
Towards a Business Process Model-based Testing of Information
Systems Functionality

Anastasija Nikiforova a and Janis Bicevskis b
Faculty of Computing, University of Latvia, 19 Raina Blvd., Riga, Latvia

Keywords: Information System, Model-based Testing, Functional Testing, Data Object, Executable Models.

Abstract: The main idea of the solution is to improve testing methodology of information systems (IS) by using data

quality models. The idea of the approach is as follows: (a) first, a description of the data to be processed by

IS and the data quality requirements used for the development of the test are created, (b) then, an automated

test of the system on the generated tests is performed. Thus, the traditional software testing is complemented

with new features – automated compliance checks of data to be entered and stored in the database. The

generation of tests for all possible data quality conditions creates a complete set of tests that check the

operation of the IS on all possible data quality conditions. Since this paper describes the first steps that are

taken moving towards the proposed idea, it aims to (a) define the aim of the initiated research and (b) to

choose the main components and to propose their combination resulting in the architecture of the idea to be

implemented.

1 INTRODUCTION

Software testing is vitally important in the software

development process, as illustrated by the growing

market for automated testing tools (Utting & Legeard,

2010). Obviously, software testing plays a crucial

role, therefore the problem of software correctness

has been debated since the beginning of

programming. At the beginning, software testing was

considered as bug searching together with debugging.

Testing was singled out as an independent phase only
in the 70s. Nowadays, numerous scientific and

practical studies are devoted to software testing. And

the main aim of these studies is to get reliable and

trustful software that can be used in everyday life.

Unfortunately, this aim is not succeeded, yet, and a

high number of studies as well as practical solutions

are needed to solve this problem. The proposed

testing strategies and methods cannot ensure the

reliability of the software. Faults and bugs in the

software still cause failures, despite the enormous

resources spent on the developing and testing the
software. For instance, according to (Utting &

Legeard, 2010), software testing consumes between

a https://orcid.org/0000-0002-0532-3488
b https://orcid.org/0000-0001-5298-9859

30 and 60 percent of software development resources.

Automating software testing is difficult, and this is

sometimes done manually without any guarantees

regarding the effectiveness of testing.

Therefore, we are launching a new research aimed

to improve the complete testing methodology of

information systems (IS) using business process and

data quality models. The main idea of the approach to

be developed is as follows: (a) first, the description of

the data to be processed by IS and its processing rules
are developed; they are further used to develop test

manually or at least in a semi-automated way, (b)

then, an automated test of the system on the generated

tests is performed. Thus, traditional manual software

testing is complemented with new feature –

automated checks of compliance of data entered as a

result of automated business processes and stored in

a database.

This paper is only the first step towards this

solution, and the main aim of this paper is to define

an idea of the solution, that will include (a) a choice

of the components among different alternatives that
will form the proposed solution and (b) a proposal on

the architecture of the idea to be implemented. The

future works will cover the implementation of the

322
Nikiforova, A. and Bicevskis, J.
Towards a Business Process Model-based Testing of Information Systems Functionality.
DOI: 10.5220/0009459703220329
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 322-329
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

proposed idea and the approbation of new technology

for testing and software development. This will at

least partially lead to the main aim of developing
technology of creating reliable and trustful software.

The paper deals with the following issues: a short

overview of the concept of testing and the changes of

testing paradigm through the years (Section 2), a

rationale for the proposed solution (Section 3), a

description of the model-based testing concept

(Section 4), a description of the proposed solution

(Section 5), conclusions and future work (Section 6).

2 THE CONCEPT OF TESTING

In recent years, the definition of the term “testing” has

changed significantly, therefore, this term should be

discussed at least a little. At the very beginning, by

testing was meant bug searching together with

debugging, however, nowadays this concept become

broader. Nowadays, the main aim of testing is to get

reliable and trustful software that can be used in

everyday life.

According to IEEE Software Engineering Body of

Knowledge (IEEE Computer Society, 2004) and

(Olsen et al., 2018), “testing is an activity performed

for evaluating product quality, and for improving it,

by identifying defects and problems”.
Another more extended definition states that

“testing is the activity of executing a system in order

to detect failures; it is different from, and

complementary to, other quality improvement

techniques such as static verification, inspections, and

reviews. It is also distinct from the debugging and

error-correction process that happens after testing has

detected a failure” (Utting & Legeard, 2010). The

necessity of distinction of two more concepts appears:

(a) a failure - an undesired behaviour that can be

typically observed during the execution of the system
being tested and (b) a fault - an error in the software,

usually caused by human error in the specification,

design or coding process. The execution of the faults

in the product cause failures. Once a failure is

observed, an investigation to find the fault that caused

this failure can be started, that results with a

correction of that fault. Since both of these definitions

are mainly related to the production process, more

specific definition related to software testing should

be discussed. According to Utting (2010, 2012) and

Olsen (2018) with their co-authors’, software testing

consists of “the dynamic verification of the behaviour
of a program on a finite set of test cases, suitably

selected from the usually finite execution domain,

against expected behaviour”.

By term “dynamic” is meant an execution of the

program with specific input values in order to find

failures in its behaviour. One of the main advantages
of (dynamic) testing is that the actual program is

executed either in its real environment or in an

environment with simulated interfaces, as close as

possible to the real environment. So not only the

correctness of the design and code are tested, but also

the compiler, the libraries, the operating system and

network support etc.

By “finite” Utting means that exhaustive testing

is not possible or practical for most programs since

they usually have a high number of allowable inputs

to each operation, and even more invalid or
unexpected inputs that must processed as well,

however the possible sequences of operations is

usually infinite. Thus, there is necessity to select a

limited number of tests, so that tests can be performed

at an affordable time without interfering the staff

working with software.

“Selected” Utting relates to the key challenge of

testing, namely, how to select the tests that are most

likely to expose failures in the system, since the set of

possible tests can be huge or infinite, and only a small

part of them can be can afforded to perform. This

aspect requires knowledge about the system to guess
which sets of inputs are likely to produce the same

behaviour, that is called uniformity assumption, and

which are likely to produce different behaviours.

Thus, the expertise of a skilled tester is important

here. There are many informal strategies, that can

help in deciding which tests are likely to be more

effective and some of these strategies are the basis of

the test selection algorithms in the model-based

testing tools and will be covered in Section 4.

And the last concept making a sense in the above

given definition is “expected” that is related to so-
called “oracle problem” since after each test

execution, a decision on whether the observed

behaviour of the system was a failure or not should be

made. This problem is often solved via manual

inspection of the test input; but for efficient and

repeatable testing, it must be automated. This can be

achieved by model-based testing, by automating the

generation of oracles and the choice of test inputs.

In practice, most of the approaches test the system

against a set of test cases without going in depth of

the complete testing problem due to its impossibility

in the general case (the most notable researches
dealing with this issue are presented by authors of

(Peleska et al., 2017)). This research deals with this

issue as well.

Towards a Business Process Model-based Testing of Information Systems Functionality

323

3 RATIONALE FOR THE

RESEARCH

The research reveals the topicality of software testing

and challenges, which widely occurs in software

development practice as the main program quality

assurance method:

• The solutions proposed by the testing theory

fail to meet the requirements of the practice

(real-world). The old paradigm of testing has
shifted from error/ fault-finding to the new

one – the testing goal is to develop reliable

programs that can be applied to real IS

without risks to business and government

management;

• Testing practice in many cases (in Latvia but

not only) is still limited to executing

manually developed tests without analysis of

the complete testing. As a result, there are

still cases when program faults cause

significant financial losses and failures
results in the government management.

The idea of the proposed solution is as follows:

first, the specification of the information/ data

processing system to be developed or tested is created

in a language of a high level of abstraction. It contains

the concepts of data object and conditions, where:

(a) Data objects describe real-world objects that

the IS accumulates data or more precisely -

input messages;

(b) The conditions describe the requirements

that must be met by the values of the
attributes of the data object in order to

consider the data object as correct.

Since one of the main functions of IS is to

accumulate and process data [objects], first, it is

necessary to check that the data objects entered in the

system are correct, that is achieved by checking the

correctness of values of data objects by applying

defined conditions on them. The correct data objects

can be entered and stored in the database, however, if

the incorrect ones are detected, the data owner is

notified about them, which allows data correction and

repeated input into the system.
Moreover, the checking of data object must be

done on at least two levels – syntactic and contextual

or semantic control. Syntactic control checks the

conformity of entered attribute values of a data object

to the attribute values syntax. Contextual control

checks the attributes of data object against other data

objects (Nikiforova & Bicevskis, 2019).

The first idea of the proposed solution is to

compare the correspondence between data objects are

entered and those stored in the database against each

other, in other words, whether the entered data is

correctly allocated in the database. These checks are
described in the specification and are not related to

implementation in a particular programming

environment. This idea is close enough to the use of

OCL, which, for a particular data storage model (the

relational model), proposes a description of the

allowable values for data stored in a database.

However, this approach is associated with a specific

data storage model and is not related to an IS

specification.

The second idea is to propose IS complete testing

capability. This should be achieved by generating test
cases using conditions on data object attributes, that

would cover all cases of correct and incorrect

behaviour of the data. This idea is close enough to one

of the criteria for complete testing – the testing of all

input data conditions. The use of concept of a data

object allows to generate test cases to test all

conditions in a constructive way.

The main idea of testing improvement proposed

by the initiated research is close enough to ideas of

model-based testing. First, a testing model that will

be used to generate tests is created. Testing the

operation of the programs on these tests ensures that
the programs work correctly according to the created

testing model. The main challenge of use of model-

based testing is to find such a testing model that

would explicitly/ adequately describe what the

program needs to do. Therefore, the next section is

dedicated to model-based testing, discussing both,

main concepts, and the choice of components for their

further use in implementation of the proposed

solution.

4 MODEL-BASED TESTING

4.1 Model-based Testing Process

The model-based testing (MBT) process can be

divided into 5 interconnected phases: (1) model the
system under test (SUT) and/ or its environment; (2)

generate abstract tests from the model; (3) concretize

the abstract tests to make them executable; (4)

execute the tests on the SUT and assign verdict; (5)

analyse the test results ((Muniz et al., 2015),

(Schieferdecker, 2012), (Utting & Legeard, 2010),

(Utting et al., 2012), (Zander et al., 2017) etc.). 4th and

5th phases are a part of any testing process, even

manual, however, steps from 2 to 4 sometimes are

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

324

merged into one step, for instance, in case of online

model-based testing.
The presented research follows this model,

allowing just minor changes. Let’s briefly discuss

every MBT phase and its key points.

By the 1st step and creation of the model is meant

the creation of an abstract model of the system is

going to be tested. This model is an abstract model

since it should be smaller and simpler than the system

itself, focusing on the key aspects only. When the

model is designed, it is recommended to check its

consistency and behaviour by using appropriate tools.

This step is often skipped as too resource-consuming

since errors are usually detected at later stages. The
aim of this step is to link model elements such as

states, transitions, and decisions to the requirements

to ensure bidirectional traceability between the

requirements and the model and later to the generated

test cases and test results. The test models must be

precise and complete enough to allow automated

derivation of tests from them.

As for model, the presented study proposes to use

a data quality model containing 3 components: (1)

descriptions of data objects, (2) quality requirements

for data objects, and (3) a process for evaluating data

quality. A detailed description of this model is
available in ((Nikiforova & Bicevskis, 2019) and

(Nikiforova et al., 2020).

The 2nd step, namely, generation of abstract

tests from the model, is related to the choice of some

test selection criteria, to determine which tests should

be generated from the model. Selection criteria is

vital in order to limit the number of tests

(Schieferdecker, 2012). One of the most traditional

criteria is structural-model coverage or model

coverage criterion, however Muniz with co-authors

(2015) highlight such criteria as test purpose,
similarity of paths, weight similarity of paths, most

probable path and minimum probability of path. The

main output of this step is a set of abstract tests, which

are sequences of operations from the model. Since the

model uses a simplified view of the SUT, these

abstract tests lack some of the detail needed by the

SUT and are not directly executable.

The proposed solution uses the concept of data

quality requirements that are formulated using

flowcharts (using graphical domain specific language

(DSL)). Their structure and nature will be discussed

in more detail in Section 5. As for selection criteria,
the proposed solution uses the combination of test

case definition and requirements coverage criteria as

follows from the previous section (according to

classification described in (Zander et al., 2017)).

Figure 1: MBT process.

The 3rd step supposes transformation of the

abstract tests into executable concrete tests which

may be done by a transformation tool, which uses

various templates and mappings to translate each
abstract test case into an executable test script or by

writing some adaptor code wrapping around the SUT

and implementing each abstract operation in terms of

the lower-level SUT facilities. The goal of this step is

to add the low-level SUT details that were not

mentioned in the abstract model, thus, filling the gap

between the abstract tests and the concrete SUT. The

nature of transformation, namely, automated, semi-

automated or manual, is under discussion and all three

options have their own audience.

A given study supposes symbolic execution of
data quality requirements (its suitability for complete

testing is discussed in (Peleska et al., 2017). For each

case of the requirements, the conditions of the

requirements are established which, when resolved,

result in specific tests which further test the system.

The 4th step is to execute the concrete tests on

SUT, while the 5th step is to analyse the results of

the test executions and take corrective action. For

each test that reports a failure, the fault that caused

that failure must be detected. This is similar to

traditional test analysis process, therefore, won’t be

discussed.
The general idea of MBT process which the

current research follows is shown in the Figure 1.

Since the model is the central object of MBT and

the initiated research, the next subsection is devoted

to an overview of models, basic concepts that need to

be taken into an account, existing approaches, their

popularity etc. This discussion will result by the

choice of the approach that will be used in the further

research and an implementation of the proposed idea.

4.2 Modelling Approaches of MBT

Model-based testing requires an accurate model,

written in formal modelling notation that has precise

Towards a Business Process Model-based Testing of Information Systems Functionality

325

semantics. One of the key aspects that are generally

taken into account, developing MBT solution, is that

models must be small in relation to the size of the
system that is tested. It is important to guarantee that

created models are (a) not too costly to produce, but

(b) detailed enough to describe the characteristics that

should be tested (is in line with (Utting et al., 2012)).

The development of models is one of the widely

discussed topics since this is one of the most crucial

aspects in MBT. Since the design of the system is

almost always related to the creation of number

models, the question about their reuse often reveals.

However, in spite of the existence of some models

that could be reused, this option is not the best one for
several reasons, and the most critical are: (a) usually

models that were created by system developers have

too many details, most of which are not needed for

testing; (b) development models rarely describe the

SUT dynamic behaviour in enough detail for test

generation. In other words, they are rarely abstract

and precise enough for the test generation purposes.

Moreover, not always developed systems have model

at all (Brahim et al., 2019).

So, the best options for the given purpose are (1)

to create a model by yourself or (2) to create it, using

a high-level class diagram if it is available, supplying
it with the behavioural details. Both options are

acceptable in the scope of the proposed solution,

however, the basic idea is to create a model by

yourself, but the use of already existing high-level

class diagram isn’t denied. In other words, the choice

is up to the tester.

As for a technique that should be used creating

models, same as in the case of MDA (model-driven

architecture), UML class diagram is one of the most

traditional and common options for such a task and is

often considered as a standard (corresponds with
(Utting & Legeard, 2010) (Muniz et al., 2015) and

(Felderer et al., 2010)). According to (Schieferdecker,

2012), UML is aimed to formalize the points of

control and observation of the SUT, its expected

behaviour, the entities associated with the test, and

test data for various test configurations. However,

neither UML, nor an informal use case diagram by

itself are not precise or detailed enough for MBT,

since the description of the dynamic behaviour of the

system can’t be achieved using traditional UML

(without extensions). UML model that would be

suitable for MBT requires details about the behaviour
of the methods in the class diagram that can be

achieved by using OCL postconditions or state

machine diagrams. However, this significantly

complicates models and requires significant changes

by a skilled person every time the necessity for

changes occurs.

Considering existing limitations of UML, one of
the most common solutions is to search for another

technique. Since two main goals of the models

involved, namely, small size of the model and its level

of detail, can be conflicted, it is an important

engineering task to decide (a) which characteristics of

the system should be modelled to satisfy the test

objectives, (b) how much detail is useful, and (c)

which modelling notation can express those

characteristics most naturally.

One of the studies devoted to the analysis of

models used for the test generation is (Dias Neto et
al., 2007), in which MBT approaches were divided

into UML and non-UML models. Authors have

collected 406 papers and divided them into 6

categories. Since 2 of 6 categories are out of scope of

this research, they are ignored, recalculating provided

numbers. Thus, four groups of existing models were

analysed, taking into account such aspects as MBT

approach, namely, UML or non-UML, and the

perspective from which the model represents

information. Results of the analysis demonstrate that

46% researchers give their preference to model

representing information from software requirements
and is described using any non-UML diagrams, while

12,9% uses UML diagrams, 30,7% prefer to develop

model representing information from software

internal structure and is described using any non-

UML notation, while 10,4% uses UML. This

demonstrates that UML is less popular in MBT since

both categories/ perspectives unify approach used in

the proposed solutions. As for the second aspect, the

preference is given to model representing information

from software requirements, that for both, UML and

non-UML approaches, is in force. This can be easily
explained by the initial purpose of MBT – to represent

information from software requirements only.

To sum up, most of the developers choose non-

UML approaches, and this research is not an

exception. As for non-UML technique, there are no

one common standard to be used ((Utting & Legeard,

2010), (Dias Neto et al., 2007)), therefore, developers

choose the technique by themselves, considering pros

and cons depending on the specific case.

5 BASICS OF THE PROPOSED

IDEA

The proposed solution follows principles of MBT but

is not an MBT tool in its common sense.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

326

Figure 2: The architecture of the proposed idea.

Its primary task is to test a specific part of an IS –
the correctness of input messages which are inserted

and their correct allocation in database. This is just

one but nevertheless one of the main tasks of IS which

is followed by a various different tasks and scenarios

which depends on the stored data.

An architecture of the proposed solution is

demonstrated in Figure 2.

The most significant change of the MBT process

is related to the 1st phase, since only part of the SUT

is modelled by creating data objects’ and quality

specifications diagrams. The test generation step

takes place after input is received – when the data
objects and conditions for the input message are

defined, supplying them with data objects retrieved

from the database and the conditions that apply for

these data objects. This means that we mainly need a

model that would represent all entities of the SUT and

their relationships. Each time testing is carried out,

only a part of the modelled system can be used in

order to improve the performance of the solution,

leaving only those entities that are tested and ignoring

other (corresponds to the principle of abstraction

(Mellor et al., 2004)).
As mentioned earlier, test generation should only

be done after selection criteria is chosen. Various

options are possible in the way of selection criteria.

However, since we mainly discuss one very specific

purpose of testing, we limit the other components to

this specific purpose – (1) testing whether data to be

entered is correct and (2) whether they are allocated

in the database correctly (without contradictions in

relation to internal constraints). Therefore, as

mentioned earlier, a combination of test case

definition and requirements coverage criteria seems

to be an appropriate choice.
The proposed idea is close enough to the black-

box testing, since we can have any knowledge about

how the SUT is implemented or its internal

behaviour, and we base further steps on its

specification only (Muniz et al., 2015). However,

since it highly dependent on the model – if the

software specification lacks any possible behaviours,

the generated test cases will not cover all possible

SUT behaviours, as correct model as possible is

required, as well as additional mechanism that will

ensure the most complete testing. Therefore, the next

subsection is devoted to the choice of the model.

5.1 MBT Modelling Language

In scope of the given research, following

requirements were formulated: the model must be (a)

concise ensuring it does not take too long to write and

easy to validate with respect to the requirements and
(b) precise enough since complete testing option is

under consideration. Instead of UML, which is

characterized by the high number of cons, the

preference was given to domain specific language

(DSL) creating flowchart-based diagrams.

Flowcharts belongs to behavioural models same as

Decision Tables, Finite State Machines, Petri nets,

[Swim Lane] Event-Driven Petri Nets, Statecharts,

UML (use cases and activity charts), and BPMN,

while traditional UML belongs to another group -

structural models (Jorgensen, 2017).
The proposed solution requires performing the

modelling task twice: for input and output data. Both

models follow the same principles. Since according

to (Nikiforova et al., 2020), the previously proposed

DSL (for definition of data quality model) syntax and

semantics are easily applicable to the new IS, as well

as reusable if necessary, there is no need to develop a

new DSL - the previously proposed graphical DSL

can be reused. Graphical models are preferred for

several reasons. Firstly, models can be used as a

communication tool (Mellor et al., 2004), improving

the readability of information since graphical
representation in models is perceived better by

readers than textual representation. Visual

information is easier and faster to read and to modify.

Moreover, requirements defined in terms of DSL are

precise enough (Cunha et al., 2019), therefore

complete testing seems to be an achievable goal (in

line with (Peleska et al., 2017), (Hübner, 2017)). At

the same time, the structure of flowchart is simple.

For each condition model, each chart consists of

vertices and arcs where (a) the vertices indicated by

mnemonic graphic symbols represent actions with
data, (b) the arcs connect the vertices, indicating the

sequence of actions that must be performed in order

to test data (Nikiforova, 2018). The charts also

include an element for preparing error reports that are

designed to record problems, i.e. creating an

enforcement protocol that records data that do not

meet conditions. The resulting execution protocols

are then used to correct the data. Charts allows users/

testers to define a data object and corresponding data

that will be tested, requirements that should be met by

Towards a Business Process Model-based Testing of Information Systems Functionality

327

the data. Describing the requirements in this way

excludes the need to describe the requirements in

textual form, which may be interpreted differently.
In addition, diagrams can be transformed as soon

as changes or new details appear. This corresponds to

(Tretmans et al., 2010), according to which MBT

should also be able to deal with an incomplete real

world in which requirements are never fulfilled and

are constantly evolving. Authors consider this as one

of the most vital limitations of the existing solutions.

Changes can be introduced by several users (if several

users are involved in diagrams creation), and they can

also be reused.

However, in addition to DSL in the future works
we will consider the use of OCL, proposing a

comparison of both approaches. In accordance with

(Abbors et al., 2009), OCL rules check the static

semantics of the models and can be used to describe

constraints that are specific to the domain, modelling

language, modelling process, etc. However, it is still

not clear whether OCL can be used for checking the

dynamic semantics of the models.

5.2 Data Object and Requirements

According to Section 2, the specification of the

information/ data processing system to be developed

is created in a language of a high level of abstraction,

that contains the concepts of (a) data object and (b)

conditions or requirements. These concepts were

previously presented in a series of researches,

including (Nikiforova & Bicevskis, 2019),

(Nikiforova et al., 2020), therefore, just main
concepts will be presented here, highlighting their

main aspects in the scope of the given solution.

As it was mentioned, data objects describe real-

world objects that the IS accumulates data or, more

precisely, input messages. The use of data object

allows to limit the number of parameters that should

be analysed, thus leaving only those parameters that

need to be tested. Several interconnected data objects

can be created as well, thus allowing to perform

contextual checks (Nikiforova & Bicevskis, 2019),

that become necessary performing the test against
data stored in the database. While previous

researches, including the concept of a data object,

understand it as a set of parameter values that

characterize any real-life object (Nikiforova, 2018),

this research mainly deals with input messages and

objects stored in an IS or database. In addition, the

nature of the data object allows to process both,

structured and semi-structured data, thus, the

proposed solution does not meet the restrictions on

the type of data to be tested.

Requirements or conditions are defined for

previously defined data object. They are intended to

describe the requirements that must be met by the
values of attributes of a data object in order to

consider data object as correct, i.e. without defects.

Requirements regarding attributes of a data object are

used to prepare/ generate test cases, which would

cover all correct and incorrect inputs.

As in (Nikiforova et al., 2020) created models

follow principles defined by Mellor (2004):

abstraction and classification. By abstraction Mellor

understands “ignoring information that is not of

interest in a particular context” (in line with MBT

principles for model of the SUT). In the presented
approach, it is achieved by using data object

exclusively with the parameters representing real

objects that are of interest for specific users. By

classification Mellor means “grouping important

information based on common properties”. This

principle is partially followed when grouping quality

conditions for each parameter involved in check/ test.

Models are machine-readable. In addition, they can

be easily updated and reused, that is in line with

(Kleppe, 2003), i.e. a good practice for diagrams.

Positive aspects of the proposed components were

already discussed in detail in (Bicevskis et al., 2019)
and (Nikiforova et al., 2020), as well as demonstrated

in a series of articles, therefore, such model and its

components seems to be an appropriate choice for the

proposed solution.

6 CONCLUSIONS

The paper is a first step to the new solution that
[hopefully] will improve existing testing approaches.

The solution proposes a new criterion of a complete

testing verifying the correctness of all input data in

the retention database with tests containing all

possible conditions for input data values.

The “black box” testing methods are based on the

verification of all requirements formulated for the

program. If the requirements are formulated in a

natural language, different interpretations,

misunderstandings and inaccuracies are possible. If

the requirements are expressed in a precise manner

offered by the use of the data quality model, the
complete testing according to the formulated

requirements become realistic. The study proposes to

develop this approach.

In the future we are planning not only to

implement described idea but also to approbate it on

the real system of e-scooters that become the more

popular not only in Latvia but also in other countries.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

328

ACKNOWLEDGEMENTS

The research leading to these results has received

funding from the research project "Competence

Centre of Information and Communication

Technologies" of EU Structural funds, contract No.

1.2.1.1/18/A/003 signed between IT Competence

Centre and Central Finance and Contracting Agency,

Research No. 1.7 “The use of business process

models for full functional testing of information

systems".

REFERENCES

Abbors, F., Truscan, D. & Lilius, J. (2009). Tracing
requirements in a model-based testing approach. In

First International Conference on Advances in System
Testing and Validation Lifecycle (pp. 123-128). IEEE.

Bicevskis, J., Nikiforova, A., Bicevska, Z., Oditis, I. &
Karnitis, G. (2019). A Step towards a Data Quality
Theory. In 2019 Sixth International Conference on
Social Networks Analysis, Management and Security
(SNAMS) (pp. 303-308). IEEE, DOI:
10.1109/SNAMS.2019.8931867.

Brahim, A., Ferhat, R. & Zurfluh, G. (2019). MDA Process
to Extract the Data Model from Document-oriented
NoSQL Database. In Proceedings of the 21st
International Conference on Enterprise Information
Systems – Vol. 2: ICEIS, p. 141-148. DOI:
10.5220/0007676201410148

Cunha, A., Fernandes, S. & Magalhães, A. (2019).
Integrating SPL and MDD to Improve the Development

of Student Information Systems. In Proceedings of the
21st International Conference on Enterprise
Information Systems - Volume 2: ICEIS, ISBN 978-
989-758-372-8, pages 197-204. DOI:
10.5220/0007711201970204

Dias Neto, A. C., Subramanyan, R., Vieira, M. &
Travassos, G. H. (2007). A survey on model-based
testing approaches: a systematic review. In
Proceedings of the 1st ACM international workshop on

Empirical assessment of software engineering
languages and technologies (pp. 31-36). ACM.

Felderer, M., Chimiak-Opoka, J., & Breu, R. (2010).
Model–Driven System Testing of Service Oriented
Systems-A Standard-Aligned Approach Based on
Independent System and Test Models. In International
Conference on Enterprise Information Systems (Vol. 2,
pp. 428-435). SCITEPRESS.

Hübner, F., Huang, W. L., & Peleska, J. (2019).
Experimental evaluation of a novel equivalence class
partition testing strategy. Software & Systems
Modeling, 18(1), 423-443.

IEEE Computer Society Professional Practices Committee.
(2004). SWEBOK: Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society.

Jorgensen, P. C. (2017). The craft of Model-Based testing.
Auerbach Publications.

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA
explained. The practice and promise of the model
driven architecture. Boston Pearson Education,1-31.

Mellor, S. J., Scott, K., Uhl, A. & Weise, D. (2004). MDA

distilled: principles of model-driven architecture.
Addison-Wesley Professional.

Muniz, L. L., Netto, U. S. & Maia, P. H. M. (2015). A
Model-based Testing Tool for Functional and
Statistical Testing. In Proceedings of the 17th
International Conference on Enterprise Information
Systems (ICEIS), p. 404-411. DOI:
10.5220/0005398604040411

Nikiforova, A. & Bicevskis, J. (2019). An Extended Data

Object-driven Approach to Data Quality Evaluation:
Contextual Data Quality Analysis. In Proceedings of
the 21st International Conference on Enterprise
Information Systems (ICEIS), Vol. 2, p. 274-281. DOI:
10.5220/0007838602740281

Nikiforova, A., Bicevskis, J., Bicevska, Z. & Oditis, I.
(2020). User-Oriented Approach to Data Quality
Evaluation. Journal of Universal Computer Science,

26(1), 107-126.
Nikiforova, A. (2018). Open Data Quality Evaluation: A

Comparative Analysis of Open Data in Latvia. Baltic
Journal of Modern Computing, 6(4), 363-386.

Olsen, K., Parveen, T., Black, R., Friedenberg, D., Zakaria,
E., Hamburg, M., McKay, J., Walsh, M., Posthuma, M.,
Smith, M., Smilgin, R., Ulrich, S. & Toms S. (2018).
Certified tester foundation level syllabus. Journal of

International Software Testing Qualifications Board,
available:https://isqi.org/img/cms/ISTQB/syllabuses/C
TFL-Syllabus-2018-GA.PDF

Peleska, J., Huang, W. L., & Hübner, F. (2017). Complete
Model-based Testing. Test, Analyse und Verifikation
von Software-gestern, heute, morgen, 81-92.

Schieferdecker, I. (2012). Model-based testing. IEEE
software, 29(1), 14.

Tretmans, J., Prester, F., Helle, P., & Schamai, W. (2010).
Model-based testing 2010: Short abstracts. Electronic
Notes in Theoretical Computer Science, 264(3), 85-99.

Utting, M., Pretschner, A. & Legeard, B. (2012). A
taxonomy of model‐based testing approaches. Software
Testing, Verification and Reliability, 22(5), 297-312.

Utting, M., & Legeard, B. (2010). Practical model-based
testing: a tools approach. Elsevier.

Zander, J., Schieferdecker, I., & Mosterman, P. J. (Eds.).

(2017). Model-based testing for embedded systems.
CRC press.

Towards a Business Process Model-based Testing of Information Systems Functionality

329

