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Abstract: The correct representation of discipline-specific and cross-specific knowledge in manufacturing contexts is
becoming more important due to inter-disciplinary dependencies and overall higher system complexity. How-
ever, domain experts do seldom have sufficient technical and theoretical knowledge or adequate tool support
required for productive and effective model engineering and validation. Furthermore, increasing competi-
tion and faster product lifecycle require the need for parallel collaborative engineering efforts from different
workgroups. Thus, test-driven modeling, similar to test-driven software engineering can support the model
engineering process to produce high-quality meta and instance models by incorporating consistency and se-
mantic checks during the model engineering. We present a conceptual framework for model transformation
with testing and debugging capabilities for production system engineering use cases supporting the mod-
eling of discipline-specific AutomationML instance models. An exemplary workflow is presented and dis-
cussed. Debug output for the models is generated to support non-technical engineers in the error detection of
discipline-specific models. For future work user-friendly test definition is in planning.

1 INTRODUCTION

Model Engineering has become an increasingly im-
portant activity for the development of cyber-physical
production systems (Berardinelli et al., 2016): Lo-
cal models are used to integrate discipline-specific
views (e.g. mechanical, electric or pneumatic) and
their concepts into a holistic model, that represents the
concrete plant instance. In later development steps,
software is used to increase the throughput and effi-
ciency of such systems, while enabling security and
safety. However, if the validity of the common en-
gineering model (the integrated model on all local
models) is not tested, the dependent code can lead to
semantic issues and inconsistencies over time. One
approach to prevent such issues is to apply model-
and software-based methods, so-called virtual engi-
neering: The aim is simulate the real world behav-
ior of all integrated components to reduce defects, er-
rors in the design and to ensure physical requirements
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(Košturiak and Gregor, 1999). The major challenge
however, is that for such consistency checks and sim-
ulations, all local models have to be transformed and
integrated into the holistic view. Currently, simulation
engineers estimate values and have to manually trans-
form values and check for validity. Advanced mod-
eling frameworks, such as Eclipse Modeling Frame-
work (EMF), are complex and non-intuitive for users
with little previous experiences in model-based engi-
neering domain. Furthermore, applications are lim-
ited to the Eclipse Software Ecosystem.

Another industrial use case for the common en-
gineering model is the automation engineer, writing
control code for components, such as conveyors or
robot arms to enable efficient production. In order to
get such an integrated view and the holistic system
design for validation and verification, inputs from all
relevant involved engineering disciplines are needed.
Regarding data exchange, software also impacted the
manufacturing domain heavily: Paper plans used for
planing and modeling of production systems were
over time replaced by exchanging digital artifacts, de-
scribing the different views needed for planning pro-
duction systems (Madsen and Munck, 2017): For ex-

Rinker, F., Waltersdorfer, L. and Biffl, S.
Towards Test-Driven Model Development in Production Systems Engineering.
DOI: 10.5220/0009425302130219
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 1, pages 213-219
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

213



ample, the mechanical view describes the layout of
plants, the electrical plan describes the wiring and
power supply and the fluidics, describing the differ-
ent liquids required for the system. In 2009, Ebert
describes that the complexity of embedded systems
grows nearly exponentially (Ebert and Jones, 2009),
since the combination of hardware and software adds
another layer to the overall complexity of such sys-
tems.

However, proprietary formats, heterogeneous
views and non-suitable tools common to production
system engineering can lead to inconsistent nam-
ing and tagging of concepts or also hinder semantic
or project-independent consistency (Feldmann et al.,
2019). Best practices or industry guidelines (for ex-
ample (Verein Deutscher Ingenieure, 2009; Schüller
et al., 2019)) are not adhered due to the unstruc-
tured process of describing domain-specific knowl-
edge (Biffl et al., 2019a). However, the adherence
to such standards and granular semantic and syntactic
checking for underlying engineering models would be
an essential step towards increasing the quality and
correctness of engineering output.

To alleviate some of these shortcomings, the au-
thors in (Munck and Madsen, 2015), propose Test-
Driven Modeling (TDM) analogue to Test-Driven De-
velopment (TDD), to ensure increased quality of en-
gineering models. TDD is a well-established method
from Software Engineering (SE) to improve the over-
all quality of the development process by incorpo-
rating continuous testing of specific test use cases
throughout the writing of software code.

This paper presents an conceptual framework for
lightweight testing and debugging framework for Au-
tomationML (AML) engineering models, to prove the
suitability and functioning of test-driven model engi-
neering for domain-specific models and describe our
lessons learned from a prototypical application.

Instead of manual integration of local views and
the tedious finding of errors, the automation of test
reports has the potential to increase consistency and
flexibility of instance models and prevent common
pitfalls, such as non-unique ids or missing, non-
retrievable links. The lightweight integration of
Service-oriented architecture (SOA) (Krafzig et al.,
2005) ensures adaptability and lower integration ef-
forts. Furthermore, our approach can add flexibility
to the modeling process by introducing an iterative
process, enabling stakeholders to add additional dis-
ciplines and thus, additional complexity to the mod-
els.

The remainder of this paper is structured as fol-
lows: Section 2 presents related work on model-
based approaches, domain-specific model engineer-

ing in production systems engineering and test-driven
(model) development. Section 3 presents identified
challenges in model development and engineering in
production systems engineering. In Section 4, we in-
troduce the solution approach and present preliminary
results of the test-driven model development. We dis-
cuss our findings and related limitations in Section 5.
Section 6 summarizes and identifies future work.

2 RELATED WORK

This section gives an overview about related work on
model-based approaches, domain-specific model en-
gineering and TDD.

2.1 Model-based Approaches

Model-based approaches are said to improve modu-
larity, reusability of components and technology flex-
ibility (Brambilla et al., 2017). The goal is to specify
and design domain models, from which technical doc-
umentation or software code can be generated. Enter-
prise modeling is an essential research topic for im-
proving model quality and an organizations ability to
get value from them (Sandkuhl et al., 2014).

Object Management Group (OMG) has defined
the Meta Object Facility (MOF)1 standard for model-
driven engineering, is an architecture for classifica-
tion of models. Tools for model-based approaches
are established in the software engineering: EMF2,
Java-based, is one of the most popular tool sup-
port, providing a plethora of plug-ins and supported
methods. Notable examples are ATLAS Transforma-
tion Language (ATL)3, a model transformation lan-
guage, Xtext4, open source framework for developing
discipline-specific languages and Sirius5, as a graphi-
cal modeling software tool.

However, in engineering contexts, the quality and
extensiveness of domain models vary: Apart from
domain-specific tools, spreadsheets are common tools
and popular formats are Portable Document Format
(PDF) and Comma Separated Value (CSV) for de-
signing (data) models and for encoding of essential
information for other stakeholders due to their min-
imal and easy start-up. These tools are not tailored
for the description of engineering knowledge due to
growing complexity of production systems and such

1MOF: https://www.omg.org/mof
2EMF: https://www.eclipse.org/modeling/emf
3ATL: https://www.eclipse.org/atl
4Xtext: https://www.eclipse.org/Xtext
5Sirius: https://www.eclipse.org/sirius
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environments can pose significant challenges (Mad-
sen and Munck, 2017). Unified Modeling Language
(UML), as a popular general-purpose modeling lan-
guage in software engineering has been proven to be
applicable for automated production systems as well
as SysML (Vogel-Heuser, 2014). Another challenge
in the production systems engineering context is the
heterogeneity of tools and views, which AML aims
to bridge by providing a data format designed for en-
gineering data exchange (Drath et al., 2008). How-
ever, there are still multiple challenges associated to
model-based approaches in the industry: Integrated
views on the local views, linking support for common
concepts and inconsistency management are major is-
sues (Feldmann et al., 2019).

2.2 Domain-specific Model Engineering
in Production Systems Engineering

With the digitization of the manufacturing domain
and increasing world wide competition, the need for
modeling engineering in production systems engi-
neering is increasing (Berardinelli et al., 2016). How-
ever, a well-known problem is that although domain
experts have extensive domain-specific knowledge in-
side their minds based on years of experiences and
through multiple cases seen in their career, they of-
ten cannot explicitly model this essential informa-
tion in correct and effective ways. Unfortunately, do-
main experts are seldom modeling experts, and are
not aware about the importance of adhering to for-
mal constraints and formalization of modeling con-
cepts (López-Fernández et al., 2015), which are nec-
essary for automatic testing, consistency checks and
more. Traceabilty of design decisions is a major fac-
tor for sustainable engineering knowledge documen-
tation (Kathrein et al., 2019). Thus, domain experts
require the assistance of tools or also engineers to
construct suitable models.

Domain-specific models used for software engi-
neering are described in domain-specific modeling
languages, which is suitable for the concepts and ap-
plication. Meta-models are usually required to design
instance models of real world scenarios and to check
for consistency according to the constraints (López-
Fernández et al., 2015).

In Figure 1, the manual (meta)-modeling process
common to production systems engineering is illus-
trated: Different disciplines, plant, mechanical, flu-
idic and electric planning are working in parallel on
various artifacts, also called local models, describing
his discipline-specific view and concepts. The other
stakeholders then need to extract the information into
their local models and incorporate the changes by oth-

ers to see if the changes affected their own local con-
cepts (Lüder et al., 2019). Stakeholders, who need an
integrated view on the system, such as project man-
agers, simulation and automation engineers, need in-
tegrated models, incorporating all relevant disciplines
and their dependencies (Lüder et al., 2019).

For the further validation and consistency check-
ing, artifacts need to be sent around and are manually
analyzed. Since such artefacts and models can be big
and are hard to read for humans due to nested struc-
ture and no automated tests, errors are highly proba-
ble.

2.3 Test-Driven (Model) Development

The main paradigm of TDD is to write tests before
composing software code (Astels, 2003). This way,
TDD can increase the quality of output of the software
engineering process dramatically: Advantages are in-
creased efficacy and feedback, catching defects and
bugs in early phases and shipping maintainable and
tested code (Williams et al., 2003) (Erdogmus et al.,
2005). Microsoft showed increased productivity of
development teams by applying TDD methodology
even taking in account extra upfront effort (Bhat and
Nagappan, 2006).

The methodology can also be applied to modeling
as described by Zhang (Zhang, 2004). Munck et Mad-
sen propose a test-driven model-based systems engi-
neering method to test architecture and behavior of
models in (Munck and Madsen, 2015). In (Munck
and Madsen, 2017) they also report on their expe-
riences utilizing formal verification, simulations and
forecasting to support and enable the development
of cloud-based complex medical systems. (Zolotas
et al., 2017) shows that the error rate with constraint
testing can be dramatically reduced for certain errors
in comparison to manual checking.

Work Group
Plant Planner

Work Group
 Mechanical 

Engineer

Work Group
 Software
Engineer

Work Group
 Electrical
Engineer

Figure 1: Manual meta-modeling process.
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3 RESEARCH METHODOLOGY

Vogel-Heuser et al. have applied the concept of tech-
nical debt to the production systems domain (Vogel-
Heuser et al., 2015): Technical debt is a concept from
software engineering, to quantify and model design
and implementation shortcomings from industry or
other standards in technical environments due to time
constraints or other reasons. Biffl et al. have analyzed
technical debt in the data exchange of production sys-
tems engineering (Biffl et al., 2019a) within the con-
text of a case study. The applicability of technical
debt in the industrial domain motivates the transition
of software engineering methods (in our case TDD) to
the production system engineering domain to manage
the negative effects and increased costs from accumu-
lated technical debt.

In the context of technical debt management
and transfer of software engineering methods to
the production system domain (Vogel-Heuser et al.,
2015), we designed a conceptual and prototypical ap-
proach to implement test-driven model development
for the production systems context. We present our
lightweight framework for testing and debugging en-
gineering domain models in AML: The context was
an improvement initiative with a company partner, in
the manufacturing domain to improve the engineering
data management process and data model lifecycle.
Through multiple workshops, we elicited stakeholder
needs on domain-specific models and the workings
of data exchange in production systems engineering
(Biffl et al., 2019b).

4 SOLUTION APPROACH

In this section we discuss our solution approach,
a testing pipeline for instance models of domain-
specific instance models of engineering disciplines
common to the production systems engineering do-
main.

4.1 Context and Architecture

The basic use case for our conceptual test-driven
model development approach is the project configu-
ration for a production systems engineering project.
This provides the initial structure of a project, and an
initial data provision from the customer specification
and functional view. A work cell or entire plant is
planned or re-configured according to this structure.

We have three roles representing traditional engi-
neering disciplines in such project, also introduced in

Figure 1: Plant planner providing the general struc-
ture of the cell or plant, mechanical engineer responsi-
ble for the mechanic components, fluidic engineer re-
sponsible for all kind of liquids and electric engineer
designing wiring and power supply. In later phases
of this design process, virtual and software engineers
take the common engineering model as baseline for
their simulation and control code.

Similar to the process of constructing meta-
models in (López-Fernández et al., 2015), in our con-
text one of our authors was the engineer and con-
structed a meta-model for the production systems do-
main in collaboration with a domain expert. The do-
main expert is an consultant for our research project,
with extensive experience in industrial projects and
research in academia. Over the course of eight
months, both stakeholders were iteratively design-
ing the architecture and testing pipeline, adapting
it to real-world requirements provided by partner
company stakeholders during the industry research
project. Within the context of this project, tests were
added when errors became evident and hindered the
progress.

In Figure 2, our testing pipeline is illustrated: The
overall architecture is based on service-orientated ar-
chitecture to build data exchange models to enable en-
gineering data exchange in production systems engi-
neering between different disciplines.

A meta-metamodel is described in a YAML Ain’t
Markup Language (YAML) file, a data serialization
language, which provides the general structure for the
project context. According to the MOF hierarchy,
this represents layer M3. Based on this configura-
tion context, user models, AML-1 and AML-2 tem-
plates are generated automatically. AML-2 instance
models would be the representation of the real world
according to single disciplines, for example the elec-
trical floor plan. AML-1 models are the integrated
view, which provide a holistic overview over all rele-
vant disciplines. The templates provide the structure
how the models can be modeled, which disciplines
can be integrated and they are verified in the next step.
Verification tests that take place here, are of semantic
and syntactic nature. The successful passing of the
verification tests means that the templates are well-
formed within the context of AML. In case of seman-
tic or syntactic errors, an report is generated to im-
prove bug tracking and fixing of errors. In case, no
errors were detected, the transformer then populates
the AML-2 template with data based on both AML-1
and AML-2 templates, and on data provided by the
engineering discipline-specific tools. After the tem-
plate has been filled, another set of tests is conducted
to validate parameters, relationships and dependen-
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Figure 2: Architecture of proposed testing pipeline.

cies based on previously given constraints and tests
put into a constraints testfile. An example for such a
constraint can be that the speed of a conveyor must
not exceed a certain limit depending on the product.
The result is either a valid AML-2 model, that is well-
formed according to the meta-metamodel or an error
report with bug output for further adaptations.

4.2 Debug Output and Used
Technologies

In listing 1, an example for debug output is depicted.
The output shows several messages, explaining the
processing of propagation of links throughout the dif-
ferent components of the models. Errors are shown in
red, in our case the first element that was linked to a
sub concept was not retrievable by the system.

Advantages of debug output and the overall
methodology are that project-dependent changes can
be made traceable and retrievable if change logs or er-
ror reports are versioned. Furthermore, the integrated
view is validated and tested based on self-designed
tests to verify the correctness and adherence to cer-
tain constraints. Thus, this approach can support en-
gineers to produce faster, reliable models for produc-
tion systems engineering. The manual error detection,
which tends to be cumbersome for non-technical do-
main experts, can be supported by automated test re-
ports, which can be then resolved line by line.

YAML, a successor of Extensible Markup Lan-
guage (XML), is a human-readable description lan-
guage, making it easier for non-technical domain ex-
perts to read the models. AML as a new standard in
the production system domain has extensive potential

to simplify and support the heterogeneous data land-
scape common for this domain. The usage of this
standard might enable the future implementation of
other AML and tool interfaces. The decision to not
use Ecore, and EMF, popular for model engineering
is the independence from the Eclipse workspace. Fur-
thermore, EMF offers more features than needed for
our use case, and we wanted to keep the complexity
low within the project.

5 DISCUSSION

The use case starting with only three disciplines is re-
alistic to the set-up phase of real, industrial produc-
tion system engineering projects. However, one limi-
tation of our approach is that the simple use case was
only simulated with the example set up and no addi-
tional disciplines were added to the context during the
project until now.

Nevertheless, the advantage of our approach is
that in future, additional disciplines could be added
relatively easy throughout the process: In case of
changes to the meta-model and additional instance
models, the previously passed tests have to be re-run
according to the TDD paradigm. This way, checks
are conducted again and ensure the consistency and
validity of the local and the integrated models in the
new context although changes have been committed.
Another limitation is the limited set of test so far, only
detected errors were so far implemented into the test-
ing pipeline.

Noteworthy, is also that up time effort is certainly
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DEBUG - Found propagation mapping 'aml:// AML1Project#this.FunctionView@FunctionViewID ' for 'SimulationView@MUK '
DEBUG - Extracted Mapping Path: this.FunctionView@FunctionViewID
DEBUG - Found SubConcept 'FunctionView ' in Concept 'K20_50_D_15_BE10_MKL '
ERROR - Could not find Attribute 'FunctionViewID ' in SubConcept 'FunctionView '
ERROR - Error resolving attribute 'FunctionViewID ' for path 'this.FunctionView ' in element 'K20_50_D_15_BE10_MKL '
ERROR - Error processing attribute path 'aml:// AML1Project#this.FunctionView@FunctionViewID '
DEBUG - Found propagation mapping 'aml:// AML1Project#this.FunctionView@Description ' for 'SimulationView@REMARK '
DEBUG - Extracted Mapping Path: this.FunctionView@Description
DEBUG - Found SubConcept 'FunctionView ' in Concept 'K20_50_D_15_BE10_MKL '
DEBUG - Found Attribute 'Description ' in Element 'FunctionView '
DEBUG - Found propagation mapping

Listing 1: Debug output.

increased for the setup of the testing pipeline: Do-
main experts and engineers have to collaborate and
externalize implicit knowledge into meta-metamodel,
the domain-specific language templates and the con-
straints test files. However, during our improvement
initiative we already observed positive benefits as eas-
ier bug tracking and error reporting, as well as the
reduction of common mistakes such as non-unique
identifiers or missing subconcepts. We assume that
similar to (Bhat and Nagappan, 2006), the additional
set up effort is similar in such a specialized domain
as production systems engineering as in the industrial
case studies. However, the benefits of such a TDD
approach can increase the productivity of domain ex-
perts and technical stakeholders immensely. Meta-
and domain models can be adapted and still be vali-
dated and debugged against previously designed tests.

6 CONCLUSION AND FUTURE
WORK

Consistency and traceability are major issues in the
production systems engineering domain and in the
representation of engineering knowledge and exper-
tise. Due to various disciplines and the diverging tool
and format landscape, consistency and other checks
are tedious and error-prone, if conducted manually.
Domain experts often are not modeling experts, and
therefore are not able to test their domain models
systematically. Thus, we have presented a testing
pipeline to support discipline-specific model engi-
neering in the production systems engineering do-
main. Through an iterative process with a domain ex-
perts, an industrial use case and an experienced model
engineer, we designed an appropriate architecture and
models, showing real-world application of test-driven
model engineering methodology. The error reports
simplified the communication with the domain expert
to convey issues in the models, and also the resolving
of such issues. Although, we used specific technolo-
gies, our service architecture can be used as a base
model for other applications and prototypes in this
field. The results are promising to extend the appli-
cation of our approach and to measure its impact with

industrial partners in the future. For future work, the
extension to additional disciplines and other models
need to be done. Furthermore, the usability of our
solution should be also extended, since the configu-
ration and implementation is currently done via bash
scripts and the implementation of new tests only avail-
able to experienced engineers.
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