
A Self-healing Platform for the Control and Management Planes
Communication in Softwarized and Virtualized Networks

Natal Vieira de Souza Neto a, Daniel Ricardo Cunha Oliveira b, Maurı́cio Amaral Gonçalves c,
Flávio de Oliveira Silva d and Pedro Frosi Rosa e

Faculdade de Computação, Universidade Federal de Uberlândia, Uberlândia, Brazil
{natalneto, drcoliveira, mauricioamaralg, flavio, pfrosi}@ufu.br

Keywords: Self-management, Self-healing, Fault Tolerance, SDN, NFV.

Abstract: Future computer networks will possibly use infrastructures with SDN, and NFV approaches to satisfy the
requirements of future applications. In these approaches, components need to be monitored and controlled in a
highly diverse environment, making it virtually impossible to solve complex management problems manually.
Several solutions are found to deal with the data plane resilience, but the control and management planes still
have fault tolerance issues. This work presents a new solution focused on maintaining the health of networks
by considering the connectivity between control, management, and data planes. Self-healing concepts are
used to build the model and the architecture of the solution. This position paper places the solution as a
system occurring in the management plane and is focused on the maintenance of the control and management
layers. The solution is designed using widely accepted technologies in the industry and aims to be deployed
in companies that require carrier-grade capabilities in their production environments.

1 INTRODUCTION

Software-Defined Networking (SDN) and Network
Functions Virtualization (NFV) are critical enablers
for future computer networks, such as 5G (Yousaf
et al., 2017), and therefore, unresolved problems in
these approaches demand careful attention. Funda-
mental issues in SDN include network healthiness,
controller channel maintenance, consistency, bugs
and crashes in SDN applications, and so on (Ab-
delsalam, 2018) (Cox et al., 2017). NFV also has
pending challenges, mainly associated with resources
management, distributed domains, and the integration
with SDN (Mijumbi et al., 2016).

In traditional architectures, the network health is
managed by distributed protocols running on the net-
work itself. In SDN, there are no specific protocols
for detecting and healing failures (such as congestion
and inconsistency), for network recovery, and link
availability. The SDN controller should address all
these issues, and the most adopted SDN controllers

a https://orcid.org/0000-0001-5047-4106
b https://orcid.org/0000-0003-4767-5518
c https://orcid.org/0000-0002-6985-638X
d https://orcid.org/0000-0001-7051-7396
e https://orcid.org/0000-0001-8820-9113

conveniently have procedures to deal with failures oc-
curring in the data plane. An unresolved problem –
addressed in this paper – is the communication main-
tenance between the data plane with control and man-
agement planes, primarily focused on in-band traffic.

The solution designed in this paper aims to deal
with the control and management planes connectiv-
ity failures. Mainly, the network switches are man-
aged by an SDN controller and require uninterrupted
connectivity with this controller. Similarly, the NFV
management components require constant connectiv-
ity with resources under management.

Our solution catalogs the control and manage-
ment components (and the logical topology involving
them), maintain backup paths in the logical topology,
predicts failures, and applies the alternative routes to
recover the system’s health. The solution architecture
adopts self-healing concepts and is focused on the
control and management planes connectivity, which
is not found in other works. Besides that, we propose
a platform running entirely at the application level,
which is not found in other projects either.

The remaining of the paper is structured as fol-
lows. Section 2 introduces the connectivity issues
related to control and management planes. Section
3 presents the solution, Section 4 gives some related
work, and finally, Section 5 presents the conclusion.

Neto, N., Oliveira, D., Gonçalves, M., Silva, F. and Rosa, P.
A Self-healing Platform for the Control and Management Planes Communication in Softwarized and Virtualized Networks.
DOI: 10.5220/0009465204150422
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 415-422
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

415



2 BACKGROUND

The main problem of applying self-healing in com-
puter networks is the number of nodes running simul-
taneously in the environment (Thorat et al., 2015),
and is related to the data plane. However, there is
another crucial problem when using SDN/NFV: the
controller and Operations, Administrations and Man-
agement1 (OAM) connectivity will eventually fail.
Therefore, the maintenance of the controller channel
reliability is essential (Rehman et al., 2019).

A computer network is usually represented as a
graph. A node represents a Network Element (NE) –
such as switches, routers, gateways etc –, and edges
represent links between NEs. Common problems are
hardware or software failures, and broken or con-
gested links (d. R. Fonseca and Mota, 2017). An SDN
environment has a second graph representing connec-
tions between the control elements. Besides that, the
infrastructure resources eventually provided by NFV
platforms are controlled by systems running in a man-
agement plane.

In SDN/NFV, a failed component on the data
plane can be isolated without significant problems.
However, the isolation of control or management
planes elements may eventually leave the network in
a non-operational state. An example is the routing
process. Typically, routes in an SDN architecture are
defined by the SDN routing module running in the
control plane. If this process is isolated, the routes
will not be defined. In NFV, the orchestrators and
managers need stable communication with the com-
puter nodes constantly. This paper assumes that a
self-healing service should react to failures in the con-
trol or management planes. Failures in the data plane
are not addressed here, as the SDN controller should
ensure the data plane health (Chandrasekaran et al.,
2016).

Figure 1 shows a common SDN environment. The
control plane is separated from the data plane. The
data plane is composed by some NEs and their con-
nections (links). The control plane includes the SDN
controller which is centralized or distributed, and the
OAM systems operating in the environment. It could
be inferred that some SDN applications are running in
the controller. Other elements also run in this kind of
environment, but the figure is a basic representation.

It is important to note the representation of the
connections between NEs and control plane elements
shown in Figure 1. Continuous lines represent phys-
ical connections and dashed lines mean logical con-

1In this paper, OAM means all elements used in control
and management planes that are not placed inside the SDN
controller (including NFV components).

Figure 1: SDN common environment.

nections. The SDNC1 has just one physical connec-
tion (with NE2) but has logical connections with all
NEs. It means that SDNC1 controls NE1, NE2, ...,
NE8 and has complete information about the topol-
ogy shown in Data plane. The OAM1 also has logical
connections with all NEs. This happens because the
OAM could be monitoring and operating resources
plugged by the NEs.

The control plane is logically, but not physically
separated from the data plane, that is, the control
primitives are separated from the data packages, but
they also pass through the data plane switches. The
first problem, in this case, is that a failure in a switch
will affect both planes. For instance, if NE2 has a
problem, the entire control plane will be isolated. In
this way, the self-healing system performs solutions
to avoid overload of the NE2. The basic idea is to
predict failures before they become real. An example
is the congestion of control links. The self-healing
system may conclude that one or more links will be
congested in the future. If the congested links cause
damages in the communication between control and
management elements with the NEs, the failures need
recovery with high priority.

A feasible solution is to maintain alternative paths
for the communication between NEs and controller,
as well as for the communication between OAMs and
their managed resources. Our solution aims to notice
that a path will be congested or have failed, and apply
an alternative path. The backup paths technique is ac-
tually essential to deal with fault tolerance in the con-
trol plane (Rehman et al., 2019). We designed an ar-
chitecture, which takes advantage of autonomic com-
puting fundamentals (such as self-healing), to build a
system to deal with fault tolerance for the control and
management planes connectivity.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

416



3 SELF-HEALING PLATFORM
FOR ADVANCED NETWORK
LAYERS COMMUNICATION

The solution proposed in this paper is a novel plat-
form that should monitor and maintain the health of
the management and control planes connectivity. Fig-
ure 2 shows a new view of the key layered planes
found in the standards specifications. The Client
Layer is out of scope in this document, while the other
planes compose the network layer. Our solution is
placed at the Management Layer, and aims to mon-
itor the connectivity between the other network lay-
ers. The delimited domain of our proposal is the In-
frastructure Layer topology in addition with the com-
ponents from Management, Application and Control
Layers.

Figure 2: Network planes by layers.

The components from the Management, Applica-
tion and Control Layers are physically (or virtually)
placed on elements from the Infrastructure Layer. It
means that the dashed layers in Figure 2 are just log-
ical planes. Sometimes, the SDN controller is de-
ployed in an out-of-band control network. In other
approaches, SDN controller deployment is executed
using in-band traffic, which means that the NEs are in
the Infrastructure Layer (data plane) and the control
and data primitives share these NEs.

3.1 Design and Specification

We propose a software architecture based on mi-
croservices and event-driven concepts. Figure 3
shows the architecture design. The Infrastructure
Layer contains NEs and servers monitored by the plat-
form. This section gives a brief description of the
platform components.

The system components illustrated in Figure 3 are
executed on containers. Our first implementation is
deployed on a container manager built by ourselves,
but it is not complex to run the solution on a commer-
cial container orchestration solution. We assume that
the network is already initialized, and then the mon-

Figure 3: System architecture.

itoring is performed by the Collecting Entity (CoE)
and the Control Primitives Interceptor (CPI).

The CoE has two services to collect network in-
formation: topology-service and metric-service. The
first one collects network topology information, such
as added/removed links, new switches plugged, port
up/down etc. The second one collects metrics in the
NEs, such as port usage in bytes. There are two tech-
niques used by CoE: the Autonomic Control Loop
(ACL), and the Local Agent (LA). The ACL moni-
tors the NEs periodically, while LAs are agents (in-
serted into NEs) which summarize information and
send them to the CoE. The other collector component
is the CPI, which is a proxy placed in the Southbound
Interface (SBI). It copies and parses OpenFlow con-
trol primitives looking for metric primitives (such as
ofpmp-port-stats).

According to our experience, the three strategies
(ACL, LA and interception) are enough to monitor the
entire network and cover all monitoring techniques
found in the literature. We intend to perform an eval-
uation of the benefits and disadvantages of these tech-
niques in the future.

All data collected by the CoE and CPI are con-
verted into events and published in the Network Event
Manager (NEM). The NEM is a publisher/subscriber
message broker where the events are published in
topics, in a way that more than one application can
subscribe to one or more topics. The Self-Healing
Entity (SHE) includes the microservices (ms) used to
apply our self-healing algorithms. The current five
ms specified in the SHE are summarized as follow:

A Self-healing Platform for the Control and Management Planes Communication in Softwarized and Virtualized Networks

417



• topology-ms: it subscribes to topology informa-
tion topics and its function is to build the logi-
cal topology between control components (SDN
controller) and their managed NEs, and the logi-
cal topology between NFV components and their
servers (servers where the managed resources are
deployed). Examples of NFV components in-
clude Virtual Infrastructure Manager (VIM), VNF
Manager (VNFM) and so on;

• catalog-ms: it creates a catalog that contains infor-
mation about the control and management com-
ponents, their NEs, and also their management
servers. Moreover, it contains information related
to the necessary commands to integrate with con-
trol and management components;

• path-engine-ms: once the logical topologies have
been built, this function calculates all possible
paths between each node to its control component;

• metric-ms: the algorithms executed in this mi-
croservice analyze all metrics received. If a met-
ric indicates a network control path failure, the
metric-ms publishes an event in the NEM;

• recovery-ms: after a failure in a control path,
the recover-ms is responsible to read the catalog,
build the recovery commands, and publish the re-
covery events in the NEM.

The SHE microservices communicate with each other
using events, through the NEM, just like the Self-
Learning Entity (SLE). The SLE runs prediction al-
gorithms, looking for a future failure in the control
paths. If a failure is predicted, the SLE sends an event
to the NEM. The recovery-ms receives the event and
performs actions to avoid the failure. At this moment,
our development is focused on basic math functions
(such as linear growth of link usage) to find link con-
gestion, but Machine Learning (ML) algorithms could
be applied by the SLE in the future.

Prediction functions and ML require high storage
volume. Because of this, all metrics collected are
used at real-time by metric-ms, but also stored in a
dedicated NoSQL database. All other information
is stored in the Network Database (NDB). The NDB
stores topology, catalogs, operational information and
so on.

All decisions took by the recovery-ms are pub-
lished as events in the NEM and received by the Net-
work Service Broker (NSB). The NSB integrates with
the SDN controllers and NEs. The SDN controllers
usually provide open Application Programming Inter-
face (API), and the NSB converts the event (received
from the NEM) in the message format accepted by the
SDN controller API.

Figure 4: Recovery use case sequence diagram.

Figure 4 presents a sequence diagram showing how a
metric (collected by the CoE) is converted to events
and travels through the architecture. The CoE applies
the ACL in an SDN controller (SDNC) requesting in-
formation about some devices (NEs). In this example,
the SDNC could be the ONOS platform, which ex-
poses metric information about all devices in a HTTP
REST API. The CoE performs the request and con-
verts the metric in an Event (E). The E1 is published in
a topic in the NEM, and all components subscribed to
this topic receive E1 (in this example, SHE and SLE).

In Figure 4, E1 did not impact SHE. However,
the SLE predicted a problem after the analysis of E1.
The SLE publishes a new event (E2) in NEM, and
this event is received by SHE, because the recovery-
ms subscribed to the topic of this event. The SHE
publishes an E3 with information about the necessary
modifications in NEs. The E3 is received by the NSB
which creates a message and sends it to the SDNC.
The NSB also receives the response, with the infor-
mation indicating whether the flow rule modifications
were applied.

Figure 4 demonstrates that the integration between
the system components is executed by events. The
synchronous communications in Figure 4 are only the
requests and responses directed to the SDNC. The fig-
ure gives just an example, but all other communica-
tions in the platform are analogous.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

418



3.2 The Control Path Catalog

The integration of our solution with the con-
trol/management components intends to be au-
tonomous. The CoE must discover management com-
ponents, but this is not specified here due to lack of
space. Therefore, we assume that the NDB has infor-
mation about the SDN controllers in the topology, and
about NFV management components. The CoE and
NSB can integrate (through open APIs) with the com-
ponents to read information about managed elements
and to procedure recovery respectively.

Figure 5: NDB entity-relationship model.

Figure 5 gives the NDB diagram. The attributes in
each table are not displayed due to lack of space.
The ‘node’, ‘port’ and ‘link’ tables store the net-
work infrastructure topology, which is retrieved from
SDN controllers running in the domain. The other
tables represent the catalog proposed in this pa-
per. The ‘component’ table stores information about
SDN controllers and NFV management components.
Each control/management element in the domain is
recorded in the ‘component’ table, such as VNFMs,
VIMs, SDN controllers and other OAMs. The ‘type’
table distinguishes the different technologies (virtual
VNFM, physical VNFM, virtual SDN controller, con-
tainerized VIM etc).

The ‘property’ table stores the common properties
that each component could have. As an example, the
endpoint of an SDN controller REST API is stored in
this table. The ‘command’ table stores the commands
that may be applied in a component. An SDN con-
troller can handle many commands (get devices, get
metrics, modify flow rule etc), and the ‘command’
table stores the meta-data used by the NSB to build
a proper command. The relation between ‘type’ and
‘command’ is required because each row in ‘type’ has
different commands, even to a same component: a
same SDN controller product can respond to differ-

ent commands in two distinct versions, for example.
The key table in the model is the ‘resource’ table.

It is a 2-tuple: (component, managed resource). Each
component of control or management has n managed
resources. As an example, an SDN controller has n
controlled NEs. Another example is a VNFM, which
has n managed Virtual Network Function (VNF). Fig-
ure 5 brings the main tables used by SHE to build the
three logical topologies (data, control and manage-
ment) and the commands catalog (used by the NSB).
Other operational tables are not represented.

The entity-relationship model allows the explana-
tion about the NSB module: if the NSB needs to ap-
ply a path modification to a control path, it can query
the catalog to fetch the command. The logical topol-
ogy stored in the NDB gives the SDN controllers in
which the NSB will request path alterations. The NSB
fetches the management components to find the end-
point of each component, and then fetches the com-
mands in the catalog.

The operations performed by the CoE to fetch the
NEs managed by a specific SDN controller, and the
resources managed by some NFV components utilize
the NDB catalog analogously. The logical topologies
and the control paths described in this Section will be
explained in more details in Subsection 3.3.

3.3 Management and Control Topology

The problem addressed by our solution can be sep-
arated in two distinct contexts: (i) the control plane
communication; and (ii) the management plane com-
munication. To apply our services in (i) means that
the platform must ensure the communication paths
between the NEs and the SDN controller. In (ii), the
platform must ensure the communication paths be-
tween the OAMs and their managed resources. The
(ii) is more complex than (i) because managed re-
sources and OAMs run on conventional servers (con-
tainerized, virtual or physical), therefore the commu-
nication paths are usually defined by the routing ap-
plication (at run time).

In the communication between the SDN controller
and its managed NEs, the initial paths are defined
in the network bootstrapping. In technologies like
OpenFlow, the switch and SDN controller have proto-
col procedures to define the control path. In this case,
our platform has information about the initial paths,
and needs only to recover them from failures. This is
achieved by calculating alternative paths (in the path-
engine-ms), identifying (or predicting) the congested
or broken links (in metric-ms and SLE), and applying
an alternative path to the control traffic (in recovery-
ms and NSB).

A Self-healing Platform for the Control and Management Planes Communication in Softwarized and Virtualized Networks

419



Figure 6: Management and control paths example.

The algorithms performed by the SHE are exempli-
fied in Figure 6. A simple topology is presented, in
which each NE is physically connected to all others.
As shown in Figure 6(a), there is an SDN controller
(C1) in the domain. Figure 6(b) shows the communi-
cation paths (dashed lines) between each NE and C1.
These paths were previously defined by the OpenFlow
procedures and are not part of our solution. When
our platform starts, the CoE retrieves the network
topology and paths shown in Figure 6(b). After this,
the path-engine-ms calculates all alternative paths and
stores them in the NDB. If the SLE concludes that the
NE1-NE4 link will be congested soon, the recovery-
ms defines an alternative path to the communication
between NE4 and C1. Then, the NSB applies the new
path, i.e. it requests a flow modification operation in
C1. If the communication between our system and C1
is a problem, the NSB requests the operations to the
NEs directly. Figure 6(c) shows the new path applied.

The topology between NFV management compo-
nents and their managed resources has an additional
issue: there are no initial paths. Figure 6(d) shows a
topology with a VNFM (V1) managing two deployed
VNFs (VNF1 and VNF2). Since the catalog has in-
formation about V1, VNF1 and VNF2, the first opera-
tion performed by path-engine-ms in to define priority
paths between V1-VNF1 and V1-VNF2. The path-
engine-ms calculates the best paths based on met-
rics already collected by the CoE (to avoid congested
links) or applying the Dijkstra algorithm to decide the
path with less hops. When the paths are defined, the
NSB applies them to the network topology, i.e. it in-

serts flow rules in the network to create static and pri-
ority rules.

Figure 6(e) gives a computing example of the
paths defined by the path-engine-ms. The defined
management paths are V1-NE4-NE1-VNF1 and V1-
NE4-NE2-VNF2. After this, the services used for the
control plane communication are used as well: if a
failure is detected in the NE1-NE4 link, the frame-
work will apply alternative paths as presented in Fig-
ure 6(f).

The utilization of static and priority rules strat-
egy overwrites the routes defined by the SDN rout-
ing application. This strategy requires several evalua-
tion tests to validate the effectiveness in real produc-
tion environments. We believe that this strategy can
be better in some situations, because the routing al-
gorithms could choose congested links or paths with
considerable latency.

Figure 6 shows a control plane communication in
(a), (b) and (c), and a management plane communica-
tion in (d), (e) and (f). It is noteworthy that the con-
trol plane topology could be different, and the man-
agement plane topology can have many OAMs and
managed resources. Our architecture based on mi-
croservice and event-driven was designed to scale-out
easily. In this way, the containers in our platform can
manage the two advanced planes without any major.
It is also important to mention that the platform itself
is an OAM and is inserted in the catalog. It means
that the platform components need priority paths with
SDN controllers and other OAMs.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

420



3.4 Status Quo and the Road Ahead

This is a work in progress paper and, at the current
moment, we have developed the main components
presented in Figure 3 by using widely accepted tech-
nologies in the industry. The components are ap-
plications running on Docker containers and man-
aged by our own orchestrator. CoE, SHE, SLE, NSB
and CPI were developed using Spring Boot frame-
work (v2.1.2.RELEASE); the NEM is a RabbitMQ (v
3.8.0-rc.1) cluster; and the NDB and NoSQL engine
are a cluster of Apache Cassandra (v3.11.4). The CoE
services were developed by using SNMP, LLDP and
ovsdb protocols. The CPI services are not finished,
but a simple proxy between NEs and SDN controller
is available.

We are now programming the microservices used
by the SHE and SLE. Some initial experiments are
necessary to decide which algorithms are better for
each microservice. For example, the path-engine-ms
may be implemented with different methods: to cal-
culate the routes itself using Dijkstra or a similar al-
gorithm; or to retrieve the paths already calculated by
the SDNC. We will perform some experiments before
the decision and implementation of these microser-
vices.

After the implementation, the evaluation will be
made. Firstly, we will evaluate the benefits of our
platform, comparing them with an SDN and NFV en-
vironment without the platform. We are preparing
a laboratory with the GNS3 emulator (for the net-
work topology), ONOS platform (as SDN controller),
Openstack (as VIM or OAM1), and Open Source
MANO (as VNFM or OAM2). Secondly, we will
prepare scenarios with different topologies to evalu-
ate our platform performance.

4 RELATED WORK

As stated by (Rehman et al., 2019) and (d. R. Fon-
seca and Mota, 2017), the controller channel reliabil-
ity is still a challenge in SDN. Reference (Rehman
et al., 2019) still states that the path backup technique
is essential for fault tolerance in the SDN scope, and
(d. R. Fonseca and Mota, 2017) states that new fault
tolerance platforms/tools are required. Our work ad-
dresses the controller channel reliability problem and
applies the path backup approach as well (by building
a new platform).

Our proposed solution considers an in-band com-
munication even in the control plane. This means that
the control decisions are made outside the data plane,
but the traffic of control primitives is made using the

same NEs used for the traffic of data primitives. Ref-
erence (Schiff et al., 2016) also believes in the in-band
control, claiming that the deploy of out-of-band con-
trol in carrier-grade networks could be expensive, and
the transition from legacy network is more complex.
Our proposal is an architecture designed to moni-
tor and recover control and management paths, while
(Schiff et al., 2016) presents techniques for control
plane. The techniques given by (Schiff et al., 2016)
can even be used in the SHE.

(Basta et al., 2015) presents a control path migra-
tion protocol for virtual SDN environments. The pro-
tocol runs over OpenFlow and performs the migration
involving the SDN controller, hypervisor and Open-
Flow switch, by adding a hypervisor proxy. The mi-
gration phases described in the reference are insights
to our work. However, we have worked in a platform
running at the application level, placed on the Man-
agement Layer.

Reference (Canini et al., 2017) shows that self-
organizing can be a valid idea for fault tolerance con-
sidering in-band SDN platforms. The predictive re-
covery was presented in (Padma and Yogesh, 2015),
and (Neves et al., 2016) applies four self-* properties
in 5G environments.

Our work considers an NFV environment de-
ployed together with SDN technology because we be-
lieve that future networks will have these technologies
in their domains, or at least in parts of the domain. In
(Foukas et al., 2017) and (Mijumbi et al., 2016) some
challenges in NFV are discussed and (Yousaf et al.,
2017) shows how SDN and NFV are complementary
technologies.

It can be concluded that many initiatives are using
self-healing approaches to address fault tolerance and
resilience questions in SDN, but the initiatives act on
specific points. Our solution is indeed to be a com-
plete platform in the future, prepared to work in the
many different SDN and NFV environments. It means
that the control and management plane connectivity
is the first goal of our work, but the architecture de-
signed can address other aspects in the future.

5 CONCLUDING REMARKS AND
FUTURE WORK

This paper proposes a new platform to deal with fault
tolerance aspects in the communication between com-
ponents from the control and management planes.
The platform is built on an architecture designed to
scale-out when sizeable topologies are used. It is es-
sential to mention that the platform is in practice, a
system running at the application level. It means that

A Self-healing Platform for the Control and Management Planes Communication in Softwarized and Virtualized Networks

421



no modifications are necessary for the NEs, SDN con-
troller, NFV components, etc.

We have built a new system, despite other ar-
chitectures and projects found in the literature, be-
cause we believe that future telecommunications and
cloud computing networks will eventually use SDN
and NFV platforms and will require management
tools/platforms as well. Even if an SDN or NFV
based network already exists, it is possible to deploy
our solution.

This paper presented our platform and its main
components. Additionally, the essential services for
control/management plane communication were de-
scribed. The reason to design a whole platform in-
stead of an isolated service is that other self-healing
functions may be implemented in the future using the
platform. Examples of these functions include the
healing of hardware resources (memory, CPU, disk,
etc.) in a datacenter, instantiation of new NEs for high
traffic, software reboot, reset of components, and so
on.

Since this is a position paper, the evaluation of
the solution is in progress. Our platform needs to be
compared with other solutions. We intend to prepare
an environment with virtual and physical NEs and di-
verse NFV components. To do this, we will use a lab-
oratory environment inside our university connected
to a facility in a local telecommunications company.

We believe our evaluation experiments can be ini-
tialized as soon as possible. The tests intend to prove
the effectiveness of this Management Layer platform
against solutions placed on Control Layer or inside
SDN applications.

As future work, our research group long for fin-
ish the development, effectiveness, and performance
tests; develop other self-healing functions inside the
SHE and design other self-* capabilities in the archi-
tecture.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior -
Brasil (Capes) - Finance Code 001. It also received
support from the Algar Telecom.

REFERENCES

Abdelsalam, M. A. (2018). Network Application Design
Challenges and Solutions in SDN. PhD thesis, Car-
leton University.

Basta, A., Blenk, A., Belhaj Hassine, H., and Kellerer, W.
(2015). Towards a dynamic sdn virtualization layer:
Control path migration protocol. In 2015 11th Inter-
national Conference on Network and Service Manage-
ment (CNSM), pages 354–359.

Canini, M., Salem, I., Schiff, L., Schiller, E. M., and
Schmid, S. (2017). A self-organizing distributed and
in-band sdn control plane. In 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 2656–2657.

Chandrasekaran, B., Tschaen, B., and Benson, T. (2016).
Isolating and tolerating sdn application failures with
legosdn. In Proceedings of the Symposium on SDN
Research, SOSR ’16, pages 7:1–7:12, New York, NY,
USA. ACM.

Cox, J. H., Chung, J., Donovan, S., Ivey, J., Clark, R. J., Ri-
ley, G., and Owen, H. L. (2017). Advancing software-
defined networks: A survey. IEEE Access, 5:25487–
25526.

d. R. Fonseca, P. C. and Mota, E. S. (2017). A sur-
vey on fault management in software-defined net-
works. IEEE Communications Surveys Tutorials,
19(4):2284–2321.

Foukas, X., Patounas, G., Elmokashfi, A., and Marina,
M. K. (2017). Network slicing in 5g: Survey and chal-
lenges. IEEE Communications Magazine, 55(5):94–
100.

Mijumbi, R., Serrat, J., Gorricho, J.-L., Latré, S., Charalam-
bides, M., and Lopez, D. (2016). Management and
orchestration challenges in network functions virtual-
ization. IEEE Communications Magazine, 54(1):98–
105.

Neves, P., Calé, R., Costa, M. R., Parada, C., Parreira,
B., Alcaraz-Calero, J., Wang, Q., Nightingale, J.,
Chirivella-Perez, E., Jiang, W., et al. (2016). The self-
net approach for autonomic management in an nfv/sdn
networking paradigm. International Journal of Dis-
tributed Sensor Networks, 12(2):2897479.

Padma, V. and Yogesh, P. (2015). Proactive failure recov-
ery in openflow based software defined networks. In
2015 3rd International Conference on Signal Process-
ing, Communication and Networking (ICSCN), pages
1–6.

Rehman, A. U., Aguiar, R. L., and Barraca, J. P. (2019).
Fault-tolerance in the scope of software-defined net-
working (sdn). IEEE Access, 7:124474–124490.

Schiff, L., Schmid, S., and Canini, M. (2016). Ground
control to major faults: Towards a fault tolerant and
adaptive sdn control network. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks Workshop (DSN-W), pages 90–
96.

Thorat, P., Raza, S. M., Nguyen, D. T., Im, G., Choo, H.,
and Kim, D. S. (2015). Optimized self-healing frame-
work for software defined networks. In Proceedings of
the 9th International Conference on Ubiquitous Infor-
mation Management and Communication, pages 1–6.

Yousaf, F. Z., Bredel, M., Schaller, S., and Schneider, F.
(2017). Nfv and sdn—key technology enablers for 5g
networks. IEEE Journal on Selected Areas in Com-
munications, 35(11):2468–2478.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

422


