
cloud.iO, An Open-source W3C WoT Compliant Framework

Lucas Bonvin1, Dominique Gabioud1 and Michael Clausen2

1Institute of Sustainable Energy, HES-SO Valais-Wallis, Route du Rawil 47, Sion, Switzerland
2Institute of Systems Engineering, HES-SO Valais-Wallis, Route du Rawil 47, Sion, Switzerland

Keywords: IoT, Interoperability, W3C, Web of Things, Thing Description, Cloud, cloud.iO.

Abstract: The Internet of Things (IoT) is gaining more and more popularity. It is therefore not surprising that the number
of IoT cloud-based solutions grows accordingly. Most of these solutions have their own semantics and syntax,
hence creating a heterogeneous landscape with a lack of interoperability. W3C works on the Web of Things
(WoT) standardization with the goal of bringing interoperability across IoT solutions. This paper presents how
the interoperability of the open-source IoT solution cloud.iO has been enhanced by making it compliant with
the W3C WoT recommendations.

1 INTRODUCTION

The growth of IoT is characterized by an increased
number of connected devices but also by the mul-
tiplication of the cloud platforms in charge of their
connection. According to Postcapes1, more than 152
platforms are available. To this IoT platforms list, we
can add cloud.iO2, an IoT cloud solution developed
by the Institute of Systems Engineering at HES-SO
Valais-Wallis.

The IoT platforms feature a similar structure:

• The current state of connected Things is mirrored
in digital replicas called digital twins.

• The platforms allow applications to monitor and
control Things through their digital twins.

The IoT platforms, however, use proprietary syntax
and semantics to describe the Things’ data model and
to communicate with their twin. Hence, a given ap-
plication is in practice bound to a single platform, as
cross-platform applications need data conversion and
support of multiple APIs. The resulting fragmenta-
tion of the IoT scene limits the development of IoT
based services.

Interoperability between applications and plat-
forms requires compliance with a homogeneous inter-
face defined in a recognized standard. W3C, through
its Web of Things (WoT) Working Group, has the am-
bition to elaborate such a standard. To this end, it

1https://www.postscapes.com/internet-of-things-
platforms/

2https://github.com/cloudio-project

has already published the architecture for interopera-
ble platforms in a candidate recommendation.

This paper describes how cloud.iO has been com-
pleted to become compliant with the W3C’s WoT ar-
chitecture.

The structure of this paper is the following: Sec-
tion 2 presents the concept of interoperability in an
IoT environment; Section 3 describes the W3C WoT
vision; Section 4 introduces cloud.iO; Section 5 ex-
plains how cloud.iO was upgraded to become WoT
compliant. Finally, Section 6 concludes this paper
with perspectives on future work.

2 INTEROPERABILITY

Interoperability is the ability of systems and devices
to provide services to and use services from other
systems or devices, so as to enable them to operate
effectively together. IoT interoperability appears in
many contexts like device to device, device to plat-
form, platform to application, and application to ap-
plication. In this paper, the ability for a compliant ap-
plication to be interoperable with compliant platforms
is addressed. The vision is to allow an application to
address IoT devices connected through different plat-
forms without ad hoc adapters.

Interoperability is defined at two levels:

• Syntactic Level: interoperable systems agree on
the format and sequence of exchanged messages.

• Semantic Level: interoperable systems exchange

Bonvin, L., Gabioud, D. and Clausen, M.
cloud.iO, An Open-source W3C WoT Compliant Framework.
DOI: 10.5220/0009470604050411
In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (IoTBDS 2020), pages 405-411
ISBN: 978-989-758-426-8
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

405



data with unambiguous, shared meaning. Seman-
tic interoperability may apply to IoT specific con-
cepts (e.g.”event” or ”action”) or domain-specific
concept (energy, health ...).
Both the W3C architecture and cloud.iO have sup-

port for domain-specific semantics. However, this as-
pect is not the focus of this paper.

The targeted interoperability is illustrated in Fig-
ure 1. In this example, two applications can inter-
act with Things connected through three platforms
because all components implement the digital twin
interface. On the other hand, the two applications
can interact together to share access to their Things
through their digital twins. These interactions are
possible since both applications understand the nor-
malized syntax of the digital twins.

Figure 1: Interoperability between applications and IoT
platforms.

Different projects have addressed the application -
platform interoperability question. symbIoTe (Žarko
et al., 2019) provides an abstraction layer to harmo-
nize IoT platforms. Compliant platforms can reg-
ister their resources to symbIoTe. Applications can
then discover resources using the symbIoTe semantic
search engine and later on access them in a homo-
geneous way. symbIoTe recognized the importance
of standardization since its Core Information Model
is based on the Semantic Sensor Network Ontology,
a W3C recommendation, and on the OGC Sensor-
Things API.

Another project proposing interoperability for IoT
is BIG IoT (Jell et al., 2017). BIG IoT’s goal is to
build an IoT ecosystem with multiple IoT platforms,
services, and applications through the definition of a
uniform platform interface known as BIG IoT API.
The BIG IoT API and its information models have
been built in collaboration with the W3C’s Web of
Things Interest Group.

These projects and others paved the way for in-
teroperability. However, large-scale deployment re-
quires a stable interface definition backed by a recog-
nized standardization body like W3C.

3 WEB OF THINGS

The W3C standardization work related to IoT is held
by the Web of Things (WoT) Interest Group (WoT
IG) and the Web of Things Working Group (WoT
WG). The latter has released two candidate recom-
mendations: the Web of Things (WoT) Architecture
(Kovatsch et al., 2019) and the Web of Things (WoT)
Thing Description (Kaebisch et al., 2019).

The WoT architecture is made up of four building
blocks:

• The WoT Thing Description defines an informa-
tion model for Things based on a semantic vo-
cabulary and a serialized representation based on
JSON.

• The WoT Binding Templates specify syntactic
and protocol-related information for Thing ac-
cess.

• The WoT Scripting API proposes a program-
ming interface that allows applications to dis-
cover, fetch, consume, produce, and even expose
WoT Thing Descriptions.

• The WoT Security and Privacy recommendation
provides security-related guidelines for all com-
ponents.

The main concepts of the WoT architecture are ex-
plained in this paragraph. A normalized digital twin
is called a Thing and is defined as “the abstraction of
a physical or virtual entity (...) described by standard-
ized metadata”. The latter are registered in a JSON
formatted Linked Data document named Thing De-
scription (TD). The entity interacting with a TD is
called a Servient. It is defined as a software com-
ponent that implements one or many WoT building
blocks. Servients can be Consumers, which are en-
tities “that can process TDs (...) and interact with
Things”. TDs allow Consumers “to identify what ca-
pabilities a Thing provides and how to use the pro-
vided capabilities” (Kovatsch et al., 2019). Inter-
action Affordances link the “what” and the “how”
for each capability. “Whats” are named Interac-
tions, whereas “hows” are Protocol Bindings follow-
ing WoT Binding Templates.

3.1 Things Description (TD)

A TD is basically a collection of Interaction Affor-
dances. Three types of Interactions suffice to model
nearly all Interactions found in IoT devices and ser-
vices:

• A Property describes a state of a Thing. A Con-
sumer can read it and possibly also write it.

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

406



• An Action refers to a function on a Thing. Invok-
ing an Action can change the state of a Thing.

• An Event describes an asynchronous data ex-
change initiated by a Thing.
The following use case illustrates how a TD pro-

vides access to a Thing representing a smart heating
system with ambient temperature measurement and a
temperature set point. In the TD, both the real and tar-
get temperatures are Properties that can be accessed
by a hypothetical HTTP operation. The heating regu-
lation can be switched on and off. This is represented
by an Action in the TD. Finally, our heating appliance
can detect and announce changes in the ambient tem-
perature. This is transposed as an Event in the TD.
Listing 1 represents a basic TD implementation for
this smart heating system.

{
"@context": "https://www.w3.org/2019/wot/td/v1",
"id": "urn:heater",
"title": "myHeater",
"securityDefinitions": {

"basic_sc": {
"scheme": "basic",
"in": "header"

}
},
"security": ["basic_sc"],
"properties": {

"temperature": {
"type": "integer",
"forms": [{

"href": "https://myHeater.com/get"
}]

},
"targetTemperature": {
"type": "integer",
"forms": [{

"href": "https://myHeater.com/set"
}]

}
},
"actions": {

"toggleRegulation": {
"forms": [{

"href": "https://myHeater.com/toggle"
}]

}
},
"events": {

"temperatureChange": {
"data": {"type": "integer"},
"forms": [{

"href": "https://myHeater.com/change",
"subprotocol": "longpoll"

}]
}

}
}

Listing 1: TD example of a heating system.

Apart from the Interaction Affordances, a TD
must contain four mandatory JSON objects all present
in Listing 1: @context, title, security, and
securityDefinitions. @context is a JSON-LD
specific name whose corresponding value refers to
the TD ontology definition. The title field pro-
vides a human-readable title to the Thing. Finally, the
security object refers to securityDefinitions
defined in the TD. To access a resource, the conditions
of the mentioned security definition must be fulfilled.

4 cloud.iO

cloud.iO is a scalable open-source IoT cloud-based
platform developed and maintained by the Institute
of Systems Engineering at HES-SO Valais Wallis.
cloud.iO has been used in several projects, includ-
ing the European FP7 SEMIAH and at the European
Horizon 2020 GoFlex projects (Roduit et al., 2019)
for monitoring and control of energy and heating in
hundreds of buildings.

cloud.iO provides the following services:

• Property Access: Things properties can be read
and written using different models.

• Directory: The list of Things with their informa-
tion model can be browsed and searched.

• Historian: The history of Things’ properties is
made available.

• Remote Job Execution: Things local tasks can be
started remotely.

cloud.iO also lets Things owners define privacy
rules for their Things down to the property level.

4.1 Roles

cloud.iO defines two roles: Endpoint and User.
An Endpoint is an IoT device hosting one or

more Things. Each Endpoint has its own informa-
tion model, published, stored, and made available in
the cloud. An Endpoint sends messages to the cloud
upon status changes of hosted Things. Conversely,
Things’ properties can be remotely modified by in-
coming messages. Every change on Things properties
is stored in a time-series database.

Users are Endpoints owners. In the cloud.iO
ecosystem, a User is indifferently a real person or
an application. A User has full access on its Things’
properties and may delegate read or read/write access
for a given property to another User.

Users may:

cloud.iO, An Open-source W3C WoT Compliant Framework

407



• Browse and search a Thing information model di-
rectory,

• Monitor and control Endpoints in real-time,

• Access Endpoints’ past states (historian) through
filtering, and

• Request the execution of jobs on Endpoints.

4.2 Architecture

The core of cloud.iO is composed of two open-
source frameworks: the application for micro-
services Spring3 and the message broker RabbitMQ4.
cloud.iO is made up of a set of independent, mostly
stateless, low-complexity micro-services interacting
through the message broker (see Figure 2). These ar-
chitectural choices - message-driven processing and
micro-services - make cloud.iO a simple, scalable,
and extensible IoT platform.

Figure 2: cloud.iO complete architecture.

Micro-services implement the following func-
tions: database access, Endpoints and Users manage-

3https://spring.io
4https://www.rabbitmq.com

ment, privacy rules definition, and REST services im-
plementation.

Endpoints establish a TLS-secure MQTT link
with the message broker. X509 certificate-based End-
point authentication is mandatory. High-level Java
and Python Endpoint libraries are provided for effi-
cient Endpoint development.

Users can interact with Things either through mes-
saging (AMQP, MQTT) or through a RESTful API.

4.3 Endpoint Data Modeling

Data modeling in cloud.iO is based on three concepts:

1. An Attribute represents an atomic property of a
Thing (e.g. a numerical value).

2. An Object is a collection of Attributes forming a
coherent unit (e.g. an analog measurement made
up of Attributes for numerical value, engineering
unit, quality...).

3. A Node is a collection of Objects modeling a sub-
system of an Endpoint.

The cloud.iO data model is represented in the
UML class diagram of Figure 3.

Attribute

type: AttributeType
constraint: AttributeConstraint 
timestamp: Double
value: Any

Object

objectLabel

Node

nodeLabel

Endpoint

Uuid

1..n

1..n

1..n

1..n

Figure 3: cloud.iO class diagram for an Endpoint.

cloud.iO Objects in an Endpoint have a tree-
shaped structure, with Attributes as leaves.

The elements composing a Node or an Object can
be either freely defined or comply with a semantic
data model specific to an application domain.

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

408



A cloud.iO Attribute contains four fields. The
Type field indicates the format of the Value field by
reference to a JSON type (Boolean, integer, number,
string). Values are associated with a Timestamp in
epoch format. Finally, the Constraint field defines the
category of the Attribute, and indirectly its read / write
access mode. A Constraint may take one of the five
following value:
• Static: Read-only, static value.
• Status: Read-only, computed value.
• Measure: Read-only, measurement result ac-

quired by a sensor on a physical process.
• Parameter: Read/write, configuration parameter

acting on the Endpoint’s behavior. Persists after
reboot.

• SetPoint: Read/write, target value for an actuator,
non-persistent.
Endpoints feature globally unique identifiers

(UUIDs). Nodes, Objects, and Attributes have each
a label with a local scope. Consequently, each At-
tribute can be referred to by a full label obtained by
the concatenation of the names of its containing ele-
ments.

Listing 2 presents the cloud.iO data model for
a Node modeling the above-described heating sys-
tem. The myHeater Node contains a single Object
(temperatures) with two Attributes representing the
instantaneous ambient temperature (Measure) and the
target temperature (SetPoint).

{
"myHeater": {
"implements": [],
"objects": {
"temperatures": {
"conforms": null,
"objects": {},
"attributes": {
"temperature": {
"constraint": "Measure",
"type": "Integer",
"timestamp": 1.57476099056E9,
"value": 25

},
"targetTemperature": {
"constraint": "SetPoint",
"type": "Integer",
"timestamp": 1.57476098001E9,
"value": 24

}
}

}
}

}
}

Listing 2: Digital twin of cloud.iO Node.

4.4 cloud.iO Operation

Attributes can be classified in two overlapping cate-
gories: readable Attributes and writable Attributes.

An Endpoint monitors its readable Attributes lo-
cally. Any significant change of a value triggers the
emission of an MQTT message with a topic con-
taining the Attribute’s full label and a message body
made up of the JSON representation of the Attribute’s
fields. Conversely, a write operation on an Attribute is
triggered by the reception of an MQTT message with
a similar structure.

Users can perform read operations on Attributes
(HTTP) and write operations on Attributes (MQTT,
HTTP). They can also subscribe to Attributes updates
and be notified on Attribute changes (MQTT, HTTP
long poll).

5 cloud.iO AND WEB OF THINGS

The cloud.iO data model is flexible enough to repre-
sent the digital twin of any Thing. However, as it is
specific to cloud.iO, applications (Users) must also be
cloud.iO specific. Hence application - platform inter-
operability as defined in Section 2, is not ensured. To
open the cloud.iO platform to WoT compliant appli-
cations, cloud.iO data models must be translated into
WoT TDs. Figure 4 illustrates a micro-service hosting
and exposing a WoT Thing for an application acting
as Consumer.

Thing
WoT Servient

WoT Thing
Description

Expose

Application
WoT Servient

Interact

Consume

TD Consumer

Figure 4: Interaction between cloud.iO and a Consumer.

The core of the translation from cloud.iO data
models to WoT TD is the implementation of the dif-
ferent Interactions Affordances. Those are built ac-
cording to the following guidelines:

• A cloud.iO Node is mapped to a TD Thing.

• A cloud.iO Attribute is mapped to two TD Inter-
actions: one of type Property and a second of type
Event.

cloud.iO, An Open-source W3C WoT Compliant Framework

409



• A TD Consumer performs a read or write opera-
tion on a cloud.iO Attribute through its Property
representation.

• A TD Consumer is notified of a Attribute change
through its Event representation.

Listing 3 presents the Property Affordance related
to the targetTemperature Attribute.

{
...
"properties": {
...
"property-endpointUUID.myHeater.
↪→ temperatures.targetTemperature": {

"type": "object",
"properties": {
"constraint": {

"type": "string",
"enum": ["SetPoint"]

},
"type": {

"type": "string",
"enum": ["Integer"]

},
"timestamp": {"type": "number"},
"value": {"type": "number"}

},
"required": ["constraint", "type", "

↪→ timestamp", "value"],
"forms": [{

"href": "https://cloud.iO:8081/api/
↪→ v1/getAttribute/endpointUUID.myHeater.
↪→ temperatures.targetTemperature",

"op": "readproperty",
"contentType": "application/json"

},
{
"href": "mqtts://cloud.iO:8883/@set/

↪→ endpointUUID/myHeater/temperatures/
↪→ targetTemperature",

"op": "writeproperty",
"contentType": "application/json"

},
{
"href": "https://cloud.iO:8081/api/

↪→ v1/setAttribute/endpointUUID.myHeater.
↪→ temperatures.targetTemperature",

"op": "writeproperty",
"contentType": "application/json"

}]
}

}
},
...

}

Listing 3: Property Affordance of heating System target
temperature.

Listing 4 shows the Event Affordance (linked to
the targetTemperature Attribute).

{
...
"events": {
...
"event-endpointUUID.myHeater.temperatures.
↪→ targetTemperature": {
"data": {
"type": "object",
"properties": {
"constraint": {

"type": "string",
"enum": ["SetPoint"]

},
"type": {

"type": "string",
"enum": ["Integer"]

},
"timestamp": {"type": "number"},
"value": {"type": "number"}

},
"required": ["constraint", "type", "

↪→ timestamp", "value"]
},
"forms": [{
"href": "https://cloud.iO:8081/api/v1/

↪→ notifyAttributeChange/endpointUUID.
↪→ myHeater.temperatures.targetTemperature
↪→ ",

"op": "subscribeevent",
"subprotocol": "longpoll",
"contentType": "application/json"

},
{
"href": "mqtts://cloud.iO:8883/@set/

↪→ endpointUUID/myHeater/temperatures/
↪→ targetTemperature",

"op": "subscribeevent",
"contentType": "application/json"

}]
}

}
}

Listing 4: Event Affordance of heating System target
temperature.

Generating a TD from a cloud.iO data model is a
four-step process:

1. One Thing per cloud.iO Node is created, with the
Node’s full label as TD field id.

2. Two Interaction Affordances per cloud.iO At-
tributes are created. Both contains the Attribute’s
full label in their key of Interaction Affordance
map.

3. The (unique) schema for an Attribute is associated
to each Interaction.

4. cloud.iO Attributes access definition, which is im-
plicit in cloud.iO data models, is made explicit as
WoT Protocol Bindings.

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

410



Native and TD based cloud.iO services are equiv-
alent. Note that cloud.iO was made WoT compliant
just by translating its native data model into a TD.
Access to Endpoint resources did not require changes
as it could be expressed by legacy TD Interaction Af-
fordance.

6 CONCLUSION

In this article, we presented how cloud.iO has been
upgraded to become a platform compliant with the
W3C Web of Thing Candidate Recommendations.
We applied the principle of a WoT Servient to
cloud.iO by implementing one of the WoT building
blocks: the Thing Description.

The implementation consisted of an automated
translation of its native data model to a WoT TD docu-
ment: cloud.iO Attributes were converted into TD In-
teraction Affordances and, by doing so, exposing the
cloud.iO API. This straightforward conversion high-
lights the fact that an existing IoT cloud-based plat-
form can be retrofitted with a limited effort.

6.1 Future Work

First, new versions of the still evolving WoT can-
didate recommendation will be implemented in the
cloud.iO platform, thus turning it into a test and val-
idation platform for the WoT architecture. Secondly,
we intend to deploy an interoperability test bed where
applications interact with several WoT compliant IoT
platforms. Finally, the TDs will be complemented
with an application level ontology like SAREF5.

REFERENCES

Žarko, I. P., Mueller, S., Płociennik, M., Rajtar, T., Jacoby,
M., Pardi, M., Insolvibile, G., Glykantzis, V., Antonić,
A., Kušek, M., and Soursos, S. (2019). The symbiote
solution for semantic and syntactic interoperability of
cloud-based iot platforms. In 2019 Global IoT Summit
(GIoTS), pages 1–6.

Jell, T., Bröring, A., and Mitic, J. (2017). Big iot – intercon-
necting iot platforms from different domains. In 2017
International Conference on Engineering, Technology
and Innovation (ICE/ITMC), pages 86–88.

Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V., and
Kovatsch, M. (2019). Web of Things (WoT) Thing
Description. Retrieved November 25, 2019, from
https://www.w3.org/TR/wot-thing-description/.

5https://ontology.tno.nl/saref/

Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T.,
Toumura, K., and Kajimoto, K. (2019). Web of Things
(WoT) Architecture. Retrieved November 25, 2019,
from https://www.w3.org/TR/wot-architecture/.

Roduit, P., Gabioud, D., Basso, G., Maitre, G., and Ferrez,
P. (2019). cloud.io: A decentralised iot architecture to
control electrical appliances in households. In Don-
nellan, B., Klein, C., Helfert, M., and Gusikhin, O.,
editors, Smart Cities, Green Technologies and Intelli-
gent Transport Systems, pages 67–89, Cham. Springer
International Publishing.

cloud.iO, An Open-source W3C WoT Compliant Framework

411


