
Self-Contained Service Deployment Packages

Michael Zimmermann, Uwe Breitenbücher, Lukas Harzenetter, Frank Leymann
and Vladimir Yussupov

Institute of Architecture of Application Systems, University of Stuttgart, Universitätsstrasse 38, 70569 Stuttgart, Germany

Keywords: Deployment Model, Deployment Automation, Provisioning, Self-Contained, Dependency Resolving,
TOSCA.

Abstract: Complex applications are typically composed of multiple components. In order to install these components all
their dependencies need to be satisfied. Typically these dependencies are resolved, downloaded, and installed
during the deployment time and in the target environment, e.g., using package manager of the operating sys-
tem. However, under some circumstances this approach is not applicable, e.g., if the access to the Internet is
limited or non-existing at all. For instance, Industry 4.0 environments often have no Internet access for security
reasons. Thus, in these cases, deployment packages without external dependencies are required that already
contain everything required to deploy the software. In this paper, we present an approach enabling the trans-
formation of non-self-contained deployment packages into self-contained deployment packages. Furthermore,
we present a method for developing self-contained deployment packages systematically. The practical feasi-
bility is validated by a prototypical implementation following our proposed system architecture. Moreover,
our prototype is evaluated by provisioning a LAMP stack using the open-source ecosystem OpenTOSCA.

1 INTRODUCTION

Cloud computing is of vital importance for the re-
alization of modern IT systems focusing on au-
tomated deployment and management (Leymann,
2009). Cloud properties, for instance, scalability, pay-
on-demand pricing, or self-service as well as new
paradigms, such as edge or fog computing (Mahmud
et al., 2018) enable developers to build flexible and
automated cloud applications (Leymann, 2009). A
wide range of domains can benefit from these new op-
portunities, for example, mobility (Guo et al., 2017),
health care (Haque et al., 2014), energy manage-
ment (Shrouf and Miragliotta, 2015), and scientific
computing in general (Iosup et al., 2011). However,
installing, configuring, and running complex soft-
ware on a remote IT infrastructure is a challenging
task that requires detailed expertise (Breitenbücher
et al., 2013). First, the middleware as well as all de-
pendencies required by the software need to be in-
stalled. Secondly, the software itself needs to be
deployed. And finally, the software and its compo-
nents need to be configured as well as connected with
each other. Dependent of the involved software, these
tasks can get complex, are time-consuming and error-
prone, and, therefore, are not efficient if done manu-
ally (Eilam et al., 2006; Breitenbücher et al., 2013).

The deployment as well as the management of
applications can be automated using various deploy-
ment technologies (Wurster et al., 2019): (i) provider-
specific systems, (ii) provider-independent, but
platform-specific technologies, (iii) general-purpose
technologies, or furthermore, (iv) provider- and
technology-agnostic standards, such as the Topology
and Orchestration Specification for Cloud Applica-
tions (TOSCA) (OASIS, 2013a; OASIS, 2013b).

Typically, regardless of whether the deployment
of the application is executed manually or automat-
ically, external dependencies have to be resolved,
downloaded, and installed during the deployment
of the application within the respective environ-
ment (Wettinger et al., 2014). For example, often
the Linux package handling utility apt-get is used in
scripts to install required dependencies, e.g., apt-get
install python. This enables the creation of light-
weighted deployment packages, since external depen-
dencies are resolved and downloaded during the de-
ployment phase and don’t need to be added to it in
advance. Besides minimizing the package size, this
also allows to only use scripts. Two different types
of external dependencies can be distinguished: (i) de-
pendencies that are required in order to deploy and
manage the application and (ii) dependencies of the
application itself, required for properly executing it.

Zimmermann, M., Breitenbücher, U., Harzenetter, L., Leymann, F. and Yussupov, V.
Self-contained Service Deployment Packages.
DOI: 10.5220/0009414903710381
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 371-381
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

371

However, resolving and downloading external de-
pendencies can slow down the deployment signifi-
cantly and furthermore, when access to the Internet
is limited, unstable, or non-existing at all, this can
prevent the deployment of the application. More-
over, the download from external sources could com-
promise the security of applications. For example,
a use case is in the area of Industry 4.0, when soft-
ware should be provisioned in remote environments
with no or only restricted Internet access for security
reasons (Tsuchiya et al., 2018). Another use case is
in the field of eScience, where dependencies need to
be packaged together with the research software in
order to archive them and thus, enable the reusabil-
ity of the software, because the external dependencies
might get stale over time (Zimmermann et al., 2018a).
Thus, in such cases, fully self-contained deployment
packages are required, i.e., archives without external
dependencies, containing everything required for the
deployment and management of the application.

In this paper, we tackle these issues. We present
a system architecture supporting the automated trans-
formation of a non-self-contained deployment pack-
age into a self-contained deployment package. More-
over, we present a method, utilizing our provided
system architecture, enabling the systematic devel-
oping of self-contained deployment packages in or-
der to ease the development of them. Our approach
is useful for both cloud and IoT applications, since
for both, use cases exist which benefit from our ap-
proach. To validate the practical feasibility of the ap-
proach, we present a prototypical implementation of a
Self-Containment Packager Framework based on the
TOSCA standard. TOSCA enables the modeling and
automated execution of the deployment and manage-
ment of cloud applications. Furthermore, we evalu-
ate our approach by comparing the time required for
provisioning a non-self-contained TOSCA-based de-
ployment package with the time required for the trans-
formation and the provisioning of a self-contained
TOSCA-based deployment package. For provision-
ing, we are using the open-source tool OpenTOSCA.

The remainder of this paper is organized as fol-
lows. In Section 2, background and fundamentals of
this work are introduced, e.g., deployment models.
Moreover, this section motivates our approach by pre-
senting existing problems and limitations we tackle in
this work. Section 3 introduces our system architec-
ture of a Self-Containment Packager Framework and
presents our method for developing self-contained de-
ployment packages. In Section 4, we present our pro-
totypical implementation based on the TOSCA stan-
dard. In Section 5, related work is discussed. Sec-
tion 6 concludes this paper and discusses future work.

2 FUNDAMENTALS,
BACKGROUND &
MOTIVATION

Since our approach and our prototype is based on
deployment models, in the following subsection, we
first introduce some basic information about them.
Furthermore, we illustrate the problems of creating
deployment packages enabling the deployment and
management of cloud and IoT applications in remote
IT environments, that take place when utilizing them,
by means of three different use cases in the area of
eScience, automotive, and Industry 4.0. For example,
deploying an application into an environment without
Internet access or preserving dependencies. More-
over, we present an overview of state-of-the-art ap-
proaches for creating such deployment packages for
cloud and IoT applications. A deployment package,
in our case, specifies the deployment of an applica-
tion and can contain arbitrary artifacts and files for
achieving that, for example, Bash scripts, Chef Cook-
books, or Dockerfiles, depending on the used deploy-
ment technology as well as deployment language.

2.1 Deployment Models & Topologies

The manual deployment of services consisting of
multiple components is complex, hard to repeat, and
error-prone (Eilam et al., 2006; Breitenbücher et al.,
2013). Therefore, the automation of application de-
ployment and management over its entire lifecycle,
e.g., install, start, stop, or update is essential. By
using maintainable and reusable deployment models,
describing the software components as well as the
infrastructure components of an application, an au-
tomated and reliably repeatable deployment solution
can be created. Various deployment automation sys-
tems are available, supporting the model-based and
automated deployment of applications (Bergmayr
et al., 2018). Deployment models can be imperative
or declarative (Endres et al., 2017). Imperative de-
ployment models describe all the single steps required
for the deployment of an application. Declarative de-
ployment models, on the other hand, describe the de-
sired state of an application that shall be deployed.
These models, called topologies, are graph-based and
describe the structure of an application consisting of
its components, their relations to each other, and prop-
erties. Declarative deployment models are widely ac-
cepted in industry and research, as the most appropri-
ate approach for the automated deployment of appli-
cations and configuration management (Herry et al.,
2011). Various technologies are following this ap-
proach, for example, Kubernetes, Puppet, and Chef.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

372

IP: 192.168.4.3
User: Prod
PW: ******
[…]

OpenStack

install.sh

Java 1.8

ansible_install.zip

Port: 80
[…]

Flink 1.9

RAM: 16 GB
[…]

Ubuntu 16.04

start.sh

pred_service.py

PredictionService

hostedOn

dependsOn

connectsTo

IP: 192.168.1.1
Port: 8086
DBName: Prod_Data
State: Running
[…]

InfluxDB 1.7

install.sh

Python 3.5

install.sh

SciPy 1.3.1

Figure 1: Exemplary declarative deployment model.

In Fig. 1 an exemplary declarative deployment
model is depicted consisting of various components,
such as Ubuntu, Flink, and InfluxDB. The compo-
nents are connected using relations, e.g., hostedOn or
connectsTo. For instance, Flink is hosted on Ubuntu,
which is provided by OpenStack. Properties are used
to provide information, such as the endpoint and cre-
dentials of OpenStack or to specify that the InfluxDB
is already running. The figure also shows how re-
quired dependencies, such as the SciPy library for sci-
entific computing, can be specified within a deploy-
ment model. Different kinds of artifacts can be at-
tached to nodes. For installing the python runtime, a
Bash script (install.sh) is provided, which, for exam-
ple, could execute the command apt-get install python
in order to fetch and install the required files. The file
pred service.py is part of the PredictionService node
and represents the business logic of this component.

2.2 Use Cases & Problems

Typically, when deploying an application in a remote
IT environment, required components and dependen-
cies are resolved, downloaded, and installed on the
fly during the deployment of the application in the re-
spective environment – regardless of whether the de-
ployment is executed manually or automatically by
using technologies, such as configuration manage-
ment tools (Wettinger et al., 2014). Therefore, a de-
ployment package typically only describes the steps

required to deploy an application, for example, which
specific files need to be downloaded and installed,
e.g., apt-get install python to install a python run-
time, or how the components need to be configured
in order to work properly. This allows to have light-
weighted deployment packages, since external depen-
dencies are only resolved and fetched during the de-
ployment phase of the application and don’t have to
be added to the deployment packages in advance.
Moreover, this also eases the maintenance of such de-
ployment packages. For example, if a new version
of a required component is released, in the deploy-
ment description only the reference of this component
needs to be adapted in order to reflect the new ver-
sion, but no files need to be downloaded and replaced
in the deployment package. However, there are some
use cases where this approach of resolving and down-
loading required external dependencies during the de-
ployment time results in serious problems, which can
prevent the successful deployment of the application.

One use case is in the field of eScience, with
the problem of reusability, reproducibility, and re-
peatability of scientific software (Mesnard and Barba,
2016; Fehr et al., 2016). Often research software is
only implemented for a specific experiment by the re-
searcher himself and is not maintained and managed
like a professionally developed software. If some time
later the software shall be reused in order to reproduce
the research results, the experiment needs to be exe-
cuted in the same environment. This not only includes
using the same version of the software itself, but also
using the identical versions of dependencies, as using
a different library, for example, could lead to a differ-
ent result. Furthermore, it is possible that some de-
pendencies will cease to be available over time. Thus,
in such use cases, the required artifacts should be bun-
dled together with the deployment description in or-
der to provide a self-contained deployment package.

In the area of automotive, the resolving of external
dependencies is also important. For example, if a new
update should be installed on a component of a car
while it is operated, there are situations in which an
update is more sensible than in another. For instance,
it is not useful to update the start-stop system of a car
when it is located within a city with a lot of traffic
lights or on a road with a traffic jam, because these
are situations in which the start-stop system should
work properly. Thus, a better time to update the start-
stop system might be, when the car is operated on a
highway outside of a city without traffic. Or regard-
ing the car radio, it makes sense to update its software
when it has no radio reception anyway, for example,
when the car is inside a tunnel. However, although
these are situations in which an update would be sen-

Self-contained Service Deployment Packages

373

sible from a contextual point of view, there might
be circumstances that prevent updates in these situ-
ations. For instance, in a tunnel or in a rural coun-
tryside without mobile Internet connection, an over-
the-air update is technically not possible. Thus, the
update and required dependencies should be resolved
and fetched when a stable Internet connection is avail-
able and only installed when the situation allows it.

Another use case is in the field of Industry 4.0,
where, e.g., analysis software should be shipped and
deployed into manufacturing environments to opti-
mize production lines or for enabling predictive main-
tenance (Zimmermann et al., 2017). For security rea-
sons, these environments often have no Internet ac-
cess. Thus, in such environments it is not possible to
deploy software by using a technology that needs In-
ternet access in order to download external artifacts
that are required for installing the application as well
as for the properly execution of the application.

To sum up, there are use cases in which no In-
ternet access is available and thus, no dependencies
can be downloaded and installed during the deploy-
ment. Also, external dependencies can cease to be
available over time, not only hindering the download,
but also the successful execution of the entire deploy-
ment. Therefore, in this work we present an approach
for building self-contained deployment packages.

2.3 State of the Art Approaches

In the following, we want to give and overview of
state-of-the-art approaches and existing technologies
for the deployment of cloud and IoT applications in
remote IT environments. Furthermore, we want to
discuss their applicability for the three previously de-
scribed use cases as well as their capabilities for creat-
ing completely self-contained deployment packages.

Of course, the simplest approach is to manually
download the required artifacts and install and config-
ure the application by hand. However, dependent of
the complexity of the software, these tasks typically
requires immense expertise, are time-consuming as
well as error-prone, and, therefore, are not efficient if
done manually (Breitenbücher et al., 2013). Another
approach is to bundle the entire application together
with all required dependencies into a virtual machine
image or a container using container technologies
such as Docker. While this resolves the problem of
creating a self-contained deployment package, this
approach comes with other problems. For example, if
packaged as a monolithic image or container, an ap-
plication may not benefit from cloud properties such
as scaling (Leymann et al., 2017). Also, if the com-
ponents of the application are split, for example, into

single Docker containers, the management and or-
chestration of these containers is a new challenge and
requires the use of additional technologies such as
Docker Swarm or Kubernetes. However, these tech-
nologies are categorized as platform-specific deploy-
ment technologies (Wurster et al., 2019), since they
are restricted regarding the use of specific platform
bundles for realizing deployable components, e.g.,
Kubernetes only supports container images. Also,
these technologies not only have some constraints
regarding the orchestration and wiring of different
kinds of application components (Zimmermann et al.,
2018b), but also regarding the deployment and man-
agement of components on bare metal, which can be
important, especially when IoT devices are involved.

Configuration management technologies, such as
Chef, Ansible, or Puppet can also be used to automate
the deployment of applications in remote IT environ-
ments. These kind of deployment technologies are
categorized as general-purpose technologies (Wurster
et al., 2019). They use scripts to define the required
deployment steps in order to reach the desired state
and to execute the provisioning and configuration of
the application. However, since their focus is not
on the creation of deployment packages that can be
shipped to the target environment as a whole, but on
configuration files describing the deployment steps or
the desired system state, these technologies typically
require an Internet connection in order to download
and install the defined components and dependencies
in the target environment. Another approach for de-
ploying and managing cloud and IoT applications is
the usage of provider- and technology-agnostic stan-
dards, such as TOSCA. TOSCA enables to describe
the structure of an application, the dependencies, and
required infrastructure resources in a portable man-
ner. Furthermore, TOSCA allows the integration
of all kinds of technologies, such as Bash scripts,
Docker, or Ansible, and thus, represents a technology
independent and interoperable deployment approach.
Moreover, with the Cloud Service Archive (CSAR),
TOSCA specifies a format, for packaging all required
files for provisioning and managing the described ap-
plication. However, typically these archives contain
scripts in order to install external dependencies, e.g.,
by using the Linux package handling utility apt-get.

How a non-self-contained deployment package
with external dependencies can be transformed into
a self-contained deployment package is shown in this
work. Our approach enables to use the same deploy-
ment model for creating a light-weighted deployment
package and for creating a bigger, but completely self-
contained deployment package. Therefore, the topol-
ogy of the application can be modeled uniformly.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

374

System
Design

Implementation Testing
Create

Deployment
Model

Fetch External
Dependencies

V VIIVIIIII

Self-Contained
Testing

Deployment

VII VIII

Requirement
Analysis

I

Novel process for developing self-contained deployment packages

Current development process

Figure 2: Our method for developing self-contained deployment packages.

3 APPROACH FOR CREATING
SELF-CONTAINED
DEPLOYMENT PACKAGES

In this section, we present our approach for creating
self-contained deployment packages. First, we give a
brief overview of our proposed approach. After that,
we describe our method for systematically develop-
ing completely self-contained deployment packages,
and moreover, present the system architecture of our
proposed Self-Containment Packager Framework.

3.1 Overview of the Approach

To recap, typically deployment automation technolo-
gies have external dependencies that are downloaded
and installed during the deployment time of the appli-
cation. For example, the Advanced Packaging Tool
(APT) is often used for resolving and installing re-
quired software components on Linux distributions,
for instance, apt-get install python, in order to install
a python runtime. Moreover, with the emergence of
container technologies such as Docker or Kubernetes,
also Dockerfiles describing the container to be built,
are often used within deployment models in order to
containerize single components or entire applications.

Therefore, the goal of our approach is to enable
the automatic transformation of a non-self-contained
deployment package in a self-contained deployment
package, and thus, support the creation of deployment
packages in a uniform way. To realize the transfor-
mation, all artifacts need to be analyzed in order to
find external dependencies. Furthermore, these exter-
nal dependencies need to be resolved, downloaded,
and packaged into the deployment package. More-
over, references in the deployment model need to be
adapted in order to reflect the made changes. There-
fore, by following our method, our approach enables
the developer to create both variants of deployment
packages – light-weighted, but non-self-contained de-
ployment packages as well as a fully self-contained
deployment packages – without any additional effort.

3.2 Method for Developing
Self-Contained Deployment
Packages

In this subsection, we present our new method for
systematically developing self-contained deployment
packages. We explain the general advantages of our
proposed method and show how typical non-self-
contained deployment packages can be automatically
transformed in self-contained deployment packages.

Our method to develop a self-contained deploy-
ment package is oriented on the waterfall software en-
gineering process and extends it by additional steps.
The method is illustrated in Fig. 2. The first step (I)
is to capture all requirements of the system to be de-
veloped. Furthermore, the purpose and the provided
functionality of the application to be packaged is de-
fined in this step. The second step (II) is to prepare
a system design based on the previously defined re-
quirements specification. So, in this step, for ex-
ample, the required components as well as the re-
quired infrastructure resources are defined. The third
step (III) is the implementation of required compo-
nents, for example, a service for analyzing manufac-
turing data. For example, this could be a .jar which
needs to be deployed on some data processing frame-
work, such as Apache Flink. Moreover, this Apache
Flink component could be realized by using a Dock-
erfile. In the forth step (IV), the previously imple-
mented components are tested. Here, the functional-
ity of the components can be tested separately as unit
tests as well as the entire system as a whole. The new
fifth step (V) is the creation of a deployment model of
the entire system. The deployment model represents
the configuration and relations of the employed nodes
at run-time and enables the automatically deployment
of the described application. Furthermore, required
management operations, e.g., to start virtual machines
or install a component, are defined and implemented
in this step. The sixth step (VI) is the fetching of ex-
ternal dependencies. Thus, in this step the single ar-

Self-contained Service Deployment Packages

375

Import Export

Deployment Package
with external
dependencies

apt-get
…

Self-Contained
Deployment Package

dpkg –i
…

.py.py*.py*.deb

Self-Containment Packager Framework

Deployment
Package
Handler

Artifact
Handler

Technology
Manager

Bash Plugin

Docker Plugin

. . .

References
Resolver

Download
Manager

Dependency
Manager

Aptitude Plugin

Apt-get Plugin

. . .

References
Resolver

Download
Manager

Figure 3: Simplified system architecture of the Self-Containment Packager Framework that enables the transformation of
non-self-contained deployment packages into self-contained deployment packages.

tifacts are analyzed by a Self-Containment Packager
Framework and if external dependencies are found,
they are resolved and downloaded. Moreover, the
downloaded files are packaged into the deployment
package and the respective artifacts are adapted in or-
der to utilize them. Since various technologies can
be used to create these artifacts, this is highly depen-
dent of the concrete implementation of each artifact.
For example, if such an artifact is implemented as a
Bash script using the command apt-get install python
to install python on an Ubuntu virtual machine, this
command will be replaced with dpkg -i <*.deb-files>
in order to use the downloaded software packages for
installing the python runtime. If a Dockerfile is used,
first the Docker image described by this Dockerfile
needs to be build, then this image must be exported
as a file and put into the deployment package. Thus,
in this step, a non-self-contained deployment pack-
age is transformed into a self-contained deployment
package, which can be executed in an environment
without Internet access. Details are presented in the
following subsection. In the seventh step (VII), the
transformation of the deployment package can be au-
tomatically tested. Therefore, the now self-contained
deployment package is automatically executed in a lo-
cal environment with limited network access. If the
deployment of the described and modeled application
finishes without failures, the transformation was suc-
cessful. The eight step (VIII) is the automatically de-
ployment of the packaged application in the target en-
vironment, by using a compliant deployment tool or
the release of the created package into a marketplace.

From our three additionally added steps (V -
VII), only step five, the creation of the deployment
model, needs to be done manually. However, this task
typically needs to be done manually, nevertheless,
if a non-self-contained deployment package should
be created or the self-contained counterpart. Steps
six and seven can be automated by using a Self-
Containment Packager Framework for the transfor-
mation and a compliant deployment tool for the de-
ployment. Therefore, for the developer, no extra ef-
fort is needed for developing the self-contained vari-
ant in comparison with the non-self-contained variant.

3.3 System Architecture of the
Self-Containment Packager
Framework

In this subsection, we present a system architecture
supporting the automatic transformation of non-self-
contained deployment packages into self-contained
deployment packages. Our proposed system archi-
tecture, supporting the presented method, is shown in
Fig. 3. The main components of the Self-Containment
Packager Framework are: (i) the Deployment Package
Handler, (ii) the Artifact Handler, (iii) the Technology
Manager, (iv) several Dependency Manager, (v) Ref-
erences Resolver, and (vi) Download Manager. All
these mentioned components as well as the overall
procedure to transform a deployment package with
external dependencies into a self-contained deploy-
ment package are explained in the following.

Typically, deployment packages are archives, e.g.,
ZIP archives, containing the description of an appli-
cation as well as further required executable artifacts.
Thus, a deployment package with external dependen-
cies, that should be transformed into a self-contained
deployment package, first needs to be unpacked and
prepared for processing the content. Moreover, at
the end of the entire transformation process, when
all external references are resolved, the adapted con-
tent as well as the downloaded files must be packaged
again appropriately. Therefore, the Deployment Pack-
age Handler provides methods for unzipping and zip-
ping of deployment packages, accessing the contained
files, and maintaining the consistency of the package.

In order to be able to resolve external depen-
dencies preventing the provisioning of an application
in an environment without Internet access, all arti-
facts contained in a deployment package need to be
checked for specified external references. Thus, the
Artifact Handler searches the deployment package for
all kinds of contained executable artifacts, such as,
Bash scripts or Dockerfiles, potentially specifying ex-
ternal dependencies. All found artifacts are forwarded
to the Technology Manager for further processing.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

376

Since, the Self-Containment Packager Framework
should be able to handle different technologies, e.g.,
configuration management tools and script languages,
the framework is designed to be easily extensible, re-
garding its capabilities to support various languages
and tools. Therefore, the Technology Manager com-
ponent provides a plugin system for handling the tech-
nology specific plugins, supporting, for instance, An-
sible playbooks, Bash scripts, or Dockerfiles. Each
artifact is analyzed by a plugin responsible for this
specific artifact type, checking the artifact for speci-
fied external dependencies and how they are defined.
Dependent on that, the artifacts are forwarded for fur-
ther processing to the responsible plugins, which are
managed by the Dependency Manager component.

Since these mentioned technologies can support
different kinds of technologies again, for example,
package manager for specifying external dependen-
cies in case of Bash scripts, each specific language
plugin has its own Dependency Manager. To enable a
high extensibility, the Dependency Manager provides
a plugin system as well, for handling the specific plu-
gins supporting different kinds of technologies. For
example, in case of Bash scripts, typically one of the
both package manager Aptitude or apt-get is used.

To finally resolve the specified external dependen-
cies and download all required files, each Dependency
Manager plugin holds its own References Resolver
and Download Manager. The References Resolver is
responsible for resolving the explicitly specified ex-
ternal dependencies and further required implicit de-
pendencies. For example, the command apt-get in-
stall python will not only install python, but also some
further packages required in order to install python.
Thus, the References Resolver analyzes every depen-
dency which is explicitly specified within an artifact
and, if necessary, determines the dependency tree for
each detected dependency. Since this step is highly
technology specific, there is no generic references re-
solver available and this component needs to be im-
plemented for each single technology that should be
supported. For instance, in case of required software
packages on an Ubuntu virtual machine, the tool apt-
get provides the functionality to determine the de-
pendency tree of a software that should be installed.
Afterwards, the dependency tree is forwarded to the
Download Manager, which is responsible for down-
loading the determined dependencies. The Download
Manager component is reusable within the frame-
work, since different deployment technologies can
use the same method for specifying external depen-
dencies. For example, the utility Wget to download
files from the Web is supported by various deploy-
ment technologies, such as Ansible or Bash scripts.

4 VALIDATION & EVALUATION

In this section, we provide details about our proto-
typical implementation of the Self-Containment Pack-
ager Framework. In order to evaluate our prototype,
we also compare the time required for the provision-
ing of both, a self-contained deployment package and
a non-self-contained deployment package describing
the provisioning of a LAMP stack. Moreover, we
evaluate the time required for transforming a non-self-
contained deployment package into a self-contained
deployment package and compare the size of both.

4.1 Validation

For validating the practical feasibility of our ap-
proach, we use the deployment modeling language
TOSCA for the following reasons: (i) it provides a
vendor- and technology-agnostic modeling language,
(ii) it is ontologically extensible (Bergmayr et al.,
2018), and (iii) it is fully compliant with the Essen-
tial Deployment Metamodel (EDMM) (Wurster et al.,
2019). In the course of a systematic review, the es-
sential parts supported by declarative deployment au-
tomation technologies were derived and showed how
they can be mapped to EDMM. Therefore, EDMM
provides a technology-independent baseline for de-
ployment automation research and a common under-
standing of declarative deployment models (Wurster
et al., 2019). For testing the resulting deployment
packages of our prototype, we use the OpenTOSCA
ecosystem (Breitenbücher et al., 2016), a standard-
compliant open-source toolchain, used for provi-
sioning and managing of TOSCA-based deployment
packages, called Cloud Service Archives (CSARs)1. In
particular we use Winery2 (Kopp et al., 2013), an ap-
plication enabling to model TOSCA-based topologies
graphically and OpenTOSCA Container3 for deploy-
ing the modeled and packaged applications.

Our TOSCA-based prototype4 of the Self-
Containment Packager Framework is implemented
using Java version 1.8. It is capable of resolving ex-
ternal dependencies specified using Apt-get and Apti-
tude for Bash scripts, Apt-get for Ansible playbooks,
as well as the creation of Docker images containing
all dependencies based on a Dockerfile. For exam-
ple, in order to find artifacts implemented as a script,
the framework iterates over all artifacts contained in
a CSAR and checks if their file endings matches

1Additional information about the ecosystem and docu-
mentation can be found at http://opentosca.org

2https://github.com/OpenTOSCA/winery
3https://github.com/OpenTOSCA/container
4https://github.com/zimmerml/TOSCA packager

Self-contained Service Deployment Packages

377

“*.sh” or “*.bash”. Next, the found scripts will
be searched for defined “apt-get install” commands,
since these commands indicate that the CSAR is non-
self-contained and has specified external dependen-
cies. If so, the respective file will be forwarded to
the “apt-get” plugin for further processing. There, the
“apt-get install” command is analyzed and checked
which installation files are required for installing the
defined component. These installation files, for ex-
ample, Debian packages (*.deb), are downloaded and
packaged into the CSAR. However, since each de-
pendency can have its own dependencies again, de-
fined external dependencies are resolved recursively.
For creating Docker images based on Dockerfiles, our
prototype utilizes the Docker CLI. Therefore, Docker
needs to be installed on the same machine as our pro-
totype is used on. After all external dependencies are
resolved, downloaded, and packaged into the CSAR,
this now resulting self-contained CSAR can be tested
automatically (Wurster et al., 2018) by using it as in-
put of the OpenTOSCA Container in order to deploy
it into an environment without Internet access.

4.2 Evaluation

For evaluating our prototype we created a CSAR for
provisioning a LAMP stack on our in-house hypervi-
sor vSphere (CSAR A). The corresponding TOSCA-
based deployment model is illustrated in Fig. 4. The
CSAR contains two artifacts implemented as Web
Services (“HypMngmt.war” and “VMMngmt.war”)
for creating a virtual machine using the web ser-
vice API of the hypervisor vSphere as well as to up-
load files and run commands on this virtual machine
using SFTP and SSH protocol. Furthermore, the
CSAR contains three artifacts implemented as Bash
scripts (all named “Install.sh”) for installing Apache,
MySQL, and PHP. Technically, the “transferFile” op-
eration of the Ubuntu node is used in order to upload
these three scripts to the virtual machine. Further-
more, the “runScript” operation is used in order to in-
voke them directly on the virtual machine. Internally,
the scripts are using the “apt-get install” command
in order to install Apache, MySQL, and PHP. Thus,
the described CSAR is non-self-contained, since the
components and their dependencies need to be down-
loaded first on the virtual machine in order to be in-
stalled. For evaluating our framework with a second
CSAR, we additionally created a CSAR with a con-
tained Dockerfile (CSAR B). As Dockerfile, we used
an image also realizing a LAMP stack5. How the
transformation effects the provisioning time as well
as the size of the CSARs, is presented in Table 1.

5https://hub.docker.com/r/tutum/lamp

(vSphere)

VMMngmt.war

runScript

transferFile

(MySQL)

(Ubuntu14.04)

(ApacheServer)

(PHP)

HypMngmt.war
createVM

Install.sh

Install.sh

Install.sh
install

install

install

Figure 4: LAMP stack modeled as declarative deployment
model used for evaluating our approach.

The transformation of CSAR A into a self-
contained deployment package using our prototype
took in average 55 seconds. Basically, this is the
time required for downloading the components and
its dependencies as well as to adapt the CSAR accord-
ingly. Furthermore, since all required installation files
and dependencies are added to the CSAR, the over-
all size of the CSAR grew from 28 MB to 143 MB.
The provisioning of the LAMP stack using the non-
self-contained CSAR took in average 164 seconds,
while the provisioning using the self-contained CSAR
took in average 160 seconds. In average 51 seconds
were required for creating the virtual machine. Thus,
the pure installation took 113 seconds in case of the
non-self-contained CSAR and 109 seconds in case
of the self-contained CSAR. While for the non-self-
contained CSAR all installation files and dependen-
cies need to be downloaded from the Internet, for the
self-contained CSAR, these files need to be uploaded
to the virtual machine. Thus, the overall provisioning
time remained almost equal for both CSAR variants.

For CSAR B, the size grew from 72 MB to 212 MB
and the transformation took 68 seconds in average. In
this test, the virtual machine was already running and
a Docker engine was installed on it. The provisioning
of the CSAR containing the Dockerfile took 48 sec-
onds in average, while the self-contained CSAR con-
taining the docker image took 60 seconds in average.

Table 1: Evaluation results.

CSAR Size Transformation Provisioning
Time Time

CSAR An 28 MB 55 s 113 s
CSAR As 143 MB 109 s

CSAR Bn 72 MB 68 s 48 s
CSAR Bs 212 MB 60 s
n non-self-contained; s self-contained

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

378

5 RELATED WORK

Discovery and management of software dependencies
have been in the focus of numerous research papers.
One particular direction we are interested in is how
to achieve the portability of software by analyzing
and materializing its dependencies. Thus, in this sec-
tion, we complete our discussion about related work,
which we already discussed partially in Section 2.

Keller et al. (Keller et al., 2000) present a clas-
sification of dependencies and propose a technique
of how the management information can be collected
for IP-based services and applications. More specif-
ically, the authors describe the derivation of applica-
tions characteristics and interdependencies by analyz-
ing the system information repositories, such as Win-
dows Registry or Linux Red Hat Package Manager.
The main idea is to make use of the information avail-
able in system repositories by constructing functional
service dependency models which can be used for au-
tomatic dependency generation. In the context of self-
contained deployment packages, the idea to leverage
from system information repositories might be use-
ful in case the archive’s constituents installation re-
lies only on the usage of operating systems’ package
managers. However, the package manager installa-
tion command is not the only possible way to specify
how a required deployment artifact can be deployed.

Mugler et al. (Mugler et al., 2005) discuss the us-
age of Open Source Cluster Application Resources
(OSCAR) toolkit and its meta-packaging system for
distribution and installation of software for clus-
ters. So-called OSCAR packages might consist of bi-
nary software, e.g., RPM packages, plus additional
configurations, tests, and documentation. The au-
thors distinguish between native package systems like
RPM and meta-packaging system which operates on
a higher level to avoid coupling with a certain Linux
distribution by including native package system files
into the OSCAR packages. In the context of our
work, the idea to include various representations of a
particular software artifact is useful in order to sup-
port a broad spectrum of target platforms. How-
ever, this particular approach is not suitable for au-
tomatically transforming non-self-contained deploy-
ment packages into completely self-contained deploy-
ment packages, since the proposed OSCAR packages
need to be created in advance as well as manually.

Guo and Engler (Guo and Engler, 2011) intro-
duce a system called CDE which provides means to
achieve software portability by packaging the code,
data, and environment which are necessary for execu-
tion on x86 Linux machines. This approach is suit-
able for the cases where an application is available

for execution and is bound to Linux and a x86 ar-
chitecture. While this approach is based on building
virtual machine images, in contrast, our approach en-
ables the creation of technology-agnostic deployment
packages, supporting, e.g., cloud-native applications.

Etchevers et al. (Etchevers et al., 2011) present a
process for modeling and deploying distributed appli-
cations in the cloud. The process starts with mod-
eling a target application using an extended version
of Open Virtualization Format, a standard which pro-
vides means to describe software based on virtual sys-
tems. Again, this approach is mainly based on vir-
tual machines. However, bundling applications into a
virtual machine image is not enough for creating real
cloud-native applications (Leymann et al., 2016).

Fischer et al. (Fischer et al., 2012) describe the
process of complex application stacks configuration,
installation, and management using a system called
Engage. The main idea is similar to configuration
management systems like Chef or Puppet, with ad-
ditional enhancements. Based on the provided par-
tial installation specifications, Engage can generate
installation specifications which then will be used for
the deployment process. However, required pack-
ages are downloaded during the deployment process,
whereas, our goal is to materialize external dependen-
cies already beforehand of the deployment time.

Meng and Thain (Meng and Thain, 2015) demon-
strate how sophisticated execution environments can
be specified and materialized by using a tool called
Umbrella. The goal is to let user run a task via Um-
brella by providing all the required information in-
cluding an execution environment specification. After
the task submission, Umbrella makes a decision re-
garding an execution engine, e.g., Docker or Amazon
EC2 suitable for running the task. Software depen-
dencies necessary for task’s execution are obtained by
the system. However, again this approach utilizes vir-
tual machine images and containers in order to create
self-contained execution environments, and ignores
other deployment technologies, for example, Ansible
or Chef. Furthermore, required files are downloaded
during the deployment time and not in advance.

Di Cosmo et al. (Di Cosmo et al., 2015) introduce
a toolchain called Aeolus Blender, which provides
means to automatically deploy cloud applications in
OpenStack. From the user’s perspective, the process
starts with providing initial application-related infor-
mation which triggers the computation of the com-
plete application’s installation architecture. In case
some configuration information is missing the user
will be asked to provide it. Afterwards, the resulting
configuration is used for the deployment of the appli-
cation in OpenStack. However, Blender is limited to

Self-contained Service Deployment Packages

379

OpenStack environments, and moreover, dependen-
cies are resolved during the deployment process, thus,
self-contained deployment packages are not created.

Further related research work in the area of
TOSCA is available from Brogi et al. (Brogi
et al., 2018a; Brogi et al., 2018b) and Kehrer
and Blochinger (Kehrer and Blochinger, 2018). In
their approaches, they try to synergically combine
TOSCA and Docker together, in order to enable au-
tomated deployment and orchestration support for
multi-component applications consisting of container
artifacts. However, while they are using the CSAR
format, their proposed approaches do not consider the
creation of self-contained deployment packages, in
contrast they use repositories, such as Docker Hub or
GitHub, to retrieve artifacts when they are required.

6 CONCLUSION

In this paper, we presented an approach for transform-
ing non-self-contained deployment packages into
self-contained deployment packages. With our ap-
proach, we enable to automatically deploy applica-
tions into an environment without Internet access, like
for example, into manufacturing environments which
for data security and privacy reasons often have no In-
ternet connection. Furthermore, our approach enables
the preserving of required software components and
dependencies, for instance, for research software used
in eScience. Therefore, we presented a system archi-
tecture of a Self-Containment Packager Framework
enabling this transformation by searching for artifacts
specifying external dependencies. Furthermore, these
dependencies are resolved, downloaded, as well as
packaged into the final deployment package. More-
over, we introduced a method describing the system-
atically developing of such self-contained deployment
packages. The presented approach is validated by a
prototypical TOSCA-based implementation and eval-
uated, by comparing the time required for provision-
ing two exemplary non-self-contained CSARs with its
self-contained counterparts. Moreover, we compared
the size of the different TOSCA archive variants.

We plan to extend our approach to also cope with
other artifacts that can be contained in a deployment
package, e.g., process models, i.e., workflows, de-
scribing the steps to manage an application, e.g., to
scale or update it. For instance, instead of download-
ing external dependencies by artifacts, these process
models could be used for that. Therefore, in future
work we also want to check these process models, for
example, for outgoing requests to external resources.

ACKNOWLEDGEMENTS

This work was partially funded by the BMWi project
IC4F (01MA17008G), the DFG project SustainLife
(641730), and the European Union’s Horizon 2020 re-
search and innovation project RADON (825040).

REFERENCES

Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A.,
Solberg, A., Wimmer, M., and Kappel, G. (2018).
A Systematic Review of Cloud Modeling Languages.
ACM Computing Surveys (CSUR), 51(1):1–38.

Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., and
Wettinger, J. (2013). Integrated Cloud Application
Provisioning: Interconnecting Service-Centric and
Script-Centric Management Technologies. In On the
Move to Meaningful Internet Systems: OTM 2013
Conferences, pages 130–148. Springer.

Breitenbücher, U., Endres, C., Képes, K., Kopp, O., Ley-
mann, F., Wagner, S., Wettinger, J., and Zimmermann,
M. (2016). The OpenTOSCA Ecosystem - Concepts
& Tools. European Space project on Smart Systems,
Big Data, Future Internet -Towards Serving the Grand
Societal Challenges -Volume 1: EPS Rome, pages
112–130.

Brogi, A., Neri, D., Rinaldi, L., and Soldani, J. (2018a). Or-
chestrating incomplete tosca applications with docker.
Science of Computer Programming, 166:194–213.

Brogi, A., Rinaldi, L., and Soldani, J. (2018b). TosKer: A
synergy between TOSCA and Docker for orchestrat-
ing multicomponent applications. Software: Practice
and Experience, 48(11):2061–2079.

Di Cosmo, R., Eiche, A., Mauro, J., Zacchiroli, S., Za-
vattaro, G., and Zwolakowski, J. (2015). Automatic
Deployment of Services in the Cloud with Aeolus
Blender. In Service-Oriented Computing. Springer.

Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G., Per-
shing, J., and Agrawal, A. (2006). Managing the Con-
figuration Complexity of Distributed Applications in
Internet Data Centers. Communications Magazine,
44(3):166–177.

Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O.,
Leymann, F., and Wettinger, J. (2017). Declarative vs.
Imperative: Two Modeling Patterns for the Automated
Deployment of Applications. In Proceedings of the 9th

International Conference on Pervasive Patterns and
Applications, pages 22–27. Xpert Publishing Services.

Etchevers, X., Coupaye, T., Boyer, F., and De Palma, N.
(2011). Self-configuration of distributed applications
in the cloud. In 2011 IEEE International Conference
on Cloud Computing, pages 668–675. IEEE.

Fehr, J., Heiland, J., Himpe, C., and Saak, J. (2016).
Best Practices for Replicability, Reproducibility and
Reusability of Computer-Based Experiments Exem-
plified by Model Reduction Software. AIMS Math-
ematics, 1(3):261–281.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

380

Fischer, J., Majumdar, R., and Esmaeilsabzali, S. (2012).
Engage: A Deployment Management System. In
ACM SIGPLAN Notices, pages 263–274. ACM.

Guo, P. J. and Engler, D. R. (2011). CDE: Using
System Call Interposition to Automatically Create
Portable Software Packages. In Proceedings of the
2011 USENIX Annual Technical Conference, page
247–252. USENIX Association.

Guo, Y., Hu, X., Hu, B., Cheng, J., Zhou, M., and Kwok, R.
Y. K. (2017). Mobile Cyber Physical Systems: Cur-
rent Challenges and Future Networking Applications.
IEEE Access, 6:12360–12368.

Haque, S. A., Aziz, S. M., and Rahman, M. (2014). Re-
view of Cyber-Physical System in Healthcare. In-
ternational Journal of Distributed Sensor Networks,
10(4):217415.

Herry, H., Anderson, P., and Wickler, G. (2011). Automated
Planning for Configuration Changes. In Proceedings
of the 25th International Conference on Large Instal-
lation System Administration, pages 57–68. USENIX.

Iosup, A., Ostermann, S., Yigitbasi, M. N., Prodan, R.,
Fahringer, T., and Epema, D. (2011). Performance
Analysis of Cloud Computing Services for Many-
Tasks Scientific Computing. IEEE Transactions on
Parallel and Distributed Systems, 22(6):931–945.

Kehrer, S. and Blochinger, W. (2018). TOSCA-based Con-
tainer Orchestration on Mesos. Computer Science -
Research and Development, 33(3):305–316.

Keller, A., Blumenthal, U., and Kar, G. (2000). Classifica-
tion and Computation of Dependencies for Distributed
Management. In Proceedings of the Fifth IEEE Sym-
posium on Computers and Communications, pages
78–83. IEEE.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann, F.
(2013). Winery – A Modeling Tool for TOSCA-based
Cloud Applications. In Proceedings of the 11th Inter-
national Conference on Service-Oriented Computing
(ICSOC 2013), pages 700–704. Springer.

Leymann, F. (2009). Cloud Computing: The Next Revolu-
tion in IT. In Proceedings of the 52th Photogrammet-
ric Week, pages 3–12. Wichmann Verlag.

Leymann, F., Breitenbücher, U., Wagner, S., and Wet-
tinger, J. (2017). Native Cloud Applications: Why
Monolithic Virtualization Is Not Their Foundation. In
Cloud Computing and Services Science, pages 16–40.
Springer.

Leymann, F., Fehling, C., Wagner, S., and Wettinger, J.
(2016). Native Cloud Applications: Why Virtual Ma-
chines, Images and Containers Miss the Point! In
Proceedings of the 6th International Conference on
Cloud Computing and Service Science, pages 7–15.
SciTePress.

Mahmud, R., Kotagiri, R., and Buyya, R. (2018). Fog Com-
puting: A Taxonomy, Survey and Future Directions,
pages 103–130. Springer.

Meng, H. and Thain, D. (2015). Umbrella: A Portable
Environment Creator for Reproducible Computing on
Clusters, Clouds, and Grids. In Proceedings of the 8th
International Workshop on Virtualization Technolo-
gies in Distributed Computing, pages 23–30. ACM.

Mesnard, O. and Barba, L. A. (2016). Reproducible
and Replicable Computational Fluid Dynamics: It’s
Harder Than You Think. Computing in Science Engi-
neering, 19(4):44–55.

Mugler, J., Naughton, T., and Scott, S. L. (2005). OSCAR
Meta-Package System. In 19th International Sympo-
sium on High Performance Computing Systems and
Applications, pages 353–360. IEEE.

OASIS (2013a). Topology and Orchestration Specification
for Cloud Applications (TOSCA) Primer Version 1.0.
Organization for the Advancement of Structured In-
formation Standards (OASIS).

OASIS (2013b). Topology and Orchestration Specification
for Cloud Applications (TOSCA) Version 1.0. Organi-
zation for the Advancement of Structured Information
Standards (OASIS).

Shrouf, F. and Miragliotta, G. (2015). Energy management
based on Internet of Things: Practices and framework
for adoption in production management. Journal of
Cleaner Production, 100:235–246.

Tsuchiya, A., Fraile, F., Koshijima, I., Órtiz, A., and Poler,
R. (2018). Software defined networking firewall for
industry 4.0 manufacturing systems. Journal of Indus-
trial Engineering and Management, 11(2):318–333.

Wettinger, J., Breitenbücher, U., and Leymann, F. (2014).
Compensation-based vs. Convergent Deployment Au-
tomation for Services Operated in the Cloud. In
Proceedings of the 12th International Conference
on Service-Oriented Computing, pages 336–350.
Springer.

Wurster, M., Breitenbücher, U., Falkenthal, M., Krieger, C.,
Leymann, F., Saatkamp, K., and Soldani, J. (2019).
The Essential Deployment Metamodel: A System-
atic Review of Deployment Automation Technolo-
gies. Software-Intensive Cyber-Physical Systems.

Wurster, M., Kopp, U. B. O., and Leymann, F. (2018). Mod-
eling and Automated Execution of Application De-
ployment Tests. In Proceedings of the IEEE 22nd In-
ternational Enterprise Distributed Object Computing
Conference, pages 171–180. IEEE Computer Society.

Zimmermann, M., Breitenbücher, U., Falkenthal, M., Ley-
mann, F., and Saatkamp, K. (2017). Standards-based
Function Shipping – How to use TOSCA for Ship-
ping and Executing Data Analytics Software in Re-
mote Manufacturing Environments. In Proceedings
of the 21st International Enterprise Distributed Object
Computing Conference, pages 50–60. IEEE Computer
Society.

Zimmermann, M., Breitenbücher, U., Guth, J., Hermann,
S., Leymann, F., and Saatkamp, K. (2018a). To-
wards Deployable Research Object Archives Based on
TOSCA. In Papers from the 12th Advanced Summer
School on Service-Oriented Computing, pages 31–42.
IBM Research Division.

Zimmermann, M., Breitenbücher, U., and Leymann, F.
(2018b). A Method and Programming Model for De-
veloping Interacting Cloud Applications Based on the
TOSCA Standard. In Enterprise Information Systems,
volume 321 of Lecture Notes in Business Information
Processing, pages 265–290. Springer.

Self-contained Service Deployment Packages

381

