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Abstract: We explore the use of a two-stage classification framework to improve predictions of freshmen attrition at 
the beginning of the Spring semester. The proposed framework builds a Fall semester classifier using machine 
learning algorithms and freshmen student data, and subsequently attempts to improve the predictions of 
Spring attrition by including as predictor of the Spring classifier an error measure resulting from the 
discrepancy between Fall predictions of attrition and actual attrition. The paper describes the proposed method 
and shows how to organize the data for training and testing and demonstrate how it can be used for prediction. 
Experimental tests are carried out using several classification algorithms, to explore the validity and potential 
of the approach and gauge the increase in predictive power it introduces. 

1 INTRODUCTION 

Student dropout has long been one of the most critical 
problems in higher education. Weak student retention 
rates affect both the reputation and bottom line of 
higher education institutions, as well as the way they 
conduct their academic planning. In the current 
highly competitive environment, in which the value 
and high costs of undergraduate education are 
constantly being questioned by students and their 
families, colleges and universities have the need to 
monitor student attrition closely, and freshmen 
attrition in particular, which accounts for a large 
percentage of total student attrition (DeBerard et al., 
2004). Achieving low student dropout rates has been, 
however, a difficult obstacle to overcome for many 
higher education institutions: according to The 
Chronicle of Higher Education College Completion 
website, in the United States the average six-year 
degree completion across all four‐year institutions, of 
those students starting bachelor degree programs, 
stands at 58% for public institutions to 65% for 
private institutions, with percentages plummeting 
when considering black or Hispanic student 
populations. Four-year graduation rates are 
considerably more worrying (for more details, check 
https://collegecompletion.chronicle.com). 

Transition to college is especially challenging for 
students (Lu, 1994). Freshman class attrition rates are 

typically greater than any other academic year. In the 
US, over fifty percent of the dropouts occur within the 
first/freshmen-year (Delen, 2010).  This statistic of 
freshmen attrition does not differentiate between the 
students who may have dropped out for poor 
academic performance and students that transferred 
to other academic institutions universities to complete 
their studies. These statistics mirror retention levels at 
our institution, where attrition amounts to roughly 
20% over 6 years, with 10% of attrition occurring 
during freshman year (approximately split in halves 
between Fall and Spring semesters). 

Methods for modeling student dropout are not a 
new concept. Models like Tinto’s Institutional 
Departure Model (Tinto, 1975),  Bean’s Student 
Attrition Model (Bean, 1982; Cabrera et al., 1993),  
and  (Herzog, 2005) described retention as related to 
academic and social dimensions of a student’s 
experience with an academic institution. The rise of 
machine learning and big data has allowed for new 
methods of retention analysis to be explored. Delen 
(2010) compared the performance of multiple 
machine learning algorithms to predict freshmen 
retention.  A team from University of Arizona (Ram 
et al., 2015) enriched student data by deriving implicit 
social networks from students’ university smart card 
transactions to develop freshman retention predictive 
models. 
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Researchers in Australia (Seidel and Kutieleh, 
2017) proposed the use of CHAID decision tree 
models aimed at predicting students’ risk of attrition. 
Lately, Delen et al (2020), have implemented a 
Bayesian network to capture probabilistic 
interactions between freshmen attrition and related 
factors. 

Making predictions of freshmen retention is 
especially challenging given the reduced amount of 
information available from the students, which is 
typically limited to the student’s high school 
academic performance, financial support, student’s 
and school’s characteristics and general 
demographics. The end of the Fall semester adds Fall 
semester GPA as a valuable piece of information 
which should be included as a relevant predictor for 
models built to predict attrition in the Spring 
semester.  In this work we explore the feasibility of 
using the information obtained from Fall attrition 
predictions to enhance the predictions of Spring 
attrition. The intuition behind this approach is that the 
Fall prediction errors -the mismatch between the 
actual attrition computed at the end of the Fall 
semester, and the predictions made on Fall attrition- 
should also inform Spring attrition predictions: if the 
Fall attrition models predicted false positives, there 
may be a good chance that those students will not 
leave the institution during the Spring either. If that 
premise stands, the Fall prediction error could be a 
relevant predictor of Spring retention. 

This paper explores the use of a two-stage 
classification framework to predict Fall and Spring 
freshmen attrition learnt from student data. The 
framework builds a Fall semester binary classifier, 
and subsequently attempts to improve the predictions 
of Spring attrition by including as a predictor in the 
Spring classifier the Fall prediction error produced by 
the Fall classifier. Hence, the paper makes two 
contributions: 1) it explores the use and relevance of 
previous prediction errors to improve subsequent 
predictions of freshmen attrition. 2) It presents a 
methodology to organize the data for training and 
testing and shows how it can be used for prediction of 
freshmen retention.  

We first describe the methodology used to build a 
two-stage boosted framework. We follow with a 
description of the experiment, including the data, 
methods, results and analyses of this study. The paper 
ends with a summary of our conclusions, limitations 
of the study and pointers to future work. 
 
 
 
 

2 BUILDING A TWO-STAGE 
BOOSTED CLASSIFIER OF 
FRESHMMEN ATTRITION 

2.1 Methodology 

Two independent datasets trnD  and tstD   are used 

for training and testing. The training dataset trnD  is 

made up of several years of freshmen data (i.e. data 
from accepted and registered freshmen students). One 
year of student data is used to populate test dataset 

tstD  (different from the years used for training). 

Dataset trnD  has a schema [ ; ; ]Fall Spring
trn trn trnX y y , 

made up of a vector of predictors trnX and target 

variables Fall
trny Spring

trny  representing freshmen 

attrition in Fall and Spring. The response variable is 
binary, indicating whether a student has attrited or 
not. Similarly, dataset tstD  has a schema 

[ ; ; ]Fall Spring
tst tst tstX y y , made up of a vector of 

predictors tstX and response variables Fall
tsty and 

Spring
tsty  (more details on the use of the data files 

follow).   
In Stage 1 (training and testing Fall semester, see 

Fig 1): 

 Step(i) corresponds to Train Fall classifier, where 
a classifier FallM is trained using dataset 

[ ; ]Fall
trn trn trnX yD  and classification algorithm C 

(a probabilistic classifier). The notation cv  

indicates model tuning using cross-validation. 
 In Step(ii), the trained classifier FallM is used to 

predict the outcome of attrition in Fall ˆFall
trny and 

its corresponding  probability estimate ˆ Fall
trnp  (the 

probability that 1Fall
trny  ), a measure of the 

confidence of the prediction.  

 Step(iii) calculates the error measure  Fall
trne  by 

computing the absolute value of the difference 

between the target Fall
trny and  probability estimate 

ˆ Fall
trnp . Error signal  Fall

trne  is a vector of length  

trnn , where trnn   is the number of observations in 

data set trnD . 

 In Step (iv), corresponding to Test Fall classifier, 
trained model FallM   is applied to dataset 
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[ ; ]Fall
tst tst tstX yD , to produce prediction vector 

ˆFall
tsty and probability estimate ˆ Fall

tstp  (the 

probability that 1Fall
tsty  ). 

 Step(v) calculates the error measure  Fall
tste  by 

computing the absolute value of the difference 

between the target Fall
tsty and probability estimate 

ˆ Fall
tstp . Error measure  Fall

tste is a vector of length  

tstn , where tstn  is the number of observations in 

data set tstD . 

Note that both error signals  Fall
trne  and  Fall

tste  are 

computed during Stage 1, but are used in Stage 2. 

 Train

                 [ ; ] cv  

                                                                   

(i) Train Fall classifier                 

Fall
trn trn trn trn

Fall

X y


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Figure 1: Training and testing the first stage (Fall semester) 
classifier. 

In Stage 2 (training and testing Spring semester, see 
Fig 2): 

 Step(i) augments the list of predictors trnX  with 

error measure Fall
trne , resulting in 

( ) ( )[ ; ; ]aug aug Fall Spring
trn trn trn trnX y yD  dataset. Other 

features are added in this step to ( )aug
trnX ; in 

particular Fall semester GPA which is computed 
for each student at the end of the Fall semester, 
and is typically a relevant predictor of Spring 
attrition. 

 
( )
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Figure 2: Training and testing the second stage (Fall 
semester) classifier, boosted by adding the error measure 
generated at the end of the Fall semester.  

 Step(ii) subsets dataset ( )aug
trnD , removing 

instances corresponding to students attrited in the 
Fall. The resulting dataset, named

( )[ ; ]
SS S

aug Spring
trntrn trnX yD , is subsequently used for 

training, using 
S

Spring
trny  as target.  

 Step(iii) corresponds to Train (boosted) Spring 
classifier, where a classifier SpringM is trained 

and tuned through cross-validation using 
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augmented and subsetted dataset 
( )[ ; ]

SS S

aug Spring
trntrn trnX yD  and classification 

algorithm C. 
 Step(iv) augments the list of predictors tstX  with 

error measure Fall
tste , resulting in dataset

( ) ( )[ ; ; ]aug aug Fall Spring
tst tst tst tstX y yD . If features such as 

Fall semester GPA were added to the augmented 

training dataset ( )aug
trnD , those same features  must 

be added to augmented test dataset ( )aug
tstD  

 Step(v) subsets dataset ( )aug
tstD , removing 

instances corresponding to students attrited in the 
Fall. The resulting dataset, named

( )[ ; ]
SS S

aug Spring
tsttst tstX yD , is subsequently used for 

testing, using 
S

Spring
tsty  as target. 

 In Step (vi), corresponding to Test (boosted) 
Spring classifier, trained model SpringM   is 

applied to dataset ( )  [ ; ]
SS S

aug Spring
tsttst tstX yD , to 

finally produce prediction vector ˆSpring
tsty and 

probability estimate ˆ Spring
tstp . 

After classifiers FallM and SpringM are trained, tuned 

and tested, they can be used to make predictions on 
new data newD .  Figure 3 depicts the classifiers 

making predictions on new, incoming (and therefore 
unlabeled) data newD   at the beginning of the Fall 

semester and Spring semester respectively:  

 In Step (i), corresponding to Predict on new 
(upcoming year) data, trained model FallM   is 

applied to dataset to produce prediction vector 

ˆFall
newy and probability estimate ˆ Fall

newp  (the 

probability that 1Fall
newy  ) 

 Step(ii) calculate the error measure  Fall
newe  by 

computing the absolute value of the difference 

between the target Fall
newy and probability estimate 

ˆ Fall
newp (the probability that 1Fall

newy  ). 

 Step(iii) augments the list of predictors newX  

with error signal  Fall
newe , resulting in dataset 

( ) ( )[ ; ]aug aug Fall
new new newX yD . As before, if other features 

(e.g. Fall semester GPA) were added to the 

augmented dataset 
StrnD  used to train SpringM , 

those same features  must be added to augmented 

test dataset ( )aug
newD . 
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Figure 3: Using the two-stage classification framework for 
prediction on new data.  

 Step(iv) subsets dataset ( )aug
newD , removing 

instances corresponding to students attrited in the 

Fall, resulting in  dataset ( )

S

aug
newD . 

  In Step (v), corresponding to Predict on new 
(upcoming) Spring data, model SpringM   is 

applied to dataset ( )[ ]
SS

aug
newnew XD , to produce 

prediction vector ˆ
S

Spring
newy and probability vector 

ˆ
S

Spring
newp associated with the prediction (a measure 

of the confidence of the prediction). 
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2.2 Considerations and Best Practices 

 The proposed classification framework is used to 
make predictions at two specific times throughout 
the academic year, Fall and Spring, but the focus 
is placed on the Spring semester, as the additional 
predictors available in the Spring semester (Fall 
semester GPA, and error measure) should provide 
enhanced predictions.  

 At the beginning of the Fall semester, predictions 
are made about freshmen attrition by the end of 
the Fall semester using classifier FallM . The 

quality of those predictions is limited by the 
predictive performance of FallM   and directly 

related to the contribution to the classifier of the 
features included as predictors.  

 At the end of the Fall semester the list of Fall 
semester attritions becomes available and with it, 
the error measure calculated between predictions 
made at the beginning of the Fall semester, and 
actual attritions at the end of the Fall. 

 The inclusion of the error measure in the Spring 
dataset attempts to boost the predictions made by 
classifier SpringM  at the beginning of the Spring 

semester, with the purpose of enhancing its 
predictive performance.  

 As such, we have two rounds of predictions at 
early stages of each semester, with increasing 
predictive performance. 

 In our proposed algorithm we chose to use the 
error measure computed as the absolute value of 

the difference between the target Fally and  

probability estimate ˆ Fallp  instead of computing 

the mismatch  between target Fally  and the 

predicted value ˆFally : (mistmatch=1 if 

ˆFall Fally y ; else mismatch=0). The mismatch 

measure is binary and too crisp, whereas the 
formulation we propose yields a continuous 
variable bounded between 0 and 1, and a measure 
of the strength of the prediction error. 

 Also, we chose to include the error measure as an 
additional feature of the Spring training  dataset, 
instead of using it to identify instances of 
misclassification and placing weights on those 
instances, as in the case of traditional boosting 
approaches (Schapire, 1990). 

 Data used in this framework does not follow a 
typical random split into training and testing 
datasets by aggregating student data over multiple 
years and randomly partitioning the sample. 

Instead, data over multiple years are collected for 
training, using one additional year for testing. 
This approach is favored as classification models 
in this problem domain should be trained and 
tested over full freshmen roster data, reflecting 
retention (and attrition) for each year.  

 Models are trained and tuned using cross-
validation. This guarantees that the models’ 
hyperparameters are optimized for the data and 
task at hand before they are tested on new data.  

3 EXPERIMENTAL SETUP 

In the experiments we investigated the use of a two-
stage early detection framework learnt from data, in 
the manner described in the previous section, for 
Spring attrition of Freshman students. The framework 
is structured as a binary classifier (two classes) where 
a target value of 1 signals attrition. 

The input datasets described below (see section 
3.1) were derived from three data sources within the 
institution: the student information system, 
enrollment management and student housing.   

As the systems were disparate it was necessary to 
create an ETL process that would produce a cohesive 
unit of analysis. To facilitate this functionality a 
combination of relational and object data stores were 
established with scheduled jobs to create coordinated 
datasets with appropriately matching elements.  It is 
the case that the data elements within the institution 
changed over time and it was essential to the process 
that the year over year data elements were consistent. 

3.1 Datasets 

In this preliminary study we considered Freshmen 
data from three academic years (2016, 2017, 2018). 
We used 2016, 2017 data for training and 2018 data 
for testing purposes. Freshmen data were extracted, 
cleaned, transformed and aggregated into a complete 
dataset (no missing data). Data was imputed using K 
nearest neighbors (KNN). Each record -the unit of 
analysis- corresponds to each accepted and registered 
freshman student in a given semester (Fall and 
Spring) enriched with school data and demographics 
using the record format depicted in Table 1. The 
training (2016+2017) dataset included 2430 records, 
with 276 attritions distributed in 88 Fall attritions and 
188 Spring attritions. The test (2018) dataset included 
1303 records, with 150 attritions distributed in 50 Fall 
attritions and 100 Spring attritions. Each record 
included   the   target   variables   (Attrited_Fall   and 
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Table 1: Features in input data sets. 

redictor Description Data Type 
EARLYACTION                 Applied for early action Binary (1/0) 
EARLYDECISION               Applied for early decision Binary (1/0) 
MERITSCHOLAMT               Merit Scholar Amount Numeric 
FINAIDRATING                Financial Aid Rating Numeric 
HSTIER                      High School Tier Numeric 
FOREIGN Foreign Student Binary (1/0) 
FAFSA                       Applied for Federal Student Aid Binary (1/0) 
APCOURSES                   Took AP courses Binary (1/0) 
MALE                        Male Binary (1/0) 
MINORITY                   Belongs to a minority group Binary (1/0) 
ATHLETE                    Is a student athlete Binary (1/0) 
EARLYDEFERRAL                Applied for early deferral Binary (1/0) 
WAITLISTYN                  Was waitlisted Binary (1/0) 
COMMUTE                     Is a commuter student Binary (1/0) 
HS_GPA                     High School GPA Numeric 
DISTANCE_IN_MILES          Distance from home (in miles) Numeric 
APTITUDE_SCORE              Aptitude Score (SAT/ ACT) Numeric 
FIRSTGENERATION             First Generation College Student Binary (1/0) 
SCHOOL               Joined any of the following Schools: CC 

(ComSci & Math), CO (Communications & 
Arts), LA (Liberal Arts), SB (Behavioral 
Sciences), SI (Science), SM (Management)

Categorical (6 
categories), recoded as  
6 binary (1/0) vars. 

RACE                Race (A, B, H, I, M, N, O, P, W) Categorical (9 
categories), recoded as 
9 binary (1/0) vars. 

ISPELLRECIPIENT             Is recipient of Pell Grant Binary (1/0) 
ISDEANLIST Joined Dean’s List Binary (1/0) 
ISPROBATION               Is on probation Binary (1/0) 
OCCUPANTS_BLDG              No of occupants in dorm Numeric 
OCCUPANTS_ROOM             No of occupants in dorm’s room Numeric 
IS_SINGLE_ROOM   Uses a single room Binary (1/0) 
FS_GPA_NUM Fall semester GPA, used in Spring predictions Numeric 
ERROR_MEASURE  error measure, used in Spring predictions Numeric 

Target features: Attrited_Spring - Binary (1/0);  Attrited_Fall -  Binary (1/0)

Attrited_Spring) which were used alternatively for 
Fall and Spring predictions. 

3.2 Methods 

We performed sixteen experiments, using two 
different classification algorithms for the first-stage 
(Fall) models; four different classification algorithms 
for the Spring models, and two sets of predictors  to 
train the Spring models: one including both Fall 
semester GPA and the error measure, and the other 
keeping Fall semester GPA, but excluding the error 
measure. The purpose of this was to be able to 
compare the actual impact in predictive performance 
introduced by the inclusion of the error measure.  

The first-stage (Fall) classifiers were trained with 
two different algorithms: 

 XGB: XGBtree, an improvement on gradient 
boosting trees introduced by Chen and Guestrin 
(2016), widely regarded as the machine learning 
algorithm of choice for many winning teams of 
machine learning competitions when dealing with 
structured data, without resorting to stack 
ensembles. 

 LOG: Logistic Regression, the workhorse of 
binary and multinomial classification in statistical 
modelling. 

For the second-stage (Spring) classifiers we chose 
four different algorithms: 

 XGB: XGBtree, (Chen and Guestrin, 2016) 
 RF: The Random Forests algorithm (Breiman, 

2001), a variation of bagging applied  to decision 
trees. 
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 LOG: logistic regression 
 LDA: Linear discriminant Analysis, a traditional 

classification method that finds a linear 
combination of features to separate two or more 
classes. LDA requires continuous predictors that 
are normally distributed, but in practice this 
restriction can be relaxed. 

The chosen classifiers are either state-of-the-art (e.g. 
XGB and RF) or well-proven classification 
algorithms. They are also substantially different in 
their theoretical underpinnings and should therefore 
yield non-identical prediction errors. 

3.3 Computational Details 

Enrollment management data was stored in a 
MongoDb database as it tended to be the most variant.  
Extraction scripts were used to generate flat structures 
for export to the final data stores. This was combined 
with the flattened structures from the student 
information system which uses Oracle database, and 
the housing information which is stored in MS-SQL 
Server.  Ultimately the extracted data was stored in a 
MariaDb, where SQL scripts comprised the final 
steps in the ETL to generate the final units of analysis 
exports. 

The two-stage boosted framework was coded 
using a combination of Python 3.6 using the scikit-
learn and pandas libraries, and SPSS Modeler 18.2, 
for rapid prototyping, given the number of 
experiments conducted in this preliminary 
exploration. We used the Bayesian optimization 
library scikit-optimize (skopt) for hyperparameter 
tuning in the first stage, and the rfbopt library 
(https://rbfopt.readthedocs.io) for hyperparameter 
optimization of XGBtree and Random Forests in 
SPSS Modeler for the second stage.    

The experiments were run on an Intel Xeon 
server, 2.90GHz, 8 processors, 64GB RAM. Parallel 
processing was coded into the system to make use of 
all n cores during training and tuning.  

4 RESULTS AND DISCUSSION 

Table 2 displays the assessment of predictive 
performance of the two-stage classification 
framework for the sixteen experiments described in 
section 3.2.  

Accuracy and ROC AUC are reported, although 
the prevalent predictive performance metric is ROC 
AUC in this case, given the unbalanced nature of the 
datasets. Predictive performance is slightly higher in 

the first stage when using logistic regression vs 
XGBtree, but both values (0.66 and 0.64) are rather 
low, which confirms the challenges faced by 
researchers when trying to make predictions of Fall 
semester freshmen attrition.  

When analysing the results on Spring predictions 
we can verify that the inclusion of the error measure 
in the list of Spring predictors enhances the predictive 
performance of the classification models. Predictive 
performance improvement was moderate but 
consistent. For error measures derived with a first 
stage (Fall) using logistic regression, three out of four 
classifiers had better predictive performance when 
the error measure is included as a predictor. The AUC 
value for XGBtree is 0.78, greater than the AUC 
value when the error measure is excluded (0.759). 
Similarly, the AUC value for Random Forests is 
0.802, greater than 0.796. In the case of LDA, the 
different in AUC is much more substantial: 0.817 vs 
0.639.  For logistic regression, instead, the results are 
reversed: the AUC when excluding the error measure 
is higher (0.808 vs. 0.816). When using XGBtree in 
the first stage we have similar results: the AUC values 
are either higher when including the error measure, or 
at least remain the same. The AUC value for XGBtree 
is 0.782, greater than the AUC value when the error 
measure is excluded (0.766). For Random Forests and 
Logistic Regression, the inclusion of the error 
measure does not change the AUC value (0.792 and 
0.816 respectively). For LDA, we see a considerable 
drop in predictive performance, but still, the inclusion 
of the error measure improves the AUC value (0.684 
vs. 0.639).  

Figure 4 depicts the feature importance charts for 
each of the sixteen experiments. The error measure 
plays a prominent role as a predictor in all but one 
scenario, ranking among the five most relevant 
predictors (the only exception is the case in which 
XGBTree is used for Fall prediction, and logistic 
regression for Spring prediction).   

These results suggest that the inclusion of the 
error measure can be beneficial and will tend to 
increase predictive performance. It could certainly be 
meaningful to consider its inclusion when 
implementing an ensemble of classifiers: some 
classifiers could be trained with inclusion of the error 
measure, and others without it, and then allow the 
ensemble, either through voting or through stacking, 
to produce the final prediction. For details of this 
approach check (Lauría et al., 2018).  

A surprising outcome is the fact that logistic 
regression outperformed both XGBtree and Random 
Forests, two state of the art classifiers. This may be 
due to limited hyperparameter optimization. 
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Table 2: Stack Predictive Performance Results. 

First Stage: Fall Second Stage: Spring

Classifier LOG Include 
error measure 

XGB RF LDA LOG

ROC AUC 0.66  Accuracy 91.54% 93.06% 81.17% 92.42%

   ROC AUC 0.78 0.802 0.817 0.808

  Exclude 
error measure 

XGB RF LDA LOG

   Accuracy 91.54% 93.22% 70.31% 92.18%

   ROC AUC 0.759 0.796 0.639 0.816

(a) Using Logistic Regression for Fall prediction 

First Stage: Fall Second Stage: Spring

Classifier XGB Include 
error measure 

XGB RF LDA LOG

ROC AUC 0.64  Accuracy 91.54% 93.30% 73.42% 92.34%

   ROC AUC 0.782 0.792 0.684 0.816

  Exclude 
error measure 

XGB RF LDA LOG

   Accuracy 91.94% 93.22% 70.31% 92.18%

   ROC AUC 0.766 0.792 0.639 0.816

(b) Using XGBtree for Fall prediction 

 
(a) Using Logistic Regression for Fall prediction.                   (b) Using XGBtree for Fall prediction. 

Figure 4: Feature Importance of Second Stage (Spring) classifiers. 

Random forests and especially XGBtree have a very 
large number of hyperparameters, which require large 
number of runs to attain optimal hyperparameter 
configurations. In future work we may need to 

reconsider the strategy used for tuning the models. 
Also, the drop in LDA’s predictive performance 
deserves further analysis: the LDA algorithm exhibits 
different behaviour when the error measure is derived 
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from logistic regression and XGBtree in the Fall 
prediction. 

5 SUMMARY AND CONCLUDING 
COMMENTS 

The current research has several limitations. First, the 
study imposed a limited group of classification 
algorithms. Although the experiments included state 
of the art algorithms, such as XGBTree, a broader, 
less discretionary analysis is probably necessary. The 
purpose of the study at this preliminary stage is not to 
identify an optimal architecture but rather to 
empirically test the validity and effectiveness of the 
proposed framework. Second, the error measure 
included as a predictor in the Spring model is limited 
to the use of false positives from the Fall semester. 
Students who attrite in the Fall but were not predicted 
to attrite -false negatives-, are excluded from the Spring 
predictions as they are no longer part of the dataset 
(they have left the College); the Spring model therefore 
does not learn from Fall’s Type II errors.  This is a 
design consideration: we use weaker predictions of 
the Fall semester to enhance Spring predictions over 
the remaining students. 

The impetus of this research stems from the need 
of to develop better methods for prediction of 
(freshmen) student attrition. Hopefully this paper will 
provide the motivation for other researchers and 
practitioners to work on new and better predictive 
models of student retention. 
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