
Open Data Analytic Querying using a Relation-Free API

Lucas F. de Oliveira, Alessandro Elias, Fabiola Santore, Diego Pasqualin, Luis C. E. Bona,
Marcos Sunyé and Marcos Didonet Del Fabro

C3SL Labs, Informatics Department, Federal University of Paraná, Curitiba, Brazil

Keywords: Analytical Querying, Open Data API, Query Generation, Relation-Free Query.

Abstract: The large availability of tabular Open Data sources with hundreds of attributes and relations makes the query
development a difficult task, where analytic queries are common. When writing such queries, often called
SPJG (Select-Project-Join-GroupBy), it is necessary to understand a data model and to write JOIN operations.
The most common approach is to use business intelligence frameworks, or recent solutions based on keywords
or examples. However, they require the utilization of specific applications and there is a lack of support for
web-based APIs. We present a solution that eases the task of query development for tabular Open Data
analytics through an API, using a simplified query representation where it is not allowed to specify the data
relations, and consequently neither the joins over them, called Relation-Free Query. We define a single virtual
schema that captures the database structure, which allows the use of relation-free queries in existent DBMS’s.
The concrete queries are exposed by a RESTful API, which is then translated into a database query language
using known query generation solutions. The API is available as a microservice. We present a case study
to describe solution, using a real world scenario to query in an integrated database of several Brazilian open
databases with hundreds of attributes.

1 INTRODUCTION

The amount of data available in Open Data sources
has not stopped growing in recent years. The need
to explore and correlate these data has given rise to
new roles such as data scientists, who even though are
not database experts, they have the task of joining and
processing a large amount of different data sources.
There are several Open Data formats, which may be
semi-structured (such as CSVs) or unstructured ones
(such as JSON documents or free text). We focus
on semi-structured data that can be extracted and in-
tegrated into relational databases. The enhancement
of data integration techniques for Open Data integra-
tion (Miller, 2018) provides means to produce large
queries with several relations and attributes.

In order to retrieve data from a relational database,
a typical query has four elements: (1) the attributes
to be retrieved, (2) the restrictions to be satisfied,
(3) the relations that are used and (4) how to com-
bine these relations. These queries are often called
as SPJ (Select-Project-Join) queries. When adding
grouping, we can call them SPJG (Select-Project-
Join-GroupBy) queries. The relations to use and how
to combine then are dependent of the database.

We consider that in the Open Data and data scien-

tists scenario, it is often desired to perform simple an-
alytic queries, also known as ’stupid analytic’ (Abadi
and Stonebraker, 2015), with a SPJG format. In addi-
tion, it is important to have the data accessible though
an API, so it could be consumed by application devel-
opers, broadening the access of available public data.

We categorize existing solutions into three groups.
First, the utilization of Business Intelligence frame-
works, such as Saiku, IBM Cognos or QLikView, or
many others. They provide complete frameworks ac-
cessible for the developers or data analysts, often pro-
viding graphical interfaces or specialized languages,
such as MDX (multidimensional Expressions) to help
on query design, using the dimensional model. Sec-
ond, there are solutions based on keywords, exam-
ples or simplified SQL-like languages. The Chee-
tah framework (Chen, 2010) presents the notion of
virtual tables, where some query design aspects are
hidden. The SODA system (Blunschi et al., 2012),
SQAK (Tata and Lohman, 2008) or the work from
(Bergamaschi et al., 2011) ease query design using
keywords. These approaches rely on prior knowledge
about the instances or about the schema to produce a
set of possible queries. Finally, the solutions focus-
ing on producing accessible APIs, such as (Ed-douibi
et al., 2018) or (Sellami et al., 2014).

148
F. de Oliveira, L., Elias, A., Santore, F., Pasqualin, D., Bona, L., Sunyé, M. and Didonet Del Fabro, M.
Open Data Analytic Querying using a Relation-Free API.
DOI: 10.5220/0009413001480155
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 1, pages 148-155
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

In this paper, we present an approach for SPJG
query development using an API. We call our query
representation format RFQ (Relation-Free-Query),
where we do not write the relations and the joins
operations, focusing on what to return (aggregated
and categorized measures, as well as additional at-
tributes). This format is possible because we provide
a global virtual schema that represents the integrated
information. We also present how to translate such
representation into SQL queries, by applying known
query generation techniques. We define a RESTful
API as the top layer to write queries. Thus, the solu-
tion is made available by an Open Data microservice,
which is currently the most common access method
chosen by application developers.

We present a case study contrasting a RFQ query
with its corresponding generated SQL code and API
call. The database used consists of an integrated
database from two initially separated data sources,
with different degrees of normalization. This database
contains 24 relations, more than 700 attributes, and
about 2.5 billions of records.

The integrated sources, called BIOD (Blended In-
tegrated Open Data), are publicly avaiable as a mi-
croservice 1. The framework is called called BlenDb
2 provided as a Free Software under AGPL Licence.

This paper is organized as follows: section 2
presents the relation free query definitions; section 3
shows how to translate relation free queries to SPJG
queries, and the RESTful API format; section 4 de-
scribe our case study; section 5 contains the related
work and section 6 the conclusions.

2 RELATION-FREE QUERY

In this section we present our approach to design rela-
tion free queries (RFQ) over relational databases, its
central definitions and a driving example that is used
in the remaining of the paper.

2.1 Definitions

To answer SPJG queries, filters are used to define
constraints, which the returned records must satisfy.
We allow the specification of aggregation and group-
ing. The attributes that are aggregated are called met-
rics, and the attributes that are grouped, dimensions.
These metrics and dimensions are used to project the
attributes in the tuples.

1BIOD microservice: https://biod.c3sl.ufpr.br/index\ en.
html

2BlenDb source: https://gitlab.c3sl.ufpr.br/c3sl/blendb

Definition 1 (Attribute). An attribute a is the defini-
tion of the name and datatype of collections of values.
Definition 2 (Dimension). A dimension d is an at-
tribute a, which will be used to perform grouping.

In a relational database, an attribute corresponds
to the column definition of a table. The dimensions
are used to categorize and to define degree of detail
(granularity) of the data.
Definition 3 (Metric). A metric m is a pair < f ,a >,
where f is an aggregation function and a is an at-
tribute, where:
• f is one of 5 different functions: SUM, AVG,

MAX, MIN, COUNT;
• a is the attribute that is aggregated.

The metrics are the information that are aggre-
gated, with a given function. The different kinds of
functions are typical aggregation functions supported
by existing DBMS.
Definition 4 (Filter). A filter f is a triple < d,o,v >,
where d is a dimension, o is an operator and v is a
value, and:
• the operator o is a binary operator, with the fol-

lowing possible values: >, <, ≥, ≤, = or 6=.
• the value v is a constant, comparable with d.

Definition 5 (Clause). A clause c is a set of filters
{ f0, ..., fn}.

A filter represents a restriction over a dimension.
The filters are grouped into clauses written in Con-
junctive Normal Form (CNF). Filters in the same
clause are combined using the OR operator and the
clauses are combined using the AND operator.

The above definitions is similar to existing mul-
tidimensional data model definitions (e.g. (Aligon
et al., 2014)), but they have restrictions, since, for in-
stance, we do not present the notion of a cube nor
make assumptions about dimensions hierarchies.
Definition 6 (Relation Free Query). A RFQ Q is
a triple (M,D,C) where M is a set of metrics
{m0, ...,mn}, D is a set of dimensions {d0, ...,dp} and
C is a set of clauses {c0, ...,cq}.

A RFQ can be denoted using the format below:

Q(m0,m1, ...,mn)(d0,d1, ...,dp)(c0,c1, ...,cq)

The set of parenthesis contains the elements of the
M, D and C sets respectively. This notation is in-
spired by conjunctive query notation (Abiteboul et al.,
1995), with simplifications to remove the relations
and to support only filters, metrics and dimensions.
Note that in this section only the model is presented,
it does not have a concrete syntax which allows use a
existent DBMS. How to write concrete and executable
queries is described later.

Open Data Analytic Querying using a Relation-Free API

149

2.2 Driving Example

Consider a database with information about all edu-
cational institutions in Brazil. Such database is a sim-
plified version of the database used in our case study.
Consider the relations below:
• student(st name,st id,sc id,grade,age)
• school(sc name,sc id,city id,category)
• city(city id,city name,state,region)

The database contains where each student studies,
the type of school and its geo-location data. We de-
scribe the RFQ and a corresponding SQL query.

Consider the following question: “What is the
mean age and how many students of the forth grade
exist by region?”.

We define a metric number of students:
n student = (COUNT,st id), which uses the
function COUNT in the attribute st id. We also
define the metric mean age, mean age = (AV G,age),
as the function AV G over the attribute age. The
question previously mentioned can be written in RFQ
as:

Q(n student,mean age)(region)({grade = 4})
The corresponding SQL query is:

SELECT COUNT(st.st_id) AS n_student,
AVG(st.age) AS mean_age, c.region

FROM student st
INNER JOIN school sc ON sc.sc_id = st.sc_id
INNER JOIN city c ON sc.city_id = c.city_id

WHERE st.grade = 4
GROUP BY c.region

When using RFQ, we only list the attributes and
constraints. We highlight the most important similar-
ities and differences between the two queries. First,
the set of attributes returned in the SQL query matches
exactly with the set of metrics and dimensions in the
RFQ. The set of constraints (WHERE statement) also
matches, and the attributes used in the constraints are
not required to be in the attributes returned. All the
attributes in the dimension set are in the GROUP BY
statement and the all metrics have a corresponding ag-
gregation function.

The way to calculate n student and mean age,
which relations are used and how to combine then
(Join operations) are not explicit in RFQ. The com-
plete query is produced in the translation process of
RFQ into a SQL query.

3 RFQ TO SQL

Relation-free queries are an alternative higher level
representation to query over a relational database.

This means they need to be translated into SQL
queries.

The translation of a RFQ into relational algebra
expression and then to a SQL query is done in two
steps. First, the RFQ is translated into relational al-
gebra and then into a valid SQL query over a virtual
database schema. The second step converts the SQL
over the virtual schema into a SQL in the real database
schema. We detail these steps in the following sec-
tions.

3.1 The Virtual Schema

A RFQ query does not contain what relations are used
and how to rename the attributes, for instance, that
n student = (COUNT,st id). This lack of informa-
tion creates a “gap” in the query, which does not allow
its direct translation into SQL.

In the first step of the translation, we define a vir-
tual database schema to “fill the gap” in the query.
The virtual schema is an abstract database schema
used to transform a query in relation-free format into
a query in SQL syntax. The virtual schema is built
in function of the set of metrics, the set of dimen-
sions and the real database structure. The intent of the
virtual schema is to simulate a database that contains
only one relation, containing all the attributes. Such
restriction in the database schema explains why RFQ
are more compact than SQL queries. If a database
contains only one relation and self-joins are not al-
lowed, the reference to the relation in all queries is
the same, so, it is redundant in the queries. This is the
principle that allows RFQ to omit relations.

However, relational databases with a single rela-
tion are rare. To overcome this issue we use query
rewriting algorithms, to convert queries between dif-
ferent database schemes.

The virtual schema is formed by relations that rep-
resent views over the real database schema. The in-
tent of the virtual schema was to be a schema with
only one relation, however, because aggregation and
grouping are allowed, the virtual schema must contain
one relation per metric, similar to a star schema. To
preserve the ability of omitting the relations, we im-
pose restrictions over the schema and queries. These
restrictions may not allow RFQ to represent all SPJG
queries. However, it fits to simple analytics applica-
tions.

Definition 7 (Virtual Schema). A virtual schema V =
(R,M,D) is a set of views generated from a real
schema R and a set of metrics M and a set of dimen-
sions D where, for m∈M exists a single view Am. The
relation Am contains m and all dimensions that m can
be grouped by.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

150

By the virtual schema definition we extract three
properties. First, m is in exactly one view, denoted
Am. Second, all queries involving m must use Am.
Third, as Am contains all dimensions that m can be
grouped by, only Am is required to aggregate a single
metric m.

There are no restrictions in how to generate Am
from R, however, some operations can corrupt the
semantic value of a metric. For instance, a join of
a “n-to-n” relationship could replicate some records,
which may duplicate COUNT operations. In our ap-
proach, used in the study case, we generate the Am
relations only through INNER JOINS, which avoids
such issue.

3.2 Relation-Free Query to SQL

This section defines the translation process from RFQ
to relational algebra expression and then to SQL
queries. Given a RFQ Q(M,D,C), we want to pro-
duce a translation of Q denoted as Q′. First we de-
scribe the set of relational algebra expressions to per-
form the translation then a brief explanation of the
expression.

To keep the relational algebra expression simple
we make a set of assumptions. In the filter operator,
if the constraint requires an attribute that is not con-
tained in the relation, this constraint is ignored. If the
projection or grouping operation requires an attribute
that is not contained in the relation, this attribute is
ignored as well. The expression could be rewritten
without these assumptions, however, we consider that
the expression becomes oversized and more difficult
to understand.

Let m ∈ M, and γG be the aggregation/grouping
operation of the extended relational algebra. The
query Q′ over the virtual schema is defined as:

1. Q′m = γD, f (m)(σC(Am))

2. Q′ = Q′m1
./ Q′m2

.// Q′mn

The equation 1 is a sub-query, denoted Q′m which
defines the translation of a single metric query. The
Q′m is the relational algebra expression equivalent of
the RFQ Qm(m)(D)(C). First we apply the filtering
operator in the Am relation, removing all tuples which
do not satisfy the constraints in C. Then the filtered
relation is aggregated, the metric m is aggregated us-
ing function f and grouped by D.

In equation 2 we define Q′ as the INNER JOIN
of all Q′m. There is a Qm sub-query for each metric
m ∈M. Equation 2 ensures that the query contains all
required metrics. In other words, the Q′ query aggre-
gates each metric separately than joins the aggregated
results.

Assuming that the relation Am exists in the virtual
schema, for all metrics in M, a RFQ can be converted
to SQL over the virtual schema. The generated queries
always follow the SPJG format, due to domain spe-
cific nature of RFQ for analytic queries. The joins are
always INNER joins. Note that at this point it is not
necessary to have a SQL query, which is produced in
the next step.

We use the illustrative example to describe the
same query, now over the virtual schema. It uses two
A relations: An student and Amean age.

An student and Amean age are defined as the join of
all relations (student, school and city) with one addi-
tional attribute for the metric. In An student the addi-
tional attribute is n student with is a copy of the at-
tribute st id. In Amean age the additional attribute is
mean age with is a copy of the attribute age. With
this virtual schema, we can translate the RFQ used in
the first example into the expression below.

Q′n student = γregion,COUNT (n student)(σ{grade=4}(An student))

Q′mean age = γregion,AV G(mean age)(σ{grade=4}(Amean age))

Q′ = Q′n student ./ Q′mean age

This expression is further translated into a SQL
over the virtual schema.

3.3 From Virtual to a Concrete Schema

With Q′ defined as a SQL query, the only step required
is to adapt the query in the virtual schema to the real
schema. This virtual schema is defined as a set of
views over the real database schema. To make a SQL
executable in a real schema, we use a query rewriting
algorithm that receives the query Q′ and views defini-
tions of the virtual schema. As the relations in the vir-
tual schema are defined as views in the real schema,
the rewriting algorithm is an expansion in the query
Q′ of all the occurrences of the view v by its definition
(similar to the ones used in GAV-approaches (Lenz-
erini, 2002) (Kwakye et al., 2013)).

After expanding all view references, the new
query refers only to relations in the real databases
and it can be executed. In other words, to make the
database compatible with RFQ, the central require-
ment is the creation of the virtual schema respecting
the constraints presented.

3.4 Creating RFQs using a RESTful
API

In order to use RFQ, we implemented the BlenDb
tool, which is a middleware that works as query

Open Data Analytic Querying using a Relation-Free API

151

generator between the input request and the target
DBMS, i.e., it publishes an Open Data microservice
that receives an RESTful API (Richardson et al., 2013)
request and translates it into SQL. We choose an
RESTful API because it is a simple format which is
largely used to access Open Data sources though the
Web, in virtually all kinds of application scenarios.
This ubiquity could ease the adoption of the solution,
instead of producing a new language from scratch. In
addition, for a given service, it is not necessary to in-
stall or do any additional configuration by application
developers.

The tool translates the requests to SQL and then
makes a call to the DBMS to perform the query. When
the DBMS responds, the tool parses the result and de-
livers to the user. The result can be returned in CSV
(Comma Separated Values) or JSON (Javascript Ob-
ject Notation) formats.

The format below depicts a generic request used
to produce a RFQ query.
http://tool.domain/v1/data?

metrics=METRIC_1,METRIC_N
&dimensions=DIMENSION_1,DIMENSION_N
&filters=CLAUSE_1_FILTER_1,CLAUSE_1_FILTER_N;
CLAUSE_N_FILTER_1,CLAUSE_N_FILTER_N
&format=json

First, it has the domain and main route
tool.domain/v1/data to the API call. Then, it is
formed by four parameters:

• metrics: the list of metrics separated by commas.
At least one metric need to be specified;

• dimensions: the list of dimensions separated by
commas; it supports zero or more dimensions;

• filters: the list of clauses separated by semi-colon
(AND operation); in each clause, a list of filters
are separated by commas (or operation). it sup-
ports zero or more combination of filters. Each
filter supports comparison operations for numeric
values (”==” , ”≥”, ”≤”, ”<”, ”>” or ”!=”) and
for string values (”==”, ”!=”);

• format: it has two options: csv or json (default),
to specify the output format.

It has a one-to-one counterpart in a RFQ request,
making the translation straightforward. In other
words, there are a set of metrics, dimensions, and
clauses in CNF.

In order to integrate the tool with existing
databases, it is required to create a database schema
description, which is a set of files listing the avail-
able relations, metrics and dimensions. It uses its own
schema description format, which is a YAML doc-
ument describing the mapping of the RFQ elements

into the database elements. An example of YAML
file is shown below. It contains one aliases, which
correspond to an existing concrete view. It contains as
well one metric description and the list of dimensions
(if any). They have same name of the target column
names.

alias: "student"
dimensions:
- "region"
- "grade"
- "city"

metrics:
- "st_id"

This description necessary because the SQL schema
does not contain all the meta-data required to use
RFQ. Such description is used by the query rewrit-
ing algorithm, to convert the query in the virtual
schema to the real database. An additional parameter
(format) enables to choose how the result is shipped.

As the tool is not a new DBMS, but an abstraction
layer, it was not required implement a new DBMS to
use RFQ, it can be used with existent DBMS. At the
moment of the writing of this paper, the tool can be
used with two DBMS, MonetDB and PostgreSQL.

4 CASE STUDY

The case study consists of tabular Open Data (CSV
files) extracted from public data sources and inte-
grated into a single database instance. The public
data sources contain information about the educa-
tional system of Brazil, covering all educational lev-
els. It also contains data about public policies for pro-
viding internet access (digital inclusion) for the cit-
izens. It contains 24 tables, 1169 attributes and ap-
proximately 2.5 billion records 3.

The integrated data source is called Blended In-
tegrated Open Data (BIOD)4. The microservice re-
quest is forwarded to the BlenDb middleware, which
translates the URL into SQL and calls the integrated
database API. The middleware is implemented using
Node.js.

We integrate these data sources under the Mon-
etDb5 column store, using traditional Extract Trans-
form and Load (ETL) approaches, by executing data
extraction scripts. This is a prior step, which details
are out of the scope of the RFQ representation.

3The complete database schema can be found at:
https://gitlab.c3sl.ufpr.br/simmctic/biod/biod-database.

4The BIOD microservice is available at https://biod.c3sl.
ufpr.br/index en.html

5https://www.monetdb.org/

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

152

We define the metrics and dimensions, create the
virtual schema and the configurations files. These
specifications are needed to be able to translated
the API calls into SQL. It resulted in a database
with 682 metrics and 904 dimensions which can be
queried. The original degree of normalization of the
data sources was maintained, to avoid the creation of
additional maintenance scripts. This means we do not
create a new dimensional model for each integrated
source. We now present two query examples to il-
lustrate the applicability of the approach. It involves
analytic queries with different targets.

Query 1. Let us suppose we want to retrieve general
descriptions about the city of Curitiba, with informa-
tion about population, economic indicators, internet
connection, among others. The RFQ query has the
following definition:

Q (SumPopulation, CountSchools, CountUni-
versity, AvgEconomyGDP, AvgEconomyIncomeLevel,
CountSimmcPoint) (State, Region) (CityName = Cu-
ritiba, Year = 2017)

The query can be done through the following API
call 6

http://tool.domain/v1/data?
metrics=sumpopulation,countschools,
countuniversity,sumeconomigdp,
avgeconomyincomelevel,countsimmcpoint
&dimensions=region,state
&filters=cityname==Curitiba;year==2017

The query response has data about the city: the popu-
lation, the number of high schools and universities,
the value of Gross Domestic Product, the income
level, the number of active internet connection, and
the given region and state.

The query above could be done using SQL. The
user would need to develop a query joining and pro-
jecting all the attributes over six relations (Population,
Schools, Universities, GDP, City and Point) and to re-
strict the year and name of the city in each one. The
SQL query is:
SELECT

SUM(pop.POPULATION), COUNT(sc.SC_ID) AS N_SCHOOL,

COUNT(un.UN_ID) AS N_UNIVERSITY, SUM(gdp.GDP),

AVG(gdp.INCOME_LEVEL), COUNT(poi.POI_ID) AS N_POINT,

c.REGION, c.STATE

FROM POPULATION pop

INNER JOIN SCHOOL sc ON sc.CITY_ID = pop.CITY_ID

INNER JOIN UNIVERSITY un ON un.CITY_ID=pop.CITY_ID

INNER JOIN GDP gdp ON gdp.CITY_ID = pop.CITY_ID

INNER JOIN POINT poi ON poi.CITY_ID = pop.CITY_ID

INNER JOIN CITY c ON c.CITY_ID = pop.CITY_ID

WHERE c.NAME = "Curitiba" AND

6We have translated the name of the elements to ease the
comprehension.

sc.YEAR = 2017 AND un.YEAR = 2017 AND

gdp.YEAR = 2017 AND inc.YEAR = 2017 AND

poi.YEAR = 2017 AND pop.YEAR = 2017

GROUP BY c.REGION, c.STATE

Query 2. We consider a specific scenario about
schools, group by region of Brazil and administrative
dependency of school (federal, state, municipal, pri-
vate). The query produced is:

Q (CountSchools, AvgSchoolClassroom,
AvgSchoolEmployees) (Region, SchoolAdminis-
trativeDependency) (Year = 2017)

The answer contains the number of schools, av-
erage of used classrooms and average of employees,
grouped by region and administrative dependency.
The equivalent SQL query is:

SELECT COUNT(sc.SC_ID) AS N_SCHOOL,
AVG(sc.SC_CLASSROOM), AVG(sc.SC_EMPLOYEES),
sc.SC_ADMIN_EPENDENCY, c.REGION

FROM SCHOOL sc
INNER JOIN CITY c ON c.CITY_ID = sc.CITY_ID

WHERE sc.YEAR = 2017
GROUP BY c.REGION, sc.SC_ADMIN_DEPENDENCY

The corresponding API call is the following:

http://tool.domain/v1/data?
metrics=countschools,avgschoolclassroom,
avgschoolemployees&dimensions=region,
schooladmdependency&filters=year==2017

The design of analytic queries often involve several
data sets and typically rely on user knowledge about
each relations containing the data. The utilization of
relation-free API calls frees the user/developer from
having to locate the tables; instead, the users only
choose over a set of valid dimensions and metrics. It
also frees the users from understanding the details of
each table in order to manually join them. In addition,
it could be exported to web applications.

Our approach simplifies the development of
queries involving several relations and attributes re-
garding to SPJG queries. This can be explained be-
cause the users choose over a set of possible dimen-
sions and metrics, and the presented solution trans-
lates the user interest into a SPJG query. Thus our
key contribution is an approach that provides easy
access over tabular Open Data sources, through a
simple query representation, translating automatically
any valid element combination into SQL.

The integration of the data sources is done through
a set of extraction tasks and by the specification of the
mapping files. While this is a time consuming and
laborious step, it follows existing data integration ap-
proaches. The mapping process of attributes and di-
mensions into the schema description was done man-
ually, where a full understanding of the data model

Open Data Analytic Querying using a Relation-Free API

153

was necessary. The JOINs do not need to be speci-
fied, but the name of joinable attributes need to be the
same. We consider that an automated approach, for
instance adapting schema matching solutions, would
enable potential benefits, thus is an interesting point
to future research.

There are additional aspects to be considered.
Without the real database schema, is not possible to
calculate efficiency measures such as the number of
joins performed or relations used. These measures are
dependent of how the real database is structured. For
instance, consider two databases with the same data,
but one in the third normal form and one in the first.
Both would have the same set of metrics and dimen-
sions, while the same RFQ query in both would return
the same data, the query structure would differ, also
the number of joins and relations used as a third nor-
mal form demands more relations and joins. In our
case study, we handle poorly normalized databases.

Our approach relies in the process of creating a
simplified virtual schema, which allows the elabora-
tion of simpler queries. To use the simplified virtual
schema, RFQ is not required. A user could wonder if
there is any advantage in RFQ if the virtual schema al-
ready simplifies the query elaboration. The main ad-
vantage of RFQ is the access to data through an API
without naming the relations and JOINs, which is not
case if developing the queries directly in SQL.

The goal is to provide easy analytic querying ca-
pabilities, thus the representation does not cover any
kind of format involving SPJG queries. This means
it would not be possible to express, for instance, all
TPC-H or TPC-B queries, or other kinds of JOINs.
This is a chosen limitation of the approach. In cases
where more expressive SQL would be needed, exist-
ing BI solutions could be used instead.

By narrowing the kinds of queries, the query gen-
eration task becomes simpler, producing always the
same style of output queries, SPJG with INNER
JOINs. While the number of illustrated Joins is not
large in this specific case, it can be generalized for
larger queries, since the number of metrics available
is important. The framework is a middle-layer be-
tween the API and the target database, not a spe-
cific database component, thus any query optimiza-
tion need to be performed by the target DBMS. The
approach is currently being used in a real world sce-
nario, showing good empirical applicability, but it is
not yet possible to provide a quantitative assessment
for such a modeling task. Detailed studies about user
acceptation need to be conducted. Its larger success
depends on future adoption in other solutions.

5 RELATED WORK

The large availability of Open data sources has raised
opportunities in several research subjects, such as:
data integration and exchange, data analytics visual-
ization and languages, data analytics RESTful API,
and others. Our solution can be placed as an ana-
lytic query representation format, which is accessible
through a RESTful API.

Focusing on analytics applications,
Kwakye (Kwakye et al., 2013) presents the inte-
gration of disparate data marts, concentrating on
how to find the correspondences and to merge the
data sources. The concrete queries are done using
standard SQL. The Cheetah framework (Chen, 2010)
presents the idea of creating one virtual view per fact
table. Once the views are defined, it is necessary to
find the correct relations and to join them using SQL.

There are different approaches providing
keyword-based query languages, such as the SODA
system (Blunschi et al., 2012), SQAK (Tata and
Lohman, 2008) or the work from (Bergamaschi et al.,
2011). They provide ways to ease the task of query-
ing over several sources. These approaches have as
main goal to build the queries from the keywords,
often in a exploratory way, using additional structures
as support. For instance, SODA and SQAK use
metadata to iteratively explore a datawarehouse and
to create queries. This enables to ease the query
construction, but due to its interactive nature, it is
more adapted to online data finding than to making
API calls.

The Schema-free SQL approach (Li et al., 2014)
enables writing partial (or complete) SQL to answer
questions. It does not require to specify relations, and
the attributes specification may be incomplete. The
approach return a top-K set of queries to be executed.

The most common approach is to use Business In-
telligence frameworks, such as Saiku, IBM Cognos,
QLikView, or many others. They provide complete
frameworks accessible for the developers or data ana-
lysts, often providing graphical interfaces or special-
ized languages. These frameworks enable construct-
ing complex analytical queries for any domain. When
using the graphical interface, it is important to have
the dimensional model clearly defined, so the features
of the tools can be fully explored. Many of them
translate the dimensional specifications into the MDX
(Multidimensional Expressions) language, which en-
ables writing analytical queries. The final user of-
ten does not need to write queries in MDX. Each
framework provide its own interface prior to the query
translation task.

Other approaches, considering having an API as

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

154

upper layer, propose to generate queries from REST-
ful APIs. In (Ed-douibi et al., 2018) an UML class
diagram is used to generate a database schema and a
RESTful API, respecting the OData pattern. It is de-
signed to OLTP queries, and there are extensions to
use OLAP queries. The translations are direct query
expansions. In (Sellami et al., 2014) an RESTful API
is presented as a communication language with rela-
tional and NoSQL data stores. In this case, the join
operations and aggregation functions are not allowed,
which means they are restricted, enabling to design
simple queries, but not targeted to analytics.

6 CONCLUSIONS

We presented a solution to ease the task of creat-
ing analytic queries on integrated tabular Open Data
sources. We describe our query representation for-
mat, called Relation-Free Query (RFQ), where we do
not explicitly define the relations and the joins, en-
abling to focus on the attributes, metrics and dimen-
sions. The RFQ requests are done through a RESTful
API. We provide a virtual global schema with the in-
formation about possible dimensions, metrics and at-
tributes, which is mapped into the target tables of the
concrete database.

We presented a case study, that consists on query-
ing over integrated Open Data sources, having more
than 900 dimensions and 600 metrics. The queries
are created using the developed RESTful API, which
has a one-to-one correspondence with the RFQ format
(dimensions, metrics, filters). This enables to have
a published Open Data querying microservice. A
microservice-based architecture was chosen because
it enables easy access by mobile or web application
developers, thus aiming at providing a public accessi-
ble service. A current version of the service, is freely
available online in a real world scenario, called BIOD
(Blended Integrated Open Data).

As future work, we plan to provide adapters of the
queries generated by the tool to enable querying on
different data lakes and to develop a solution to find
unionable tables to integrate the sources.

ACKNOWLEDGMENTS

We would like to thank the Simmc/UFPR and
SNPPIR/UFPR projects, which partially funded this
work.

REFERENCES

Abadi, D. and Stonebraker, M. (2015). C-store: Looking
back and looking forward. Talk at VLDB - Very Large
Database Systems.

Abiteboul, S., Hull, R., and Vianu, V. (1995). Founda-
tions of databases: the logical level. Addison-Wesley
Longman Publishing Co., Inc.

Aligon, J., Golfarelli, M., Marcel, P., Rizzi, S., and Turric-
chia, E. (2014). Similarity measures for OLAP ses-
sions. Knowl. Inf. Syst., 39(2):463–489.

Bergamaschi, S., Domnori, E., Guerra, F., Trillo Lado, R.,
and Velegrakis, Y. (2011). Keyword search over rela-
tional databases: A metadata approach. In Proceed-
ings of the 2011 ACM SIGMOD, SIGMOD ’11, pages
565–576, New York, NY, USA. ACM.

Blunschi, L., Jossen, C., Kossmann, D., Mori, M., and
Stockinger, K. (2012). Soda: Generating sql for busi-
ness users. Proceedings of the VLDB Endowment,
5(10):932–943.

Chen, S. (2010). Cheetah: a high performance, custom
data warehouse on top of mapreduce. Proceedings
ofVLDB, 3(1-2):1459–1468.

Ed-douibi, H., Izquierdo, J. L. C., and Cabot, J. (2018).
Model-driven development of OData services: An ap-
plication to relational databases.

Kwakye, M. M., Kiringa, I., and Viktor, H. L. (2013).
Merging multidimensional data models: a practical
approach for schema and data instances. In Proceed-
ings of the 5th DBKDA, pages 100–107.

Lenzerini, M. (2002). Data integration: A theoretical per-
spective. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 233–246.

Li, F., Pan, T., and Jagadish, H. V. (2014). Schema-free sql.
In Proceedings of the 2014 ACM SIGMOD, SIGMOD
’14, page 1051–1062, New York, NY, USA. ACM.

Miller, R. J. (2018). Open data integration. Proc. VLDB
Endow., 11(12):2130–2139.

Richardson, L., Amundsen, M., and Ruby, S. (2013). REST-
ful Web APIs: Services for a Changing World. ”
O’Reilly Media, Inc.”.

Sellami, R., Bhiri, S., and Defude, B. (2014). Odbapi: a
unified rest api for relational and nosql data stores. In
2014 IEEE International Congress on BigData, pages
653–660. IEEE.

Tata, S. and Lohman, G. M. (2008). Sqak: Doing more
with keywords. In Proceedings of the 2008 ACM
SIGMOD, SIGMOD, pages 889–902, New York, NY,
USA. ACM.

Open Data Analytic Querying using a Relation-Free API

155

