popular packages, including their dependencies.
The collection of packages includes Bokeh, Django,
Fabric, Flask, Matplotlib, Pandas, Requests, Scrapy,
Sklearn, Spacy, and Tensorflow. After installing these
packages with dependencies, the python virtual envi-
ronment contained 151 packages. All of those pack-
ages were indexed using Sourcetrail. The count of dif-
ferent types of nodes is shown in the Table 14. The list
of different types of edges and their count is shown in
Table 2.

Java Dataset.
In the case of Java, we analyzed 15 repositories

that are openly available on GitHub. The repositories
include the source code for such projects as Apache
HTTP Client, crawler4j, Deeplearning4j, JHipster,

4The exact count can change in the future versions of the
dataset. Applies to all counts.
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Table 3: Node types present in Java source graph.

Node Type Count
Method 287393
Field 95983
Class 42329
Non-Indexed Symbol 30438
Type Parameter 5885
Enum Constant 4835
Non-Indexed Package 3792
Interface 3366
Annotation 1012
Enum 919
Built-In Type 9

Table 4: Edge count in Java graph by edge type.

Edge Type Count
Type use 989725
Call 817408
Define/Contain 475303
Use 368910
Annotation use 168862
Override 75186
Inheritance 32018
Is type 24105

log4j, Mahout, Opennlp, Spring Boot, Spring Frame-
work, Stanford NLP, TableSaw, Thingsboard, Unirest,
WebMagic, and Weka. Unlike for Python, we did not
analyze the packages that are the dependants of these
repositories. The count of nodes and edges by type is
given in tables 3 and 4 respectively. As with the case
of the Python graph, there are many different types of
nodes and edges. For now, we focus on the edges that
create the function call graph. Other types of edges
and nodes can be used in the future.

For each dataset, where it was possible, we ex-
tracted docstrings for functions. Thus, some of the
functions in the dataset come with a textual descrip-
tion.

The datasets described above represent the source
code of selected Python packages and Java reposito-
ries in the form of graphs. The nodes of the graph,
in this case, are the units of programming languages,
such as functions, methods, classes, interfaces, etc. In
these datasets, some of the edges represent function
calls. Thus, it is possible to use this data for train-
ing hierarchical embeddings for the functions. Some
of the functions, for which docstring was available,
have a textual description attached to them. These de-
scriptions enable solving the tasks that require input
or output in the form of natural language. Such ML
tasks for code as API search, annotation generation,

API recommendation, and others can be tested on the
current dataset.

4 RELATED WORK

Existing Datasets.
The idea of representing the source code in the

form of graphs is not new and was performed in dif-
ferent studies. However, bringing together a hier-
archical representation of a program and textual de-
scriptions is still rare, and the existing public datasets
do not provide the data in the desired format.

We looked into datasets for source code search
and description generation – the types of datasets that
come with textual description for functions. All of the
datasets that we have found did not allow construct-
ing an unambiguous hierarchical representation of a
program.

One of the datasets, collected by the researchers
in Edinburgh University, code-docstring-corpus, con-
tains a parallel corpus of python functions and their
docstrings and enables training models for generat-
ing function descriptions from the function bodies
(Miceli-Barone and Sennrich, 2017). A collection of
open-source python repositories was used to collect
the dataset. Many functions come from the same li-
brary. However, there seems to be no easy way to con-
struct an unambiguous function call graph from this
data, mainly due to functions having identical names,
and no easy way to identify where the functions were
imported from.

The dataset published by GitHub, CodeSearch-
Net, contains function bodies, links to the source
repository, and, sometimes, function descriptions
(Husain et al., 2019). The data is available for sev-
eral languages. The dataset contains functions from a
very diverse set of repositories. For this reason, many
functions are not really reused, which makes it hard
to construct a hierarchical representation.

In Facebook’s dataset, Neural-Code-Search-
Evaluation-Dataset, a parallel corpus of code snippets
and their textual descriptions is given (Sachdev et al.,
2018). But, once again, it seems hard to construct
a hierarchical representation. For this reason, this
dataset does not satisfy our goals.

Another project that caught our attention is BOA
projects. It aims at mining a large number of
source code repositories (Dyer et al., 2013). They
have implemented a query language to generate and
mine different types of program graphs, includ-
ing control-flow graphs, control-dependence graphs,
data-dependence graphs, and program-dependence
graphs. However, the data is not readily available
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and should be queried. Moreover, currently, they ana-
lyze only for Java 7 and older, according to the project
web-page.

Techniques for Source Code Embeddings.
One of the goals of creating the source code

graph dataset is learning vector representations for the
source code.

An extensive study pf the subject of source code
embedding was done in (Chen and Monperrus, 2019).
In most of the cases, creating embeddings require
building some graph. Several methods were reported
to build graphs based on token adjacency (Harer et al.,
) (Azcona et al., 2019) (Chen and Monperrus, 2018).
Such an approach is very similar to classical embed-
dings techniques, like Word2Vec, but seems to be
over-simplified in the case of program source codes.

Another approach for learning embeddings is us-
ing a control-flow graph (DeFreez et al., 2018). While
such an approach would resolve many ambiguities
in graph construction, the process of creating the
control-graph itself is not possible for any arbitrary
language. The same problem arises when using pre-
compiled LLVM code for creating the graph (Ben-
Nun et al., 2018). Moreover, the program becomes
uninterpretable for a programmer. This is one of the
reasons we focus on analyzing sources of a program
as they are without additional preprocessing.

Some other approaches work on with function call
graph and have reported learning meaningful embed-
dings (Lu et al., 2019) (Pradel and Sen, 2018). How-
ever, the data that they have uses is not available pub-
licly.

Several approaches used graph-based source code
representation for fixing bugs in the code (Allama-
nis et al., 2017) (Devlin et al., 2017). Their graph
includes both function call information, as well as
function AST. However, these graphs are not publicly
available.

As of the time of writing this paper, we are not
aware of any work that utilizes everything: hierarchi-
cal representations, function bodies, and textual de-
scriptions at the same time.

5 CONCLUSION

Instruments that can facilitate the software develop-
ment process are needed. Due to the latest advance-
ments in statistical learning, it now becomes possi-
ble to address such problems as source code search
and generation of documentation. Lately, numerous
works address these problems. In this paper, we pre-
sented our vision for an approach to source code anal-
ysis that utilizes hierarchical graph representations,

function bodies, and textual descriptions for func-
tions. It is possible to use this information to train
a model that captures the program’s purpose. We cre-
ated two datasets for Python and Java projects. Each
individual project is represented as a graph. These
graphs were later united together into a single graph
(for a given programming language). This large graph
contains information about both: the internal struc-
ture of each function and how this function is used in
the source code is present. We believe that this in-
formation will be beneficial for learning embeddings
for functions. Such embeddings allow solving such
ML tasks like API search, generation of documenta-
tion, API suggestion, bug detection, and many others.
Both datasets are available on GitHub.

Currently, the datasets are still under develop-
ment, and their improvement is expected within the
next several months. The future work includes in-
corporating AST of programs into the current graph.
The datasets can be used for studying properties of
source code, e.g., the amount of code reuse. However,
the main goal of creating these datasets is to explore
the possibility of creating hierarchical embeddings for
source code.
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