
Preparatory Reflections on Safe Context-adaptive Software
(Position Paper)

Dominik Grzelak a and Uwe Aßmann
Software Technology Group, Technische Universität Dresden, Germany

Keywords: Context-adaptive Software, Formal Models, Software Verification, Future Informatic Systems.

Abstract: Mobile technology and the Internet of Things promise to deepen the interaction between people, services, and
physical devices. Digital solutions for these prospective computing systems are not only radically changing the
user experience but also the software engineering process. Without a doubt, software complexity enormously
increases, and prospective systems become challenging to develop, maintain, and verify. The user’s reliance
on safety-critical software systems is a serious element in any software engineering process where the absence
of bugs must be ensured, and malfunction ruled out. Software that is not safe, i.e., the software’s behavior does
not comply with a specification, could cause loss of profits or, in the worst-case, harm people. Software safety
is an ongoing but mostly academic research field incorporating formal methods to prove the correctness of a
program using mathematical methods. In this spirit, we examine the promising context-aware computing and
model-driven development paradigms that have directed the development of fog computing and IoT platforms
alike. Furthermore, we aggregate viable requirements for computational context models to be employed both
for computation and also reasoning about the correctness of applications.

1 INTRODUCTION

When we think about complex systems, we may be
inclined to consider only biological, chemical, or
physical instances in the first place. Apparently,
present-day and prospective digital anthropomorphic
systems, where we allow us to subsume terms such as
mobile computing, Internet of Things (IoT), fog com-
puting, Tactile Internet or ubiquitous systems for the
sake of convenience, "will challenge our understand-
ing" (Milner, 2009, p. x) to a much greater extent than
before (see also (Baier and Katoen, 2008)). "Context-
aware adaptation is an important feature for pervasive
computing applications" (Grassi and Sindico, 2007,
p. 69), and in this regard, the integration of context
introduces further software engineering challenges,
which are not present in traditional systems (Hen-
ricksen and Indulska, 2006). The reasons are, which
will be apparent in the following (see Sec. 1.1 and
Sec. 1.2), that software systems inherit a new di-
mension of complexity, meaning both functional and
structural (see (Furrer, 2019)), and as an inevitable
consequence, lead to higher development time, hence,
costs. For that reason, software engineers continu-

a https://orcid.org/0000-0001-6334-2356

ously trying to shift the boundaries in order to manage
complex systems that we do not yet fully understand.
A lot of work has been done on investigating methods
on how to better cope with the increasing complex-
ity, such as object-oriented programming, modularity,
reusability and formal semantics.

In line with this and from a software engineering
point of view, we wish to address two crucial quali-
ties of ubiquitous systems in this paper, which are, in
our opinion, how to specify and verify the behavior
of ubiquitous systems by means of formal models.
Under these circumstances, we wish to provide an al-
ternative but complementary approach for application
and system development. In this respect, context-
aware computing is introduced in Sec. 2, where we
explain concrete concepts on how to incorporate con-
text information in applications. Therein, we also
present the main features of the model-driven de-
velopment approach in Sec. 2.1, which provides the
"glue" for formal models to be practically applied in
the software world. In particular, we focus on compu-
tational context models that allow not only to spec-
ify and analyze the interactions of systems with their
environment but also to be used for computation and
verification (Sec. 3). Finally, we conclude our paper
in Sec. 4.

382
Grzelak, D. and Aßmann, U.
Preparatory Reflections on Safe Context-adaptive Software (Position Paper).
DOI: 10.5220/0009459503820391
In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (IoTBDS 2020), pages 382-391
ISBN: 978-989-758-426-8
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



The main question that this paper raises is how to
improve the overall code quality of context-adaptive
software in ubiquitous systems concerning the cor-
rectness of a program. We must be committed to com-
municate this quality criterion properly. Ideally, we
have a proof of correctness and other software engi-
neers can understand and verify it. Technically, error
checking is much more difficult on large-scale dis-
tributed systems than to check a single function in
a program. The reliance on the functioning of such
systems (cf. (Baier and Katoen, 2008)) is an impor-
tant point to be considered which goes hand in hand
with the objective of bug absence. The presence of
errors in software systems is not only annoying. It
can, in the most trivial scenarios, e.g., simply freeze
the client application, impact the performance, or in-
crease the power consumption of embedded devices,
but can also harm people in the worst case.

In the following, we outline the development of
IoT, before we wish to describe the implications for
software engineering in detail with respect to complex
IoT systems. We begin with some technical insights
from various analyst’s reports (Evans, 2011; Bradley
et al., 2013; Winslow et al., 2018).1

1.1 Current Situation

Dave Evans, a former Cisco expert on the IoT, eval-
uated the growth rate of IoT and outlined its current
state as of 2011, before continuing to provide some
rough estimates about the future development and im-
pact of IoT. Therefore, Cisco used research data pre-
sented in (Zhang et al., 2008). At the level of au-
tonomous systems (AS), Zhang et al. examined Inter-
net routing data in six-month intervals for the period
spanning 2001-2006. In their network model, ASs are
connected by links. As two ASs in this model link to
each other, they make decisions based not only on the
physical connection but also on commercial agree-
ments between two systems. The findings estimated
an exponential growth rate of the Internet in the sense
that it doubles in size every 5.32 years. Then, Cisco’s
methodology of applying this constant to the "num-
ber of connected devices at a point in time" (Evans,
2011, p. 10) yielded their estimates for the number of
devices per people until 2020: Accordingly, based on
data available from U.S. Census Bureau (2010) and
Forrester Research (2003), the author determined that

1Note that we are not interested in the value at stake, new
economic value chains, revenues for industries, companies,
manufacturers, or network operators. However, we want to
provide some realistic figures that reflect the growth rate of
IoT to make the complex system dilemma evident and what
apparent effects this will have for software engineering.

approximately 500 million devices connected to the
Internet existed with a world population of 6.3 billion
people in 2003. In 2010, both figures grew to 12.5
billion devices and 6.8 billion people, which means
that the number of connected devices per person was
1.84 in 2010. Taking only the people connected to
the internet into account, resulted in approximately 2
billion people for 2010, meaning, 6.25 devices could
be assigned per person (Evans, 2011). By the end of
2020, Evans projected 50 billion connected devices,
which makes roughly 6.58 devices per person, assum-
ing a world population of 7.6 billion people.

In the second study (Bradley et al., 2013), other
Cisco-related analysts investigated the main driving
factors and technology trends for the Internet of Ev-
erything (IoE) and, among other topics, the growth
rate of the number of devices connected to the Inter-
net. The authors described that in 2000 there were 200
million devices connected to the Internet, which is in
accordance with the study above. However, the fig-
ures are slightly relativized —the authors stated that
in 2013 10 billion connected devices existed from
approximately 1.5 trillion devices globally available
(Bradley et al., 2013). In their opinion, this number is
expected to grow to 50 billion connected devices until
the end of 2020, which yields 6.25 devices per person.
Further, the authors highlighted the fact that most of
the devices are still unconnected resulting in "approx-
imately 200 connectable things per person" (Bradley
et al., 2013, p. 2). Their estimation, drawn from Cisco
studies in 2013, is that 99.4% of all available IoT de-
vices are still not connected.

The conclusion is consistent with the one of other
analysts (Winslow et al., 2018). They also expect
a continued "growth [. . .] into the next decade [. . .]
shaped by [. . .] the Internet of Things" (Winslow
et al., 2018, p. 1). Projections provided by the an-
alysts show that by 2020 roughly 26 IoT devices
can be assigned per person from approximately 200
billion connected devices (4 times higher than in
(Evans, 2011)), assuming the same world popula-
tion as above. In particular, the authors conclude
that cloud computing concepts alone (which mostly
resemble centralized architectures) are no appropri-
ate and feasible computing models when consider-
ing "the exponential growth of data created at the
edge" (Winslow et al., 2018, p. 6). The authors re-
ported that the amount of data generated at the net-
work edge "will exceed 40 trillion gigabytes by 2025"
(Winslow et al., 2018, p. 3) according to projections
of IDC white paper (Turner et al., 2014). As men-
tioned by the authors, they provide strong evidence
that a substantial amount of data will be generated
and processed in the network edge instead by cloud-

Preparatory Reflections on Safe Context-adaptive Software (Position Paper)

383



data centers (Winslow et al., 2018) to alleviate the
core limitations of purely cloud-centric IoT platforms
such as bandwidth, connectivtiy, latency and context-
awareness (see (Bonomi et al., b; Bonomi et al., a;
Winslow et al., 2018)).

1.2 Implications on Software
Engineering

Current systems have reached or in some way ap-
proaching a complexity whose consequences are in-
creasingly difficult to control and understand (Murer
et al., 2008; Milner, 2009). Fast software implemen-
tations of business requirements are easily at the ex-
pense of quality (Murer et al., 2008). Furrer (Furrer,
2019) compiles three general key challenges on the
difficulty of the systems engineering process, namely,
change, complexity, and uncertainty: (i) The as-
pect change is characterized by changing business re-
quirements, technology updates, or maintenance pro-
cesses (Furrer, 2019). Moreover, the time cycles to
implement necessary changes becoming shorter (Fur-
rer, 2019). Imagine a normal development process,
where a team of developers may submit hundreds of
changes to upstream software each day. As a re-
sult, fast incremental software changes may lead to
code redundancy or violation of architecture princi-
ples to be followed, which are essential for a uni-
form code basis and the communication among team
members. Each change may introduce new incom-
patibilities which additionally increases the complex-
ity; (ii) Complexity issues may arise from incompat-
ibility with other software, either caused by chang-
ing interface specifications over time or heterogene-
ity of system and software components, to mention
a few. Especially when building a specialized soft-
ware ecosystem, such as in computer-assisted soft-
ware engineering environments (Wasserman, 1990),
tool integration becomes difficult because of many
heterogeneous vendor-specific tools. Thus, integra-
tion techniques have to be developed, or the usage
of non-proprietary formats has to be promoted, for
example. Generally, complexity can be classified as
structural (architectural) and functional complexity,
where the former takes the number of individual sys-
tem parts and the intensity of their relationships into
account, whereas the latter is "measured as the size of
the functionality of their parts and interfaces" (Furrer,
2019, p. 24); (iii) Uncertainty involves incomplete re-
quirements (e.g., due to the market) that may lead to
inadequate decision-making processes, and also in-
cludes internal activities during the software’s oper-
ation (Furrer, 2019). Particularly cyber-physical sys-
tems operate in uncertain and unstructured environ-

ments where, however, the system must adequately
function, despite the fast-changing and unpredictable
surrounding (Furrer, 2019). This also applies to con-
text-aware systems (CAS). As previously mentioned,
such a system includes context information to adapt
to changing situations autonomously. Thus, they are
able to make a smart decision to some extent, which
attenuates some problems of uncertainty.

Although these concepts generally apply to sev-
eral kinds of systems, there is a substantial differ-
ence when developing context-adaptive software as
opposed to traditional desktop applications that do
not primarily include context information. Additional
quality measures for context-aware systems were pre-
sented in (Henricksen and Indulska, 2006) in the
course of evaluating a case study. From another
perspective, these can be reversed to challenges that
need to be properly treated. Also mentioned is code
complexity, and further maintainability, support for
evolution and reusability.

2 THE ADOPTION OF CONTEXT
INFORMATION IN SOFTWARE

Having arrived here, we are prepared to discuss differ-
ent implementation approaches for incorporating and
manipulating context information in software applica-
tions. First, we introduce the necessary model-driven
paradigm that is, in some way, a canonical software-
related technological foundation for our further elab-
orations.

By recalling the standard phases of a software de-
velopment life cycle, support can come in two forms
(see (Dey, 2001; Hennessy, 2004)) in order to per-
form context-adaptive software engineering. The first
approach treats the direct development of the solution
architecture; that is, we decide and agree on the ex-
act implementation approach. The other type of as-
sistance comes from a higher level, and related to
it are model-driven software development practices.
Therein, models are primarily used for the specifica-
tion, implementation, and deployment, mostly sup-
ported by automated processes (such as code gener-
ation and model transformation). Formal languages
or mathematical theories enable this direct model us-
age (Hennessy, 2004). Both main branches on how
to generally adopt context in software are consoli-
dated into a taxonomy and extended with subcate-
gories. The taxonomy is depicted in Fig. 1 and shall
be explained in the following.

Beneficial is the fact that both of these approaches
are not only compatible but also complementary.
Even though general architecture frameworks and dis-

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

384



Adoption of Context 
in Software

Indirect

Direct

Architecture

Distributed
Infrastructure

Theories

Modeling Language

Programming
Paradigm

AOP

COP

Modeling Formalism

(Partly) Complementary
Subdivided into
is-a relationship

ROP

Figure 1: Taxonomy of approaches for context adoption in software (reduced version for clarity). AOP refers to aspect-
oriented programming, COP is context-oriented programming and ROP means role-oriented programming. Consolidated and
extended after (Dey, 2001; Hennessy, 2004; Broman et al., 2012). See (Broman et al., 2012) for the differences between
modeling formalism and language.

tributed infrastructures often limit themselves to the
development of particular functionalities or force the
commitment of design principles, the context mod-
eling approach does not introduce any arbitrary data
structure that is neither in conflict with initial con-
straints nor requirements.

2.1 Model-driven Engineering

Model-driven engineering (MDE) provides a set of
guidelines and instructions to be applied for the soft-
ware engineering process (Brambilla et al., 2017;
Staab et al., 2010; Bézivin, 2005). Nearly two
decades ago, the Object Management Group intro-
duced the MDE paradigm to "move from code-centric
to model-based practices" (Bézivin, 2005, p. 171). It
comprises two main concepts, namely, models and
transformations. Models are the primary artifacts and
are expressed in some modeling language, e.g., the
Unified Modeling Language (UML). Transformations
are a means to reconfigure the model (i.e., provide op-
erations on models). In MDE everything is regarded
as a model, even the modeling language is specified
by a meta-model (refer to the four-layer modelling
architecture in (Atkinson and Kuhne, 2003) or see
(Bézivin, 2005)).

Models "are no longer mere (passive) documenta-
tion" (Ehrig et al., 2006, p. 7) utilities and enable the
utilization of sophisticated methods such as syntacti-
cal validation and model checking (see (Ehrig et al.,
2006; Brambilla et al., 2017) and Sec. 3.2). Mod-
els allow to reuse and adapt software (or its com-
ponents) to different situations (e.g., by transforma-
tions), which enables to speed up the development
process, eases maintenance and alleviates common
errors early in the design phase by using formal mod-
els. Moreover, the behavior of a system may be spec-
ified by transformation rules. In this regard, higher-
order graph transformation rules can be employed to

model self-adaptive systems (Machado et al., 2015).

2.2 Context as a Resource

First, we wish to briefly explain the extremely general
term context before we examine the approaches men-
tioned above. No clear boundary exists what the term
context means, hence many loose definitions exist in
the scientific literature. However, some key defini-
tions are widely accepted, e.g., (Abowd et al., 1999;
Dey, 2001; Abowd et al., 2002), where we wish to
adopt the one of Dey (Dey, 2001): "Context is any
information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object
that is considered relevant to the interaction between
a user and an application, including the user and ap-
plications themselves" (Dey, 2001, p. 5).

In the last decades, considerable efforts have been
undertaken to address this challenge, where context-
awareness has been identified as a fundamental re-
quirement for the creation of robust, intelligent and
adaptive applications (Schmidt et al., 1998; Abowd
et al., 1999), and have quickly become a multidisci-
plinary research field.

2.3 Infrastructures, Architectures and
Programming Languages

The main element of this approach is to use ready-
made "tools" that assist one in managing the various
steps of the software’s development lifecycle. Such
"tools" can facilitate the development, distribution,
and adoption of software for multiple purposes and
platforms. Using architectural frameworks also helps
teams to better communicate through a common tech-
nology. Moreover, they make the maintenance and
development process more flexible and efficient when
changes are introduced and avoids writing repeated

Preparatory Reflections on Safe Context-adaptive Software (Position Paper)

385



code. Furthermore, they alleviate common mistakes
by providing best practices through their frame of ref-
erence. Architectural frameworks and distributed in-
frastructures manifest themselves in various forms,
e.g., graphical and interactive, tool-based, or APIs.
They provide software engineers with the necessary
frame. We present some examples of recent develop-
ments; the list is not exhaustive.

A software toolkit for mobile sensor-based appli-
cations is presented in (Grzelak. et al., 2019; Grze-
lak et al., 2020). The toolkit is based on the OSGi
standard and modularizes individual components of
an application by using the concept of bundles. Fur-
ther, the toolkit allows adapting an application to the
different locality and connectivity of sensor devices
by altering the deployment of the application’s dis-
tributed components.

In (Jaouadi et al., 2018), a model-based approach
to develop context-aware systems is proposed that
the authors demonstrated by developing a software
framework based on a domain-independent context
meta-model. The framework provides a Java API
"that is capable of capturing the context, observing
it in runtime, discovering events that change it and
triggering actions to adapt appropriately the running
application" (Jaouadi et al., 2018, p. 1170).

In (Kapitsaki and Venieris, 2009), the authors
expound the model-driven development of context-
aware web services. Their approach allows web ser-
vices to adapt to context changes. However, often
the service’s core logic is kept untouched by contexts.
Therefore, it is decoupled from related context man-
agement components, which enables the reuse of ex-
isting functionality and highlighting only on the de-
pendencies that require context information (Kapit-
saki and Venieris, 2009). The approach employs
UML profiles to model context adaption of a web ser-
vice.

There is also active research about how context-
dependent behavior manifests itself in programming
languages. In this regard, we introduce context-
oriented programming (COP) with the following def-
inition: "Context-oriented programming proposes a
language-level technique to enable dynamic adapta-
tions by the activation of contextual situations sensed
from the environment. Context activation triggers the
dynamic composition of behavioral adaptations with
the running system." (Cardozo, 2018, p. 1). It can
be thought of as the continuation of procedural and
object-oriented languages (Hirschfeld et al., 2008).
One of the very first treatments of context-oriented
programming are (Gassanenko, 1998; Keays and
Rakotonirainy, 2003), providing a generalized notion
of context-oriented programming; further (Hirschfeld

et al., 2008), where the authors present required lan-
guage concept for COP, namely, layers to express dif-
ferent behavioral variations at run-time.

2.4 Context Modeling

Since Mark Weiser’s vision of ubiquitous systems,
many researchers have studied the foundations of con-
text modeling (e.g. (Henricksen et al., 2002; Roman
et al., 2004; Birkedal et al., 2006; Loke, 2016); this
list is not exhaustive). This has resulted in a large
quantity of different model kinds being developed.
Specifically, context models can be divided into 8
different categories: object-role based models, spa-
tial models, ontology-based models, key-value mod-
els, object-oriented models, markup scheme mod-
els, graphical models, and logic-based models (Bet-
tini et al., 2010; Strang and Linnhoff-Popien, 2004;
Bolchini et al., 2007). We may further classify each
model as informal or formal. Formal context models
are especially useful as they allow reasoning about
contexts. The spectrum of categories clearly shows
the importance of context models in this research area
for future software systems. For the sake of shortness,
we cannot give a comprehensive overview of existing
context models. Instead, we refer the reader to various
surveys and studies conducted so far, e.g., (Henrick-
sen et al., 2002; Strang and Linnhoff-Popien, 2004;
Bolchini et al., 2007; Bettini et al., 2010).

These context models are somewhat diametrical to
each other and clearly show the wide variety and vi-
brant landscape. However, "a complete and compre-
hensive model is still missing" (Chaari et al., 2007,
p. 1975). Shortcomings of some of these context
models are that they are rather rigid and very specific
(e.g., fixed syntax, operations, and semantics), are not
defined on a meta-model level, only allow the specifi-
cation of the context’s semantics, or do not scale well
because they lack important features such as compo-
sition (Grzelak and Aßmann, 2019). This is in accor-
dance with (Henricksen et al., 2002), where the au-
thors observed that most of the architectural frame-
works (refer to Sec. 2.3) incorporate informal models
that lack the necessary expressive power. Therefore,
in the next section, we return to context models that
can be expressed algebraically and are more suited to
our purpose.

3 MODELING CONTEXT IN
SOFTWARE

We focus on a specific aspect of models that can be
used not only for the modeling purpose alone but also

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

386



for computation and reasoning. This also helps to
bridge the gap between models and software develop-
ment and thus, verification. Therefore, we term these
kinds of models computational context models. Fol-
lowing (Milner, 2009), a model shall not only be used
for the modeling task at hand but also used as a pro-
gramming language. We define the term as a union of
a context model as explained in Sec. 2.4 and a com-
putational model that can be algebraically expressed
(e.g., by a process algebra).

To give an impression of this subject, we present
some examples. Models that we would like to classify
under the term computational context model are, e.g.,
the plato-graphical model in (Birkedal et al., 2006)
and the socio-technical model in (Benford et al.,
2016). The first paper proposes a context model for
the formal modeling of context-aware systems, which
comprises three separate models (world, proxy, and
application) that can be composed at any time to get
the complete view of the system. The second paper
presents in detail the modeling of a pervasive out-
door game which comprises four perspectives (com-
putational, physical, human, and technology). The
authors demonstrate the analysis of complex interac-
tional phenomena and exploration of possible incon-
sistencies among the four perspectives of this formal
model and developed an application.

3.1 Requirements

We try to determine useful and necessary require-
ments that a formal computational context model
must include. In accordance with (Strang and
Linnhoff-Popien, 2004; Topcu, 2011; Seshia et al.,
2018), we want to promote the following general re-
quirements: (i) Composability. Supports to build
systems separately and allows a combination later.
This feature enables extensible and modularized ap-
plications and fosters separation of concerns. (ii) Val-
idability. Allows checking whether a model syntac-
tically conforms to a meta-model, thus, ensuring the
completeness. Additional constraints can be included
for more complex validations. (iii) Level of Formal-
ity. Means that a model must be precise in terms of
the specification of some tasks. On the other hand, it
must be easy to use in order to be applied by a user
or used as a communication element. (iv) Verifiabil-
ity and Reasoning. Denote that a model must have a
formalism that allows performing verification of cor-
rectness properties on it and support inferencing of
facts by the derivation of other expressions and facts.
(v) Level of Abstraction. Means that a model must
be implementation-agnostic to be maximally interop-
erable. A high degree of specificity would make the

use of such a model only available for specific appli-
cations. (vi) High Level of Expressiveness. Allows
to create various context semantics, process seman-
tics, describe the distribution and communication of
processes at different locations and shall allow the
specification of reactive behavior. (vii) Interoper-
ability. Allows a model to be incorporated into exist-
ing systems or to be used in combination with other
models.

3.2 Guaranteeing the Safety of Software
at Design-time

Now, we address the quality criterion "safety" as men-
tioned earlier in the introduction. We present a mech-
anism on how to ensure the safety of software early in
the design phase. Models itself allow, besides model
validation and transformations, further model check-
ing and simulation. A lot of work has been conducted
in this domain, and we wish to refer the reader to (Se-
shia et al., 2018; Hoffmann, 2013; Baier and Katoen,
2008) for a more comprehensive overview of this sub-
ject of model checking. In the following, we give a
brief outline of one particular formal method.

3.2.1 Software Verification

Verification means to ensure that a program at design-
time or run-time possesses the desired or required
properties according to a specification. Using veri-
fication, one is able to detect errors that may not be
detected by traditional test and analysis techniques
(see (Hoffmann, 2013)) such as unit tests. Formally,
in the process of verification, a program (called im-
plementation), is checked against a set of constraints
(called specification) (see (Baier and Katoen, 2008;
Hoffmann, 2013)), and we write I |= S . These prop-
erties are necessary to verify that a system is able to
meet the specification.

An advantage of some verification techniques is
that they can be utilized in an automated manner.
Thus, it found application in industry, in particular,
for safety-critical products as a supporting tool (Hoff-
mann, 2013).

3.2.2 Model Checking

Here, we present a verification technique, called
model checking, that is commonly employed in the
industry. Therefore, model checkers are used for this
purpose.

A model checker is a computer program which
evaluates state-transition models, such as Kripke

Preparatory Reflections on Safe Context-adaptive Software (Position Paper)

387



structures, or other similar models (e.g., labeled tran-
sition systems, wide reactive systems), against a col-
lection of propositions or constraints, that specify
what is required to make the initial assertions of the
specification valid.

Well-known model checker tools are, e.g., SPIN
(Holzmann, 1997), GROOVE (Rensink, 2004) and
PRISM (Kwiatkowska et al., 2011). We observe that
model checking is not only a purely academic field
but in fact found its application in industry (Hoff-
mann, 2013). For instance, the model checker SPIN
was used for verification of algorithms of the Mars
rover Curiosity (Holzmann, 2014). When a simula-
tion is performed using a model checker (assuming
a finite state space), it generates an output whether
the specification is met or not. Therefore, specialized
traversal algorithms are employed (Hoffmann, 2013)
that resolve all possible next states from previous ones
either as long as some criteria are not violated or by
some other constraints (e.g., number of states, transi-
tions, or time limits). Thus, after every iteration, the
state space is extended, and the system evolves. If
the program contains errors, in the course of the sim-
ulation, counterexamples can be generated to provide
assistance for the designer, for instance.

According to (Owicki and Lamport, 1982), in the
case of concurrent programs, one can verify two key
properties: safety properties and liveness properties.
The first verifies that a program never enters an unde-
sired state in the sense that a program becomes non-
operational, e.g., because of deadlocks. The second
denotes a desirable state of a program that is eventu-
ally going to happen, e.g., an exclusive resource can
be used by all available processes, or that a program
does not terminate unexpectedly.

Liveness properties imply the notion of time, a
concept of fairness and deadlock freedom is important
for concurrent programs, which includes distributed
systems and real-time systems. For instance, real-
time systems rely on coordinated operations among
their interacting components. Thus, timely coordina-
tion is a key element for the correct functioning of
those systems (Tripakis and Courcoubetis, 1996). In
this regard, one can describe the temporal dynamics
of a program by expressions of linear-time proper-
ties in the specification. Linear-time properties rep-
resent valid traces of a transition system that specifies
the desired behavior of a system over time (Baier and
Katoen, 2008). Such temporal propositions are of-
ten specified using first-order logics such as the linear
temporal logic or computation tree logic. We shall not
go into more detail here for the sake of space limita-
tions.

Problems. Verification operates on the model-level,
which implies that a program must be translated into
some kind of a formal model first. This is, at the
same time, one of its limits (Hoffmann, 2013). In
this process, errors can be introduced, which cannot
be detected by the actual program verification. In this
regard, we advocate the use of formal modeling ap-
proaches early in the design phase, being able to em-
ploy them further for model-driven techniques. An-
other problem is the so-called state space explosion
problem, where researchers investigated various ap-
proaches to reduce this problem, e.g., program slicing
(Léchenet et al., 2016), symbolic model checking or
the early detection of infinite state traces.

4 CONCLUSIONS

The IoT may offer much in the way of innovation and
will further emerge a vast number of new services,
but will continue to introduce new difficulties from
a software engineering perspective. When the com-
plexity of software systems reaches a critical level,
due to the connectedness of our environment, it will
become increasingly important for software engineers
to have an efficient and effective computing model to
use in representing different abstractions of the sys-
tem to implement, deploy and provision applications.
The appliance of model-driven techniques in combi-
nation with formal context models may help to cope
with the complexity of ubiquitous systems, which di-
rectly implies a reduction of the software’s complex-
ity, and thus in return, the development time and costs.

Based on the experiences we gained from sev-
eral research projects (e.g., IoSense2, and CeTI3), we
may conclude that designing context-aware and adap-
tive software employing model-driven techniques is a
valid and reasonable approach. Context-adaptive soft-
ware surely presupposes a context system in one way
or another. One way to achieve this, is to consider
context as part of a platform-independent component
in any application, system, or network.

We argue that it is often easiest to explain the in-
tent of any piece of software using the context of the
environment in which it is deployed. This approach
is applicable for application, system, and infrastruc-
ture design. In our view, one unfortunate aspect is
that context models have not yet been satisfactorily
abstracted to the point that such a software model can
be integrated easily into other systems. An important
decision on the nature of computational models must

2http://www.iosense.eu/
3https://www.ceti.one/

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

388



be that of the formalism in which they are described.
If the precise terminology is too cumbersome or less
expressive, it is, on the other hand, more advisable to
use a context-oriented programming language or an
architectural framework. However, we strongly advo-
cate using models at a reasonable level of abstraction
to be able to deal with all unknown interactions in
a realistic timeframe in case of internal and external
changes. Hence, the choice of a formal model cannot
be considered in isolation, and decisions are bounded
to trade-offs in each case, which needs to be carefully
weighed (cf. (Cafezeiro et al., 2008)).

To conclude our digression, we wish to suggest hi-
erarchical graph models by following (Milner, 2009;
Bruni et al., 2014), which are also commonly applied
for modeling the software system’s structure. Recent
developments in the domain of process algebra show
that hierarchical models can express the two relevant
dimensions locality and communication, which are
two essential elements in ubiquitous systems (Bruni
et al., 2014).

ACKNOWLEDGEMENTS

Funded by the German Research Foundation (DFG,
Deutsche Forschungsgemeinschaft) as part of Ger-
many’s Excellence Strategy – EXC 2050/1 – Project
ID 390696704 – Cluster of Excellence "Centre for
Tactile Internet with Human-in-the-Loop" (CeTI) of
Technische Universität Dresden.

REFERENCES

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith,
M., and Steggles, P. (1999). Towards a Better Under-
standing of Context and Context-Awareness. In Pro-
ceedings of the 1st International Symposium on Hand-
held and Ubiquitous Computing, HUC ’99, pages
304–307. Springer-Verlag.

Abowd, G. D., Ebling, M., Hung, G., Lei, H., and Gellersen,
H. (2002). Context-aware computing [Guest Editors’
Intro.]. IEEE Pervasive Computing, 1(3):22–23.

Atkinson, C. and Kuhne, T. (2003). Model-driven develop-
ment: A metamodeling foundation. IEEE Software,
20(5):36–41.

Baier, C. and Katoen, J.-P. (2008). Principles of Model
Checking. The MIT Press.

Benford, S., Calder, M., Rodden, T., and Sevegnani, M.
(2016). On Lions, Impala, and Bigraphs: Modelling
Interactions in Physical/Virtual Spaces. 23(2):9:1–
9:56.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,
Nicklas, D., Ranganathan, A., and Riboni, D. (2010).

A Survey of Context Modelling and Reasoning Tech-
niques. Pervasive Mob. Comput., 6(2):161–180.

Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., and
Niss, H. (2006). Bigraphical Models of Context-
Aware Systems. In Foundations of Software Science
and Computation Structures, Lecture Notes in Com-
puter Science, pages 187–201. Springer, Berlin, Hei-
delberg.

Bolchini, C., Curino, C. A., Quintarelli, E., Schreiber, F. A.,
and Tanca, L. (2007). A Data-oriented Survey of Con-
text Models. SIGMOD Rec., 36(4):19–26.

Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. Fog Com-
puting: A Platform for Internet of Things and Analyt-
ics. In Bessis, N. and Dobre, C., editors, Big Data and
Internet of Things: A Roadmap for Smart Environ-
ments, Studies in Computational Intelligence, pages
169–186. Springer International Publishing.

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. Fog Com-
puting and Its Role in the Internet of Things. In Pro-
ceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC ’12, pages 13–16.
ACM.

Bradley, J., Barbier, J., and Handler, D. (2013). More Rele-
vant, Valuable Connections Will Improve Innovation,
Productivity, Efficiency & Customer Experience.

Brambilla, M., Cabot, J., and Wimmer, M. (2017). Model-
Driven Software Engineering in Practice: Second
Edition. Morgan & Claypool Publishers, 2nd edition.

Broman, D., Lee, E. A., Tripakis, S., and Törngren, M.
(2012). Viewpoints, Formalisms, Languages, and
Tools for Cyber-physical Systems. In Proceedings
of the 6th International Workshop on Multi-Paradigm
Modeling, MPM ’12, pages 49–54. ACM.

Bruni, R., Montanari, U., Plotkin, G., and Terreni, D.
(2014). On Hierarchical Graphs: Reconciling Bi-
graphs, Gs-monoidal Theories and Gs-graphs. Fun-
damenta Informaticae, 134:287–317.

Bézivin, J. (2005). On the unification power of models.
Software & Systems Modeling, 4(2):171–188.

Cafezeiro, I., Viterbo, J., Rademaker, A., Haeusler, E. H.,
and Endler, M. (2008). A Formal Framework
for Modeling Context-Aware Behavior in Ubiquitous
Computing. In Margaria, T. and Steffen, B., editors,
Leveraging Applications of Formal Methods, Verifi-
cation and Validation, Communications in Computer
and Information Science, pages 519–533. Springer
Berlin Heidelberg.

Cardozo, N. (2018). A Declarative Language for Context
Activation. In Proceedings of the 10th International
Workshop on Context-Oriented Programming: Ad-
vanced Modularity for Run-Time Composition, COP
’18, pages 1–7. Association for Computing Machin-
ery.

Chaari, T., Ejigu, D., Laforest, F., and Scuturici, V.-M.
(2007). A Comprehensive Approach to Model and
Use Context for Adapting Applications in Pervasive
Environments. J. Syst. Softw., 80(12):1973–1992.

Dey, A. K. (2001). Understanding and Using Context. Per-
sonal Ubiquitous Comput., 5(1):4–7.

Preparatory Reflections on Safe Context-adaptive Software (Position Paper)

389



Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006).
Fundamentals of Algebraic Graph Transformation.
Monographs in Theoretical Computer Science. An
EATCS Series. Springer-Verlag.

Evans, D. (2011). How the Next Evolution of the Internet
Is Changing Everything.

Furrer, F. J. (2019). Three Devils of Systems Engineer-
ing. In Furrer, F. J., editor, Future-Proof Software-
Systems: A Sustainable Evolution Strategy, pages 21–
44. Springer Fachmedien.

Gassanenko, M. L. (1998). Context-Oriented Program-
ming. In euroForth’98, page 10.

Grassi, V. and Sindico, A. (2007). Towards model driven
design of service-based context-aware applications. In
International Workshop on Engineering of Software
Services for Pervasive Environments: In Conjunction
with the 6th ESEC/FSE Joint Meeting, ESSPE ’07,
pages 69–74. Association for Computing Machinery.

Grzelak, D. and Aßmann, U. (2019). Bigraphical meta-
modeling of fog computing-based systems. In Pro-
ceedings of the International Conference on Discrete
Models of Complex Systems (SOLSTICE).

Grzelak., D., Mai., C., and Aßmann., U. (2019). Towards
a Software Architecture for Near Real-time Applica-
tions of IoT. In Proceedings of the 4th International
Conference on Internet of Things, Big Data and Secu-
rity - Volume 1: IoTBDS,, pages 197–206. INSTICC,
SciTePress.

Grzelak, D., Mai, C., Schöne, R., Falkenberg, J., and Aß-
mann, U. (2020). A Software Toolkit for Complex
Sensor Systems in Fog Environments. In van Driel,
W. D., Pyper, O., and Schumann, C., editors, Sen-
sor Systems Simulations: From Concept to Solution,
pages 253–282. Springer International Publishing.

Hennessy, M. (2004). Context-awareness: Models and anal-
ysis.

Henricksen, K. and Indulska, J. (2006). Developing
Context-aware Pervasive Computing Applications:
Models and Approach. Pervasive Mob. Comput.,
2(1):37–64.

Henricksen, K., Indulska, J., and Rakotonirainy, A. (2002).
Modeling Context Information in Pervasive Comput-
ing Systems. In Mattern, F. and Naghshineh, M., ed-
itors, Pervasive Computing, Lecture Notes in Com-
puter Science, pages 167–180. Springer Berlin Hei-
delberg.

Hirschfeld, R., Costanza, P., and Nierstrasz, O. (2008).
Context-Oriented Programming. Journal of Object
Technology, ETH Zurich, 7(3):125–151.

Hoffmann, D. W. (2013). Software-verifikation. In
Hoffmann, D. W., editor, Software-Qualität, eXa-
men.press, pages 333–369. Springer.

Holzmann, G. (1997). The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279–
295.

Holzmann, G. J. (2014). Mars code. Communications of
the ACM, 57(2):64–73.

Jaouadi, I., Ben Djemaa, R., and Ben-Abdallah, H. (2018).
A model-driven development approach for context-

aware systems. Software & Systems Modeling,
17(4):1169–1195.

Kapitsaki, G. M. and Venieris, I. S. (2009). Model-
Driven Development of Context-Aware Web Applica-
tions Based on a Web Service Context Management
Architecture. In Chaudron, M. R. V., editor, Models
in Software Engineering, Lecture Notes in Computer
Science, pages 343–355. Springer.

Keays, R. and Rakotonirainy, A. (2003). Context-oriented
Programming. In Proceedings of the 3rd ACM Inter-
national Workshop on Data Engineering for Wireless
and Mobile Access, MobiDe ’03, pages 9–16. ACM.

Kwiatkowska, M., Norman, G., and Parker, D. (2011).
PRISM 4.0: Verification of Probabilistic Real-Time
Systems. In Gopalakrishnan, G. and Qadeer, S., ed-
itors, Computer Aided Verification, Lecture Notes in
Computer Science, pages 585–591. Springer.

Léchenet, J.-C., Kosmatov, N., and Le Gall, P. (2016). Cut
Branches Before Looking for Bugs: Sound Verifica-
tion on Relaxed Slices. In Stevens, P. and Wąsowski,
A., editors, Fundamental Approaches to Software En-
gineering, Lecture Notes in Computer Science, pages
179–196. Springer.

Loke, S. W. (2016). Representing and reasoning with the
internet of things: A modular rule-based model for en-
sembles of context-aware smart things. EAI endorsed
transactions on context-aware systems and applica-
tions, 3(8):1–17.

Machado, R., Ribeiro, L., and Heckel, R. (2015). Rule-
based transformation of graph rewriting rules: To-
wards higher-order graph grammars. Theoretical
Computer Science, 594:1–23.

Milner, R. (2009). The Space and Motion of Communicat-
ing Agents. Cambridge University Press, 1st edition.

Murer, S., Worms, C., and Furrer, F. J. (2008). Managed
evolution. Informatik-Spektrum, 31(6):537–547.

Owicki, S. and Lamport, L. (1982). Proving Liveness Prop-
erties of Concurrent Programs. ACM Transactions on
Programming Languages and Systems, 4(3):455–495.

Rensink, A. (2004). The GROOVE Simulator: A Tool for
State Space Generation. In Pfaltz, J. L., Nagl, M., and
Böhlen, B., editors, Applications of Graph Transfor-
mations with Industrial Relevance, Lecture Notes in
Computer Science, pages 479–485. Springer.

Roman, G.-C., Julien, C., and Payton, J. (2004). A Formal
Treatment of Context-Awareness. In Wermelinger, M.
and Margaria-Steffen, T., editors, Fundamental Ap-
proaches to Software Engineering, Lecture Notes in
Computer Science, pages 12–36. Springer Berlin Hei-
delberg.

Schmidt, A., Beigl, M., and Gellersen, H.-w. (1998). There
is more to Context than Location. Computers and
Graphics, 23:893–901.

Seshia, S. A., Sharygina, N., and Tripakis, S. (2018). Mod-
eling for Verification. In Clarke, E. M., Henzinger,
T. A., Veith, H., and Bloem, R., editors, Handbook
of Model Checking, pages 75–105. Springer Interna-
tional Publishing.

Staab, S., Walter, T., Gröner, G., and Parreiras, F. S. (2010).
Model Driven Engineering with Ontology Technolo-

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

390



gies. In Aßmann, U., Bartho, A., and Wende, C., edi-
tors, Reasoning Web. Semantic Technologies for Soft-
ware Engineering: 6th International Summer School
2010, Dresden, Germany, August 30 - September 3,
2010. Tutorial Lectures, Lecture Notes in Computer
Science, pages 62–98. Springer Berlin Heidelberg.

Strang, T. and Linnhoff-Popien, C. (2004). A Context Mod-
eling Survey. page 8. UbiComp 2004 workshop on
Advanced Context Modelling, Reasoning and Man-
agement.

Topcu, F. (2011). Context Modeling and Reasoning Tech-
niques.

Tripakis, S. and Courcoubetis, C. (1996). Extending
promela and spin for real time. In Margaria, T. and
Steffen, B., editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, Lecture Notes in
Computer Science, pages 329–348. Springer.

Turner, V., Gantz, J. F., Reinsel, D., and Minton, S. (2014).
The Digital Universe of Opportunities: Rich Data and
the Increasing Value of the Internet of Things.

Wasserman, A. I. (1990). Tool integration in software engi-
neering environments. In Long, F., editor, Software
Engineering Environments, Lecture Notes in Com-
puter Science, pages 137–149. Springer Berlin Hei-
delberg.

Winslow, P., Fritzsche, J. M., Stabler, P., Rakers, A., Lueb-
chow, E., and Hilliker, R. (2018). The Edge Of Glory
(or: The Fog Rolls In).

Zhang, G.-Q., Zhang, G.-Q., Yang, Q.-F., Cheng, S.-Q.,
and Zhou, T. (2008). Evolution of the Internet and
its cores. New Journal of Physics, 10(12):123027.

Preparatory Reflections on Safe Context-adaptive Software (Position Paper)

391


