
Towards an Automated DEMO Action Model Implementation using
Blockchain Smart Contracts

Marta Aparı́cio1,2, Sérgio Guerreiro1,2 and Pedro Sousa1,2,3

1Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
2INESC-ID, Rua Alves Redol 9, 1000-029 Lisbon, Portugal

3Link Consulting SA, Av. Duque de Ávila 23, 1000-138 Lisbon, Portugal

Keywords: Automatic Generation, Blockchain, DEMO, DEMO Action Model, Smart Contract.

Abstract: Blockchain (BC) is a technology that introduces a decentralized, replicated, autonomous, and secure databases.
A Smart Contract (SC) is a transaction embedded in BC that contains executable code and its internal storage,
offering immutable execution and record keeping. A SC has enormous potential in automating traditional
paper contracts and encoding contract logic into program code. Therefore, replacing the role of a central
authority and reducing the time and money spent on the enforcement of such contracts. This paper intends
to determine the sufficiency or insufficiency of ontology to support the automatic generation of SCs code
from text, in particular, DEMO Action Model. A new way to capture the SC in a user-friendly way could be
proposed. With this, it is intended to eliminate the errors associated with programming since the SC code is
automatically generated from models.

1 INTRODUCTION

Since ancient times, binding agreements that recog-
nize and manage the rights and duties between par-
ties have been consummated. These binding agree-
ments, in which an exchange of value is made, are
now known as contracts and serve as protection for
both parties. These contracts are written or spoken
and require the parties to trust each other to fulfil their
side of the commitment. The massively complex set
of contractual agreements that are created, due to the
way society is structured, lead to enforce trust by cen-
tralized organizations like banks. Making the same
society, dependent upon third parties to manage and
enforce those contractual agreements.

In (Nakamoto, 2009) proposed a peer-to-peer net-
work where transactions are hashed into an ongoing
chain, forming a record that cannot be changed with-
out redoing the Proof-of-Work, naming it BC. Later
on, a BC called Ethereum was specifically created and
designed to support SCs, that allowed to create con-
tracts between parties. Nowadays, SCs are enforced
by the network of computers that makes up the BC,
guaranteeing the adequate execution of the code that
composes the SCs, based on proven cryptographic
algorithms. These new technologies are undeniable
faster, cheaper and more secure than many traditional

systems, which helps with the handling of this mas-
sive amount of complex contractual agreements and
transactions that are nowadays created. However,
building systems on BC is non-trivial due to the steep
learning curve of the BC technology.

Model-driven engineering tools can generate well-
tested code implementing best practices and help de-
velopers manage software complexity by only fo-
cusing on building high-level models without requir-
ing expert development knowledge (Schmidt, 2006).
Thus, it would be expected that when using Model-
driven engineering tools to produce BC SCs this
would decrease the slope of the learning curve, mak-
ing the production faster.

As explained in (Norta, 2017), referencing a
crowdfunding project that was hacked as it contained
security flaws, resulting in a considerable monetary
loss. “The incident shows it is not enough to merely
equip the protocol layer on top of a Blockchain with a
Turing-complete language such as Solidity to realize
smart-contract management. Instead, we propose in
this keynote paper that is crucial to address a gap for
secure smart-contract management pertaining to the
currently ignored application-layer development”.

A solution to this referred problem would be to
generate SCs automatically, which would add a level
of security. However, as novelties, these entail ab-

762
Aparício, M., Guerreiro, S. and Sousa, P.
Towards an Automated DEMO Action Model Implementation using Blockchain Smart Contracts.
DOI: 10.5220/0009417907620769
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 762-769
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



sence of formal models and systematization (de Krui-
jff and Weigand, 2017b). To deal with such degree of
ambiguity and inconsistency Ontology seems a good
fit to deal with the automation task of creating SCs
(Guarino et al., 2009).

The main goals for this paper derive from the
fact that there are already papers (Hornáčková et al.,
2019), (de Kruijff and Weigand, 2017b) that suggest
the automatic generation of SCs resorting to DEMO
Ontology, but they don’t prove its sufficiency or even
apply them to a sizable sample of real SCs. This paper
aims to infer if by using Ontology, more specifically
the DEMO Ontology and the DEMO Action Model,
it is possible to extract automatically the knowledge
required to generate SCs on BC, allowing it to ensure
the correctness of these same SCs.

The main contributions of this paper, considering
the main question, are: 1) Determine whether Ontol-
ogy builders are sufficient for the automatic genera-
tion of SCs; If insufficient, the missing knowledge
will have to be acquired; If sufficient, with that knowl-
edge proceed; 2) Through the knowledge acquired,
proceed to formalize principles of translating DEMO
Action Models into contract code; 3) Make the cre-
ation of SCs more accessible to whom may desires.

2 BACKGROUND

2.1 Blockchain

BC was originally described in 1991, by a group of
researchers and was originally intended to timestamp
digital documents so that it was impossible to tamper
them (Haber and Stornetta, 1991). It went by mostly
unused until it was adapted by (Nakamoto, 2009), to
create the digital cryptocurrency Bitcoin. Nakamoto
described BC as an architecture that gives participants
the ability to perform electronic transactions with-
out relying on trust. It started as the usual frame-
work of coins made from digital signatures, which al-
lows strong control of ownership. But still required
a trusted third party to prevent the Double-Spending
Problem, which was solved by a peer-to-peer net-
work approach. This network timestamps transac-
tions by hashing them into an ongoing chain of hash-
based Proof-of-Work, forming a record that cannot be
changed without redoing the Proof-of-Work.

What makes this possible it that, each block con-
tains some data, the hash of the block and the hash
of the previous block. The data that is stored in-
side a block depends on the type of BC, but normally
stores the details of multiple transactions, each with
an identification for the sender, the receiver and the

asset. A block also has a hash that identifies its con-
tent and it’s always unique. If something is changed
inside a block, that would cause the hash to change.
That’s why hashes are very useful to detect changes
in blocks. The hash of the previous block effectively
creates a chain of blocks and it’s this technique that
makes a BC so secure. However, the hashing tech-
nique is not enough, with the high computational ca-
pacity that exists today, where a computer as the ca-
pacity of calculate hundreds of thousands of hashes,
per second. To mitigate this problem, BC has a con-
sensus mechanism called Proof-of-Work. This mech-
anism slows down the creation of new blocks since, if
a block is tempered the Proof-of-Work of all the pre-
vious blocks has to be recalculated. So, the security
of BC comes from its creative use of hashing and a
Proof-of-Work mechanism. As long as a majority of
CPU power is controlled by nodes that are not cooper-
ating to attack the network, they’ll outpace attackers.
Of course, its distributive nature also adds a level of
security, since instead of using a central entity to man-
age the chain, BC uses a peer-to-peer network where
anyone can join. Information is broadcast on a best ef-
fort basis, and nodes can leave and rejoin the network
at will, accepting the longest Proof-of-Work chain as
proof of what happened while they were gone.

2.2 Smart Contract

(Szabo, 1997) , long before Bitcoin was created, drew
up the term “Smart Contracts” and explains them as
follows: “A smart contract is a set of promises, spec-
ified in digital form, including protocols within which
the parties perform on these promises”.

In the context of BC, in particular second-
generation BC, SCs are just like contracts in the real
world. The only difference is that they are completely
digital, in the sense that they are both defined by soft-
ware code and executed or enforced by the code itself
automatically without discretion. The trust issue is
also addressed, once SCs are stored on a BC, they in-
herit some interesting properties: immutable and dis-
tributed. Being immutable means that once a SC is
created, it can never be changed again. So, it isn’t
possible to tamper the code of the contract. Being dis-
tributed means that the output of the contract is vali-
dated by every node on the network. So, a single node
cannot force the behavior of the contract since it is de-
pendent of the other nodes. Like all algorithms SCs
may require input values, and only act if certain pre-
defined conditions are met. When a particular value
is reached the SC changes its state and executes the
functions, that are programmatically predefined algo-
rithms, automatically triggering an event on the BC.

Towards an Automated DEMO Action Model Implementation using Blockchain Smart Contracts

763



If false data is inputed to the system, then false results
will be outputed (Bahga and Madisetti, 2016).

2.3 Enterprise Ontology

In order to really cope with the current and the fu-
ture challenges, of the social and economic struc-
ture, conceptual models of the enterprises are needed.
These models are known as ontological models,
and most comply with these five properties: coher-
ence, comprehensiveness, consistency, conciseness,
and essence, collectively abbreviated as C4E. By co-
herence its mean that the distinguished aspect models
constitute a logical and truly integral whole. By com-
prehensive its mean that all relevant issues are cov-
ered, that the whole is complete. By consistent its
mean that the aspect models are free from contradic-
tions or irregularities. By concise its mean that no
superfluous matters are contained in it, that the whole
is compact and succinct. The most important prop-
erty, however, is that this conceptual model is essen-
tial, that it shows only the essence of the enterprise. In
particular, it means that the model abstracts from all
realization and implementation issues (Dietz, 2006).

A complete enterprise ontology consists of four
related aspect models. The Construction Model it is
the most concise model, and specifies the identified
transaction types and the associated actor roles (with
specific authority and responsibility, but not a specific
person), as well as the information links. The Pro-
cess Model contains, for every transaction type in the
Construction Model, the specific transaction pattern
of the transaction type. It also contains the causal and
conditional relationships between transactions. The
Action Model specifies the action rules that serve as
guidelines for the actors in dealing with their agenda.
The Fact Model specifies the state space of both the
production world and the coordination world of the
enterprise.

With Ontology it’s possible to make a common
interpretation of data across organizations, making it
easier and cheaper to exchange transactions.

2.4 DEMO Theory

DEMO, is an enterprise modelling methodology for
(re)designing and (re)engineering organizations. In
DEMO, an enterprise is seen as a system of people
and their relations, authority and responsibility. The
usage of a strongly simplified models that focus on
people forms the basis of DEMO. By using a lan-
guage that is common in the enterprise, the under-
standing of such models are guaranteed, even though
they’re abstract and have a conceptual nature. DEMO

describes the construction and operation of the organ-
isation, while completely abstracting from implemen-
tation and realisation. The core concept of DEMO is
a transaction and is fully based on the ψ− theory.

According to ψ− theory, in the standard pattern
of a business transaction exists two actor roles, the
initiator and the executor. The obtained fact when
performing a business transaction, is originated by
the collaboration of production and coordination acts.
These acts contain three phases each one with spe-
cific steps. (1) The Order phase that contains the re-
quest (rq); promise (pm); decline (dc); quit (qt) steps.
(2) The Execution phase that contains only the execu-
tion (ex) step. (3) The Result phase that contains the
states (st); reject (rj); accept (ac) steps. The following
four steps are present in every transaction and repre-
sent the happy flow: request, promise, state, accept.
Each of these steps can be revoked (rv) anytime dur-
ing the transaction. The other party can either allow
(al) this, or refuse (rf) it. The ψ− theory is supported
by four axioms. The Operation Axiom abstracts from
the subjects in order to focus on the different actor
roles they fulfill. An actor is a subject fulfilling an ac-
tor role. Actors perform two kinds of acts: production
acts and coordination acts. By performing production
acts they contribute to achieving the purpose or the
mission of the enterprise. By performing coordination
acts they enter into and comply with mutual commit-
ments about production acts. The Transaction Axiom
states that production and coordination acts occur in
patterns, called transactions. The Composition Axiom
states that every transaction is either enclosed in some
other transaction or it is a customer transaction or it is
a self-activating transaction. At last, the Distinction
Axiom is about the integrating role that human beings
play in constituting an enterprise. Three human abil-
ities are distinguished, called performa, informa, and
forma.

As a methodology, DEMO has four models al-
ready mentioned: the Construction Model, the Pro-
cess Model, Action Model and the Fact Model.

3 RELATED WORK

The work of (Kim and Laskowski, 2016) was con-
sidered since, it believed that ontologies could con-
tribute to develop BC applications. In fact, argued
that ontology-based BC modeling would result in
a BC with enhanced interpretability, stating even
that ”A modeling approach based on formal ontolo-
gies can aid in the formal specifications for auto-
mated inference and verification in the operation of
a blockchain”. This only reinforced the initial idea

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

764



of this work, where it is believed that a modeling
approach based on formal ontologies can aid in the
development of SCs that execute on the BC. Going
further (Kim and Laskowski, 2016) even a Proof-of-
Concept did, where the translation of TOVE Trace-
abiliy Ontology axioms into SCs that could execute a
provenance trace and enforce traceability constraints
on the BC.

”Towards a Blockchain Ontology” (de Kruijff and
Weigand, 2017a) and ”Understanding the Blockchain
Using Enterprise Ontology” (de Kruijff and Weigand,
2017b), used Enterprise Ontology and DEMO to de-
scribe the BC Ontology from a Datalogical, Infologi-
cal and Essential (Business) perspective. This papers
suggests that by specifying the BC application on the
business level first, it will be possible to generate the
BC implementation automatically, with some design
parameters to be set.

In particular, (de Kruijff and Weigand, 2017b)
highlights the distinction axiom as highly relevant for
the BC. Following the three abilities already men-
tioned in section 2 three ontological layers are distin-
guished. Starting from the Datalogical layer that de-
scribes BC transactions at the technical level in terms
of blocks and code. From there, an Infological ab-
straction is done, in order to describe the BC transac-
tions as effectuating an (immutable) open ledger sys-
tem. This layer aims to abstract from the various im-
plementations that exist today or will be developed
in the future. To describe the economic meaning of
the Infological transactions the Essential layer is used.
This last, is the preferred level of specification for a
BC application as it abstracts from the implementa-
tion choices. An overview is provided for the UML
classes that are used to construct the domain Ontology
for BC at the Datalogical abstraction layer. The sub-
ject matter in this paper are SCs, so it should be noted
that these are seen as a type of transaction, at this level
of abstraction. In regards to the Infological level, the
SCs are enforced by rules of engagement that are im-
plemented as BC code. At last, for the Essential level,
a contract is an agreement between agents consisting
of mutual commitments. A SC is a contract in which
the commitment fulfillment is completely or partially
performed automatically. In fact, Kruijff et al. didn’t
validate their Ontology and the focal point was the BC
as a whole.

There have been attempts at raising the level of
abstraction from code-centric to model-centric SCs
development. The different approaches tried so far,
can be divided into three: the Agent-Based Approach,
the State Machine Approach and the Process-Based
Approach. The Agent-Based Approach described by
(Frantz and Nowostawski, 2016) proposes a modeling

approach that supports the semi-automated translation
of human-readable contract representations into com-
putational equivalents in order to enable the codifica-
tion of laws into verifiable and enforceable computa-
tional structures that reside within a public BC. They
identify SC components that correspond to real world
institutions, and propose a mapping using a domain-
specific language in order to support the contract
modeling process. The concept Grammar of Institu-
tions (Crawford and Ostrom, 1995) is used to decom-
pose institutions into rule-based statements. These
statements are then compiled in a structured formal-
ization. In this case, the statements are constructed
from five components, abbreviated to ADICO. The
Attributes describing an actor’s characteristics or at-
tributes. The Deontic describing the nature of the
statement as an obligation, permission or prohibi-
tion. The AIm describing the action or outcome that
this statement regulates. The Conditions describing
the contextual conditions under which this statement
holds. And the Or else describing consequences as-
sociated with non-conformance. Using these compo-
nents, statements on the execution of the smart con-
tract are made. The statements are then linked by the
structure of Nested ADICO (Boella et al., 2013), a
variant of ADICO in which the institutional functions
are linked by the operators AND, OR, and XOR to
create a simple set of prescriptions. The set of pre-
scriptions is then transformed into a contract skeleton
which has to be finished manually. Furthermore, it is
argued that the Grammar of Institutions invites non-
technical people to the SC development process.

The State Machine Approach is based on the ob-
servation that SCs act as state machines. A SC is in
an initial state and a transaction transitions the con-
tract from one state to the next. The possibility of
SCs as state machines is also described in the Solid-
ity specification. (Mavridou and Laszka, 2018) show
that the transformation of the Finit State Machine to
Solidity is partly automated, since to ensure Solidity
code quality, some manual coding might be necessary
or added though plugins.

For Process-Based Approaches, both DEMO and
BPMN are well established for modelling business
processes. (Weber et al., 2016), describes a proposal
to support inter-organizational processes through BC
technology. Weber et al. developed a technique to
integrate BC into the choreography of processes in
order to maintain trust. The BC enabled to store
the status of process execution across all involved
participants, as well as to coordinate the collabora-
tive business process execution. Validation was made
against the ability to distinguish between conform-
ing and non-conforming traces. (Garcı́a-Bañuelos

Towards an Automated DEMO Action Model Implementation using Blockchain Smart Contracts

765



et al., 2017) presents an optimization for (Weber et al.,
2016). In this work, to compile BPMN models into a
SC in Solidity Language, the BPMN model is first
translated into a reduced Petri Net. Only after this
first step, the reduced Petri is compiled into a Solid-
ity SC. Compared to (Weber et al., 2016) this work
(Garcı́a-Bañuelos et al., 2017) managed to decrease
the amount paid of resources and achieve a higher
throughput. Caterpillar, first presented in (Pintado,
2017) and further discussed in (Pintado et al., 2018),
is an open-source Business Process Management Sys-
tem - BPMS - that runs on top of the Ethereum BC.
Like any BPMS, Caterpillar supports the creation of
instances of a process model (captured in BPMN) and
allows users to track the state of process instances and
to execute tasks thereof. The specificity of Caterpil-
lar is that the state of each process instance is main-
tained on the Ethereum BC, and the workflow rout-
ing is performed by SCs generated by a BPMN-to-
Solidity compiler. Given a BPMN model (in stan-
dard XML format), it generates a SC (in Solidity),
which encapsulates the workflow routing logic of the
process model. Specifically, the SC contains vari-
ables to encode the state of a process instance, and
scripts to update this state whenever a task completes
or an event occurs. Caterpillar supports not only ba-
sic BPMN control flow elements (i.e. tasks and gate-
ways), but also includes advanced ones, such as sub-
processes, multi-instances and event handling. (Tran
et al., 2018), on other hand can automatically cre-
ate well-tested SC code from specifications that are
encoded in the business process and data registry
models based on the implemented model transforma-
tions. The BPMN translator can automatically gen-
erate SCs in Solidity from BPMN models while the
registry generator creates Solidity SC based on the
registry models. The BPMN translator takes an ex-
isting BPMN business process model as input and
outputs a SC. This output includes the information
to call registry functions and to instantiate and exe-
cute the process model. The registry generator takes
data structure information and registry type as fields,
and basic and advanced operations as methods, from
which it generates the registry SC. Users can then de-
ploy the SCs on BC. This work builds up on already
seen works, such as (Garcı́a-Bañuelos et al., 2017)
(Weber et al., 2016), for the BPMN translation algo-
rithms. However, BPMN doesn’t adequately support
the articulation of business rules, that would be es-
sential for the automatic generation of SCs. Process
modellers normally, have to use workarounds, as ad-
ditional tools, to include business rules in their pro-
cesses.

Lastly, (Hornáčková et al., 2019), proved to be

a really important related work, due to its complete
alignment with the purpose of this work. Actually
its Further Research section, makes reference to one
of the things this work is trying to reach: formaliza-
tion of principles of translating DEMO models into
contract code. In (Hornáčková et al., 2019) work, an
IT system based on Enterprise Engineering integrat-
ing SCs is proposed. Also, a Proof-of-Concept im-
plementation of a SC of a mortgage process using a
DEMO methodology was developed, to demonstrate
the feasibility of the proposed concepts. Proving this
way that BC SCs can be used in the implementation
of an enterprise information system (EIS) based on
DEMO methodology. Further, shares the same be-
lieve that by applying the DEMO methodology a re-
duction of unwanted states, the prevention of errors
and a improvement of security, which is crucial for
SCs, since they are representing valuable assets, can
be reached. However, never formalizes the principles
or even applies this beliefs to a sizable sample of use
cases.

4 PROPOSED SOLUTION

4.1 Ontology for Smart Contracts

The concept of data independence designates the
techniques that allow data to be changed without
affecting the applications that process it (Markov,
2008). It is the ability to modify a scheme definition
in one level without affecting a scheme definition in a
higher level. It is believe that a similar separation is
highly needed for SCs, in order to achieve the goals
set in this work. DEMO is based on explicit specified
axioms characterized by a rigid modeling methodol-
ogy, and is focused on the construction and operation
of a system rather than the functional behavior. It
emphasizes the importance of choosing the most ef-
fective level of abstraction during information system
development, in order to establish a clear separation
of concerns. The adoption of the Distinction Axiom
of Enterprise Ontology, presented in section 2, is pro-
posed as an ontological basis for this separation.

In a first approach to the problem, it is believed
that, for the Datalogical Layer a SC can be defined as
a piece of code contained on a node of the BC. For
the Infological layer a SC is enforced by a set of rules
implemented on the BC through code. And lastly, for
the Essential layer, the SC is a contract in which the
commitment fulfillment is completely or partially per-
formed automatically in BC.

This step allows to defend Ontology, and in partic-
ular DEMO, as a good way towards a model-driven

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

766



approach in regards to the automatic generation of
software artifacts. However doesn’t make it achiev-
able.

4.2 Automatic Extraction Process

The work that is here trying to be achieved is very
much aligned with the one Hornackova, Skotnica and
Pergl did in ”Exploring a Role of Blockchain Smart
Contracts in Enterprise Engineering” (Hornáčková
et al., 2019), to some extent. Their workwas applied
to a financial transaction and so as our will be for a
more trivial parallelism. The chosen financial trans-
action is a mortgage process. With this use case the
advantages and compatibilities between DEMO and
SCs are going to be presented. It is composed of 14
action rules all with a similar structure to the struture
presented on figure 1.

Figure 1: The Action Rule 1, for the Mortgage Use Case.

Both works start with a believe that a DEMO transac-
tion is represented as a contract in a BC. The contract
has its own address, internal storage, attributes, meth-
ods and it is callable by either an external actor or
another contract, as mentioned in section 2. This is
the functionality needed to represent a DEMO trans-
action. However, the divergence between the work
made in (Hornáčková et al., 2019) and this is in how
the automatic extraction process is done.

Now, this present work argues that SCs automated
generation could be done directly form the Action
Model with no need for the generation of the remain-
ing DEMO models. It believes that the structure and
content of a SC can be directly mapped to each ac-
tion rule. Since that by creating the action rules it is
also being created the logic on which the SCs oper-
ate. This change presents a clear improvement over
the process presented by (Hornáčková et al., 2019)
considering that with this new process the SC creator
does not have to have any knowledge of the DEMO
methodology.

In fact, the action rules contain all the decomposed
detail of the above models, in fact the basis of the
DEMO methodology is exactly the Action Model, as
can be seen in figure 2. The Construction Model spec-
ifies the construction of the organization, specifies the
identified transaction types and the associated actor
roles, as well as the information links between the ac-

tor roles and the information banks. By occupying the
top of the triangle it is suggested that is the most con-
cise model. The Process Model contains, for every
transaction type in the Construction Model, the spe-
cific transaction pattern of the transaction type. And,
also contains the causal and conditional relationships
between transactions. The Process Model is put just
below the Construction Model in the triangle because
it is the first level of detailing of the Construction
Model, namely, the detailing of the identified trans-
action types.

Figure 2: DEMO Methodology, from (Guerreiro, 2012).

The Action Model specifies the action rules that serve
as guidelines for the actors in dealing with their
agenda. The Action Model is put just below the Pro-
cess Model in the triangle because it is the second
level of detailing of the Construction Model, namely,
the detailing of the identified steps in the Process
Model of the transaction types in the Construction
Model. At the ontological level of abstraction there
is nothing below the Action Model. The Fact Model
is put on top of the Action Model in figure 2 because
it is directly based on the Action Model; it specifies
all object classes, fact types, and ontological coex-
istence rules that are contained in the Action Model.
The Action Model is in a very literal sense the ba-
sis of the other aspect models since it contains all in-
formation that is (also) contained in the Construction
Model, Process Model, and Fact Model; but in a dif-
ferent way. The Action Model is the most detailed and
comprehensive aspect model. It’s like the other three
aspect models are derived from the Action Model. The
language and processes from which an Action Model
is created, are simple. Normally, an Action Model is
represented in Action Rule Specifications and Work

Towards an Automated DEMO Action Model Implementation using Blockchain Smart Contracts

767



Figure 3: The Proposed Template for Specifying Action
Rules.

Instruction Specifications. This two specifications are
human-readable behaviour specifications, with a stan-
dard structure.

The proposed task would be to translate formal-
izations from a human-readable behaviour specifica-
tion, in this case action rules, to a contractual structure
in the form of a SC. To do so, it will be used a Gram-
mar of Institutions (Crawford and Ostrom, 1995),
that captures essential institutional characteristics, as
DEMO does. This idea comes from (Frantz and
Nowostawski, 2016) work, already mention. With
this representation it is possible to decompose spec-
ifications into simple rule-based statements. These
statements are constructed with the five components
(ADICO): Attributes, Deontic, AIm, Conditions and
Or else, described more in detail in section 3. Tak-
ing as an example the first action rule defined for the
mortgage process, in figure 1. The Blue color repre-
sents the Attribute component. The color Green rep-
resents the Deontic. The color Magenta represents the
Conditions. The color Orange represents the AIm
component. And at last, the color Pink represents
the Or else component. To make the detection of
each element simpler a template is proposed in fig-
ure 3. Where the Deontic, AIm and Or else compo-
nents can have one of the following values: request
(rq), promise (pm), decline (dc), quit (qt), state (st),
reject (rj) and accept (ac). Only the AIm and Or else
conditions can have the execute (ex) value. To de-
compose complex prescription into simpler ones the
Nested ADICO (Boella et al., 2013) may be used.

Mapping these components into structures sup-
ported by the Solidity language can be done. The
Attributes components are structures; the Deontic
components are equivalent to function modifiers; the
AIm components are mapped though functions and
events; the Conditions though function modifiers; and
at last the Or else components though throw statement
or alternative control flow.

5 WORK EVALUATION
METHODOLOGY

Further, validation is to be done with applications as
well as by establishing mappings to existing imple-
mentations of BC. This work has two main compo-

nents. A more theoretical one, where is necessary to
prove the sufficiency of ontological concepts to repre-
sent a SC. And the other component where the auto-
matic generation of a SC from a DEMO Action Model
will be attempted. For the theoretical component an
ontological validation will be performed. Both ”Val-
idating domain ontologies: A methodology exempli-
fied for concept maps” (Steiner and Albert, 2017)
and ”Ontological Evaluation and Validation” (Tartir
et al., 2010) will be used. However, it is important to
ensure that this possible validity applies to any and all
SC. For this will be used a database containing SCs
from real contexts.

As with any programming task, the human-
readable contract and associated obligations need to
be codified, and then subsequently verified, to ensure
that the machine-readable representation, in this case
Solidity, conforms to specified behaviour. For the
more practical component, where the automatic gen-
eration of a SCs from a DEMO Action Model will be
attempted, validation will be based on a tool (http://
smartcontracts.azurewebsites.net/) presented on ”Ex-
ploring a Role of Blockchain Smart Contracts in
Enterprise Engineering” (Hornáčková et al., 2019).
This tool already generates SC from DEMO models,
as detailed in section 3.To ensure that this mapping
between DEMO Action Models and SCs is possible
for any and all SC the already mentioned database
will be used.

6 CONCLUSIONS

Non-technical people, that do not comprehend soft-
ware code are once again dependent on a third party
to write them contracts. The low level of semantics
of software code makes it challenging to have a high
level of comprehension and reasoning, which makes it
more prone to errors. There are already some research
towards raising the level of abstraction from code-
centric to model-centric SCs development. However,
either unintuitive processes are created that do not
meet the goal of facilitating development, or use mod-
els that are not very commendable because of their
nature, such as BPMN.

To address this problem we propose a template
with a simple structure, and where some elements are
strict to predefined values, that allows to model and
develop a SC in Solidity. With this template it will
be more intuitive for non-technical people to develop
their own SC without needing third-parties. To date,
an Ontology for SC is proposed for all layers: Dat-
alogical, Infological and Essential, although the lat-
ter is the most recommended to achieve the intended

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

768



purpose. With the validation of the Ontology it will
be possible to verify other works similar to this, that
already use Ontology but don’t prove it’s sufficiency
and support the idea of extracting SCs from Ontolog-
ical models such as the Action Model. Furthermore, a
template, based on action rules structure, is proposed
and a mapping between the templates elements and
Solidity language elements is proposed.

For future work, the Ontologial validation will be
attempt, if Ontology proves to be sufficient an soft-
ware artefact will be implemented. This prototype
will allow from a DEMO Action Model extract a SC
written in Solidity.

ACKNOWLEDGEMENTS

This work was supported by national funds through
FCT, Fundação para a Ciência e a Tecnologia, un-
der project UIDB/50021/2020 and by the European
Commission program H2020 under the grant agree-
ment 822404 (project QualiChain).

REFERENCES

Bahga, A. and Madisetti, V. (2016). Blockchain platform
for industrial internet of things. Journal of Software
Engineering and Applications, 09:533–546.

Boella, G., Elkind, E., Savarimuthu, B. T. R., Dignum, F.,
and Purvis, M. K. (2013). Prima 2013: Principles and
practice of multi-agent systems. In Lecture Notes in
Computer Science.

Crawford, S. E. S. and Ostrom, E. (1995). A grammar
of institutions. American Political Science Review,
89(3):582–600.

de Kruijff, J. and Weigand, H. (2017a). Towards a
blockchain ontology.

de Kruijff, J. and Weigand, H. (2017b). Understanding the
blockchain using enterprise ontology.

Dietz, J. L. G. (2006). Enterprise Ontology: Theory and
Methodology. Springer-Verlag, Berlin, Heidelberg.

Frantz, C. K. and Nowostawski, M. (2016). From in-
stitutions to code: Towards automated generation of
smart contracts. In 2016 IEEE 1st International Work-
shops on Foundations and Applications of Self* Sys-
tems (FAS*W), pages 210–215.

Garcı́a-Bañuelos, L., Ponomarev, A., Dumas, M., and We-
ber, I. (2017). Optimized execution of business pro-
cesses on blockchain.

Guarino, N., Oberle, D., and Staab, S. (2009). What Is an
Ontology?, pages 1–17.

Guerreiro, S. (2012). Enterprise dynamic systems control
enforcement of run-time business transactions using
demo: principles of design and implementation. Insti-
tuto Superior Técnico-Universidade Técnica de Lis-
boa, Lisboa.

Haber, S. and Stornetta, W. S. (1991). How to time-stamp a
digital document. J. Cryptol., 3(2):99–111.

Hornáčková, B., Skotnica, M., and Pergl, R. (2019). Explor-
ing a role of blockchain smart contracts in enterprise
engineering. In Aveiro, D., Guizzardi, G., Guerreiro,
S., and Guédria, W., editors, Advances in Enterprise
Engineering XII, pages 113–127, Cham. Springer In-
ternational Publishing.

Kim, H. and Laskowski, M. (2016). Towards an ontology-
driven blockchain design for supply chain provenance.

Markov, K. (2008). Data independence in the multi-
dimensional numbered information spaces.

Mavridou, A. and Laszka, A. (2018). Designing Secure
Ethereum Smart Contracts: A Finite State Machine
Based Approach, pages 523–540.

Nakamoto, S. (2009). Bitcoin: A peer-to-peer elec-
tronic cash system. Cryptography Mailing list at
https://metzdowd.com.

Norta, A. (2017). Designing a smart-contract application
layer for transacting decentralized autonomous orga-
nizations. In Singh, M., Gupta, P., Tyagi, V., Sharma,
A., Ören, T., and Grosky, W., editors, Advances in
Computing and Data Sciences, pages 595–604, Sin-
gapore. Springer Singapore.

Pintado, O. (2017). Caterpillar: A blockchain-based busi-
ness process management system.

Pintado, O., Garcı́a-Bañuelos, L., Dumas, M., Weber, I.,
and Ponomarev, A. (2018). Caterpillar: A business
process execution engine on the ethereum blockchain.

Schmidt, D. C. (2006). Guest editor’s introduction: Model-
driven engineering. Computer, 39(2):25–31.

Steiner, C. M. and Albert, D. (2017). Validating domain
ontologies: A methodology exemplified for concept
maps. Cogent Education, 4(1):73–82.

Szabo, N. (1997). Formalizing and securing relationships
on public networks. First Monday, 2(9).

Tartir, S., Arpinar, I., and Sheth, A. (2010). Ontological
Evaluation and Validation, pages 115–130.

Tran, A. B., Lu, Q., and Weber, I. (2018). Lorikeet: A
model-driven engineering tool for blockchain-based
business process execution and asset management. In
BPM.

Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev,
A., and Mendling, J. (2016). Untrusted business pro-
cess monitoring and execution using blockchain. In
La Rosa, M., Loos, P., and Pastor, O., editors, Busi-
ness Process Management, pages 329–347, Cham.
Springer International Publishing.

Towards an Automated DEMO Action Model Implementation using Blockchain Smart Contracts

769


