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Abstract: The number of dropouts and evasion rates in computing courses are among the highest in Brazilian 
universities. To reduce this rate, eLearning technologies are being used to compose solutions. Because of such 
reality, this work aims at showing an adaptive system architecture with learning paths that best fit the student’s 
profiles and interests. In order to take student’s profiles and interests into account, two theories will be used: 
constructivist and constructionist. The fundamentals of these theories were analysed to formulate a teaching 
structural model for the system. The literature was researched to find adaptive systems with theories similar 
to constructivism and constructionism. Then it was designed a collaborative agent system based on intelligent 
software agent techniques to help the student on its paths and content choices. In this system, the student’s 
difficulties, characteristics, and knowledge obtained from other users can be reused. An environment with a 
content hierarchy which allows more attractive learning path construction options may ease the learning, make 
the study more interesting and help reduce evasion rates in computing courses. 

1 INTRODUCTION 

Dropout is a negative phenomenon present in 
Brazilian higher education. Related to the negative 
phenomenon, it is possible to explicit: the students 
themselves, the teaching institutions, and the market. 
For students who drop out of college, it reduces their 
chances of personal and professional growth. For the 
institutions, they fail to fulfil their social function of 
educating, on the one hand, and fostering the labour 
market, on the other. Related to the market, it is 
noteworthy that it is increasingly interested in new 
professionals related to the areas of computing and 
information technology (IT), as shown by various job 
search sites (Guia da Carreira, 2018; MichaelPage, 
2019; Pattabiraman, 2019; CareerCast, 2019; Trade 
Schools 2019). Young people seeking professional 
growth in this market choose computer-related 
courses to meet this demand. 

Even though there is a good number of students 
entering these courses, the dropouts in Brazil are quite 
high. Dropout rates can range from 22% to 32% and 
is the second highest rate among courses at Brazilian 
universities (Filho et al, 2007; Lobo, 2017). Among 

the reasons that lead to this, it is the difficulty of the 
initial subjects that are the pillars of the course: 
Algorithms and Programming. These subjects are 
considered difficult by many beginners because of the 
need for the required abstraction and logical-
mathematical skills they do not have in their daily life 
(Raabe and da Silva, 2005). 

Seeking to better understand this problem, Giraffa 
and Mora (2016) conducted a survey with students 
who stopped attending computer science courses at 
PUCRS during the period of 2012-2013. In this 
research, it was found that the main reasons that 
contributed for the dropouts were: (i) lack of study 
time, as many have working hours; (ii) difficulties in 
understanding issues in the classroom and in 
activities; and (iii) teachers not so well qualified to 
serve several students. Such difficulties point not only 
to the problem of lack of prior skills, but to the 
didactic organization of teachers and the formulation 
of activities, as well as students’ individual problems. 

Teachers specific to each individual student 
would be ideal for solving problems, but the cost 
makes this practice unfeasible (Weragama, 2013). In 
addition, the difficulty of classroom issues may be 
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related to the different types of students entering 
computer courses. Heterogeneous profiles such as 
gender, age, education level, way of learning, and 
problem-solving skills make it difficult to create 
unique content that addresses them all (Oliveira et al, 
2015). 

In order to reduce the problem, two points are 
highlighted: changing teaching methodologies and E-
learning. 

E-learning is a web-based learning ecosystem 
integrating several stakeholders with technology and 
processes. It provides a flexible and personalized way 
to learn, allowing learning on demand and reducing 
its cost (Cidral, 2018). 

The application of E-learning is possible with the 
Intelligent Tutoring Systems (ITS). Nowadays, also 
called Adaptive Systems, they incorporate Artificial 
Intelligence (AI) techniques to develop tutors who 
know what, for whom and how they teach (Nwana, 
1990), that is, they consider the peculiarities of the 
student. 

On ITS development, many authors have 
successfully used Multi-Agent Systems (MAS) 
proposed (Giraffa, 1999; Yaghmaie and 
Bahreininejad, 2011; Dolenc and Aberšek, 2015; 
Hooshyar et al, 2015; Harley et al, 2015; Vaidya and 
Sajja, 2016). Using MAS can help with complex tasks 
such as monitoring student activity, capturing 
information about their dynamic contexts, 
recommending content based on their profiles, and 
more (Frade, 2015). 

Another way to solve problems may be by 
changing teaching methodologies. Some suggest a 
change in the form of general education to facilitate 
learning, such as constructivism (Piaget, 1967) and 
constructionism (Papert, 1980). In the constructivist 
approach, during the learning process, the student 
may be able to decide how to learn and act proactively 
in knowledge building (Bada 2015). In addition, 
constructionism points out that building a product 
related to students’ interests helps learning to occur in 
a more efficient way. 

One way to enable students to conduct their 
learning in computing is to provide choices on 
learning paths. Paths are different types of skills or 
knowledge that follow a user-definable sequence. 
Thus, led by the adaptive system, the students can 
define their own learning path, facilitating the 
acquisition of the content. 

Learning environments can be tools for applying 
constructionism (Baranauskas, 1999). They can be 
applied with microworld building, hypermedia text, 
and programming environments. Programming 
environments that help the user and facilitate the 

learning of logic present constructivist 
characteristics.  

This paper presents an adaptive system 
architecture model with learning paths for 
programming teaching. For the development of 
learning paths, the IDE Portugol Studio (Noschang, 
2014) is used. It was developed with the purpose of 
facilitating the learning of programming logic in 
Brazil and has architectural features that facilitates to 
create adaptable learning paths for the students. 

The adaptive system is designed to provide the 
following features: (i) learning paths with adaptive 
options, led by an intelligent tutor so that students can 
choose the knowledge of interest; (ii) adapted 
resolution tips and support materials during the 
exercise, if the student has difficulties; and (iii) 
providing exercises adapted to the student's personal 
interests. The proposed solution utilizes MAS 
technology, and the MIDAS platform provides 
infrastructure services such as communication, 
management, and interaction between agents. 

2 BACKGROUND 

The following subsections describe the main 
foundations used for solution development. 

2.1 e-Learning and Adaptive Systems 

Considering the rapid growth of Technology and 
Population, it seems inevitable that E-learning is 
going to be the main agent for education. It involves 
innovative pedagogy, advanced teaching strategies 
and learning methodologies and approaches tightly 
connected with flexibility, accessibility, openness, 
and communication through modern services. 
Personalized intelligent agents and recommender 
systems have been widely accepted as solutions 
towards overcoming information retrieval challenges 
by learners arising from information overload (Tarus, 
2017). 

That’s why Intelligent Tutoring Systems are great 
systems to integrate into E-learning environments 
(Phobun, 2010). For years, there have been several 
proposals on how ITS can be modelled. The 
following works have similar themes and ideas that 
helped in the development of the architecture 
proposed in this work. 

Cabada et al (2017) developed Java Sensei, an 
adaptive learning environment based on student 
preferences. The system recommends exercises based 
on other students’ grades who have previously used 
the system. It uses sentiment analysis captured 
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through cameras to provide personal instruction to 
users. It also allows the creation of exercises without 
the need to program. The system architecture consists 
of the following layers: (i) presentation, which is the 
interface that communicates with the user; (ii) tutor, 
comprising a domain module, a tutor module, a 
student module and an exercise recommendation 
system; (iii) intelligence, which infers the 
characteristics of the students using the system by 
analysing their emotions; (iv) web content, which 
contains key files for the logic of previous layers; and 
(v) data, which contains the student and domain saved 
data. 

De Meo et al (2007) used the MAS technique to 
develop the X-Learn. The virtual learning system is 
structured in XML. The system consists of 3 main 
agents: (i) User Device Agent (UDA); (ii) Skills 
Management Agent (SMA); and (iii) Learning 
Program Agent (LPA). Knowledge is stored in a 
learning object repository. By activating the UDA 
associated with it, the student has access to a list of 
skills they can learn. This list is made in collaboration 
with the SMA, which analyses the skills he has 
already learned, and the skills he can learn. After the 
user selects what they want to learn, SMA brings up 
a list of subjects needed to learn that specific skill. It 
then cooperates with LPA to define the best learning 
program based on knowledge and user profile 
information. 

Panagiotis et al (2016) developed the APLe 
(Agents for Personalized Learning). They based their 
system in 2 ontologies: (i) Learner Model and (ii) 
Learning Object and Outcomes. The first models the 
student’s characteristics like learning and social style, 
use of technology, literacy, experience, time of study 
and reasons for education. The second stands for the 
knowledge domain. It used Learning Objects, which 
are units of educational digital content and Learning 
Outcomes which are what the student is expected to 
know. The tutor Agents designated to each student 
uses a LSM (Learning Space Management) and a 
LTC (Learning Tactic Control). The LSM is the 
knowledge to be learned; it used learning objects to 
create a graph structure. The Learning Objects and 
Outcomes are placed in this graph with the actual 
states of the learner. They tell if the student learned 
something depending on the states they are. The LTC 
is a reactive component that selects the tactic to apply 
to the LSM. When the learner asks for a 
recommendation, the system triggers the LTC to use 
a formula to balance the LSM nodes and determine 
which nodes of content should be recommended. 

All these works use Multi-Agent Systems. While 
they are not obligatory to make them function, MAS 

allows for more scalability, error tolerance, 
robustness and security. These works help 
formulating some structures from the proposed 
system as it will be seen in sections 3 and 4. 

2.2 Constructivism and 
Constructionism in Learning Paths 

The constructivism, proposed by Piaget (1980), is 
based on the principle that learning is a process of 
knowledge construction in which the student is an 
active part of the process. Children not only record 
what they are taught, but also formulate their own 
ideas with prior knowledge. Previously acquired 
knowledge is not necessarily wrong, but with 
experience, by validating this knowledge, it is 
possible to correct and define new solutions. 

By giving the learner a leading role in learning, 
during the process of knowledge building 
constructivism allows one to confront the results of 
experiments and re-evaluate their ideas about how the 
world works (Philips, 1995).  

However, Papert (2008) studies Piaget’s research 
and criticizes some aspects. He points out how 
concrete learning, described by Piaget, is a subjective 
term that leads to misinterpretation. Papert proposes 
constructionism as a form of “reconstructed” learning 
of Piaget’s constructivism. 

For Papert, learning is not just about 
experimentation, building objects in the world plays 
a more important role in knowledge building. For 
him, the construction is not only theoretical, but also 
practical of a real product. Moreover, the context of 
this construction being relevant to the student allows 
the construction of the mental model itself to be 
facilitated by association with a subject that already 
knows. 

To provide the student with the possibility of 
construction and protagonism, the chosen form was 
the use of learning paths. These paths are like a 
sequence of nodes, where each node is related to a 
skill or subject learned. These subjects and skills have 
various contents within them that serve as a learning 
possibility for the student. The student who wants to 
learn some skill can look at the contents and look for 
the one of their choice. A student looking at various 
content in sequence will build a content path, 
ultimately called the learning path. Details of the path 
structure can be seen in section 4.1. 

Raabe et al (2016) points out how contexts 
applied in exercise statements can influence the 
resolution of activities, as they show a real application 
of this knowledge. This, however, cannot be 
generalized since students have their own context. If 

An Adaptive System Architecture Model for the Study of Logic and Programming with Learning Paths

681



an exercise that is not in a context is applied, that 
application may not be relevant to learning. Thus, in 
addition to the paths, each tree node contains a series 
of content with different contexts to learn. The tutor 
suggests to the student the one with the best context 
for him to learn, depending on his interests. 

2.3 Portugol Studio 

Many authors propose tools that facilitate and remove 
barriers in early learning. There are several 
environments in the literature that help beginners in 
programming (Cooper, 2000; Ng, 2005; Resnick, 
2009; Wolber, 2011; Paiva, 2016; Romagosa 2019) 
and Portugol Studio (PS) (Noschang 2014) is an IDE 
focused on Brazilian learners. 

PS is a beginner-oriented programming IDE. The 
language syntax is defined in Portuguese and has a 
simplified interface for easy learning. Even as a 
beginner IDE, it has several libraries that allow more 
complex programs to be developed. 

The IDE has a language like C and PHP. It has 
syntax documentation tabs, and library 
documentation in the help tab. It has several examples 
of programs already made, from simpler programs 
with “Hello World” writing to complete games using 
the existing graphics mode. It also has didactic error 
messages as standard which can help smart tutors. 
These messages tell the user the location of the error, 
why the error occurred, and examples of 
troubleshooting.  

Some works that enable more effective intelligent 
tutoring have already been developed for this tool 
(Pelz, 2011; Hodecker, 2014). They deal with the 
development of an automatic exercise corrector as a 
plugin for PS. 

The PS platform is open source and is already 
used in more than 7 universities. It has over 200,000 
downloads and keeps up to date. Besides being able 
to change IDE source code, it is also possible to 
develop plugins, create buttons with functions in the 
code editor, add libraries, among others. 

3 PROPOSED SOLUTION 

The system was designed with features of an adaptive 
STI. It offers content on various topics with different 
themes. This enables the student to choose the content 
they want to learn and set up their own learning path. 
Meanwhile the system helps the student to choose the 
content that fits his profile. In addition, the system 
provides solving tips and support materials when 
performing exercises tailored to their profile if the 

students experience difficulties. The following 
subsections present the learning path structure, the 
generic architecture, and the proposed role model for 
the agents. 

3.1 Path Model 

The path model developed for the system uses a level 
and topic structure. In the system domain there are 
several different topics of programming learning, 
however some need previously taught topics to be 
learned. Because of that, the framework uses levels to 
define the order in which some topics need to be 
learned. This structure can be seen in Figure 1. 

 

Figure 1: Structure of knowledge domain levels. 

Existing topics at the same level can be learned in 
any order. Conversely, topics that are at different 
levels need to be learned according to the order of the 
levels at which they are located, starting from the 
lowest level to the highest level. The student using the 
system will need to complete all topics at the same 
level to advance to the next one. However, this does 
not mean that he will need to complete all existing 
content on that topic. 

This is possible because each topic has several 
contents that validate the topic as complete if used by 
the student. These contents may vary between: (i) 
exercises and (ii) support materials. The contents 
have attributes that represent their characteristics that 
differentiate them from each other. Attributes range 
from: (i) Difficulty, (ii) Complexity, (iii) Content 
Type, (vi) Taxonomy, and (v) Tags. This can be seen 
in Figure 2. 
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Figure 2: Topic structure, and knowledge domain exercise. 

The tags in each content are related to the themes 
that the content addresses outside the programming. 
These themes are related to different preferences that 
students may have when using the system. For 
example, a student may prefer songs, so music-tagged 
content will be recommended to them. 

When selecting content, students will have their 
option recorded in their account and linked to their 
previous content. This connection in sequence of 
contents is called the learning path. This can be seen 
in Figure 3. 

 

Figure 3: Generic example of a learning path. 

The topics in a path do not necessarily have to be 
in order of levels. Topics that have already been 
completed by the student can always be revisited, so 
lower level exercises after higher levels can occur on 
the paths. This can happen in cases where the student 
realizes or is driven by the system that needs to 
reinforce content they should have already learned. 
The students, in these cases, will be directed to a 
different exercise of the same topic and placed on 
their path. 

The track is recorded in the system, allowing it to 
be reused to help new students select their content. 
Similarities between student characteristics may 
identify paths that best suit them because they have 

already been used and successful by previous 
students. 

3.2 Generic Architecture 

The generic architecture is an abstract representation 
of the system, as shown in Figure 2. In Localhost, it 
is the PS system with its functions (AutoCorrect and 
Error Messages). The proposed solution is 
represented in two modules: the Web Platform and 
the Tutor Plugin. 

 

Figure 4: Proposed system generic architecture. 

Domain and student models are contained in the 
web platform. They keep the content and student data 
respectively. Structured content data for learning 
paths as well as students’ doubts registered in the 
system are stored in the domain model. In the student 
model, the consolidated profile data of all students in 
the system is stored. 

Students using the system must create an account 
so that their profile and usage information is saved 
and help the tutor develop their teaching method. For 
the adaptive system to learn over time, information 
from all students using the system must be 
consolidated into a database. 

In the web platform, the following five agents act:  
(i) Pedagogical Tutor, who collaborates with 

Classifier and Recommender agents to provide 
students with exercises recommended by their 
preferences and similarities with other students; 

(ii) Interface, which interacts with the student by 
recording their questions and answering them, and by 
creating an interface for the system administrator and 
the student;  

(iii) Tracker, which is responsible for capturing 
student interactions with the system and storing them 
in the database;  
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(vi) Classifier, which is responsible for clustering 
students according to their interactions and 
preferences; 

(v) Recommender, to recommend to the tutor 
module the best student exercise based on other 
students. With these agents working together, we seek 
to meet the needs of students in programming 
learning. 

The web platform uses the MIDAS platform 
(Haendchen Filho, 2017) responsible for the 
execution of the multi-agent system, the management 
of communication between agents and the 
mechanisms of access to the database. Information on 
the operation of this system is described in section 
2.1. 

3.3 Tutor Module Specifications 

The specifications of the agents that make up the 
Tutor Module were defined using the role model. This 
model is used in several approaches (Gonçalves 2009; 
Haendchen Filho, 2019) to provide a summary of 
agent activities. According to theory, a role can be 
described by two basic attributes: (i) Responsibilities: 
the role of obligations that indicate functionality; and 
(ii) Permissions: the rights associated with the role, 
indicating the features that the agent can use. Table 1 
presents the role model of the agents. 

Table 1: Agent Responsibility Table. 

 

The Tracking Agent is responsible for capturing 
student interactions with Portugol Studio. It is located 

on the web platform and receives user interaction data 
through the plugin interface. This agent is therefore 
responsible for recording in the student module the 
following student information: (i) clicks on the 
interface; (ii) length of stay in the system; (iii) 
exercise response time; (iv) solved exercises; (v) 
chosen paths. 

The Interface Agent is responsible for formatting 
the interface for the system administrator. It has 
access to domain and student module information to 
allow the administrator to see this information on 
their screen. It also receives questions from users 
through an existing plugin interface. When a user asks 
a question, the agent searches the domain module for 
answers to similar questions and show the student. If 
they do not have similar questions already logged in 
the system, it will be logged until an administrator 
answers it. Therefore, their responsibilities are: (i) to 
record student’s questions; (ii) notify the 
administrator about unresolved student’s questions; 
(iii) send the students who asked the questions the 
respective answers of the administrators; (iv) answer 
student’s questions without the need for an 
administrator if a similar question has already been 
asked by another student and answered. 

The Tutor Agent is the one who chooses the best 
teaching strategy for the student. It has access to 
student module and domain module information. This 
agent collaborates with the Classifier agents to cluster 
students and discover similarities, and the Advisory 
agent to suggest student-tailored content. This 
enables new students to learn from the tutor’s 
experiences with previous students. In addition, to 
better identify these groups, it identifies errors in 
exercises by enumerating by types of errors, and 
students' personal preferences and content selection. 
Finally, it analyses the reading time and resolution of 
each content, identifying which students spent more 
and less time. Thus, this agent’s responsibilities are: 
(i) to suggest learning paths based on student 
preferences and profile (collaboration with Classifier 
and Recommender Agent); (ii) suggest real-time 
exercise solving tips with the aid of the automatic 
correction module to help you learn programming 
content more easily; (iv) identify errors in exercises 
(collaboration with Tracking Agent); (v) identify 
student preferences according to chosen exercises 
(collaboration with Tracking Agent); (vi) identify the 
average exercise resolution time (collaboration with 
Tracking Agent). 

The Classifier Agent uses Clustering techniques 
to group students with similar characteristics, and 
Machine Learning techniques to identify students 
with potential dropout characteristics. The Classifier 
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Figure 5: Content request process in BPMN model. 

collaborates with the Pedagogical Agent. Once the 
student is classified into a group, you can check 
which exercises best fit them and their preferences. 
The profile data that allow classification are: (i) age, 
(ii) gender, (iii) educational level, (iv) personal 
preferences, (v) chosen paths, (vi) resolved exercises, 
(vii) average time exercise resolution and (viii) most 
frequent types of errors. This information is stored in 
the user accounts created by each student using the 
system. The first four attributes are obtained at the 
time of user’s account creation, and the others are 
captured while using the system. 

Referring Agents are responsible for 
recommending content to a student. It receives from 
the Pedagogical Agent the student group to which the 
student belongs and uses this group to find the content 
that had the best results in terms of time and user 
errors. When the analysis and selection is completed, 
it sends to the Pedagogical Agent the content that best 
fits your profile and level of knowledge.  

This communication between agents can be 
represented in a BPMN model (Küster, 2012). The 

BPMN (Business Process Modelling Notation) is a 
leading process modelling language that was 
designed to be readable by all its business users 
(OMG, 2006). Figure 3 presents an example of 
communication between system agents using the 
BPMN model.  

The initial process with the user requesting the 
pedagogical agent and then requesting the interest 
group that student is to the classifying agent. This 
agent will identify the group that the student 
requesting belongs to and will return to the 
pedagogical one. Then the pedagogical agent will 
send the recommending agent the group of students 
requesting the exercise recommendations for him. 
The recommender will compare content paths among 
students in the group and indicate the most common 
content among them for the student who requested it. 
This list returns to the pedagogical agent who 
responds to the student with the list of contents 
recommended to him, along with the exercises of the 
level the student is at. 
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4 IMPLEMENTATIONS 

An implementation of the system is being developed 
for this work. The system is already structured on the 
MIDAS platform with all agents and their services. 
Agents on the platform interface show only 
communication services, which allow collaboration 
between agents. Responsibilities that do not require 
communication with other agents such as user 
tracking through the interface or calculating user time 
when using some content are intrinsic to the platform 
interface as can be seen in Figure 6. 

 

Figure 6: Agent structure modelled on MIDAS platform. 

The life cycle of each agent differs according to 
its objectives and services. The tracking agent must 
capture and organize the user's information while 
using the system. The interface agent must 
communicate with the user taking questions and with 
the administrator presenting information. The tutor 
agent must select the teaching strategies for the user, 
using the sociability between the agents of the system. 
The classification agent must group similar students 
to facilitate the identification of characteristics. 
Finally, the recommendation agent must select the 
most adapted content according to the group of 
student characteristics. 

The system in the Portugol interface will 
communicate with agents on the web platform. Figure 
7 shows the system content selection image. It is 
under development and it will be changed, but it can 
already be seen inside the Portugol Studio system. 

 

Figure 7: Interface prototype working on PS. 

The above presented interface is in Portuguese 
idiom. It contains, on the top panel, the contents 
recommended by the system for the user. In the panel 
below, the contents that can be selected by the user 
are They can be filtered by: (i) type, (ii) level, (iii) 
difficulty and (iv) themes. 

4.1 Methodological Procedures 

The project was planned in several phases described 
below: 

(i) Systematic literature review to find related work 
and platforms to assist the implementation 

(ii) Definition of the learning trails structure 

(iii) Elaboration of the system architecture 

(iv) Specification of the role model for system 
agents 

(v) Specification of agent services workflow 

(vi) Adaptation of the Portugol Studio tool to 
receive the system as its plugin 

(vii) Population of the database 

(viii) Implementation of the agents 

(ix) Development of the Graphical User Interface  

(x) Experiments with students 

(xi) Analysis of the experiments 

Phases (i) to (iv) are concluded. Phases (vii), (viii) 
and (ix) are in progress. A partial implementation of 
the Agents and the User Interface was illustrated in 
figures 6 and 7 and the population of the database is 
currently being held. Phases (x) and (xi) will be held 
in the near future. 
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5 DISCUSSION 

In trying to solve the problem of dropout, intelligent 
tutoring systems focused on programming teaching 
were researched and applied in Brazilian universities, 
but they use tools with the problems already reported 
in research with the PS. In recent updates, PS allows 
the development of plugins in the tool, so the 
possibility of an adaptive system being integrated into 
the tool has become palpable. 

Thus, researching the works with Adaptive 
Systems and teaching methodologies, it was possible 
to develop the architecture presented in this work. 
The system described is based on two points: (i) 
Learning Paths and (ii) Multi-Agent System 
Architecture. 

The learning path structure was developed by 
trying to use the constructivist and constructionist 
concepts developed by Piaget and Papert 
respectively. However, assisting the student in what 
activities he should do and allowing him a freedom to 
choose what he wants to do are almost opposite 
concepts. To solve this point, the literature sought the 
uses of learning paths. 

In the literature, the concepts of learning paths are 
already used by some authors such as De Meo (2007) 
and Panagiotis (2016). With De Meo, paths are used 
to define the way a student must take to complete a 
project. The options to choose from in his work are 
only from existing projects. The paths and topics the 
student must follow to achieve their project goal are 
predefined by the system. On the other hand, 
Panagiotis uses learning paths as suggestions for the 
student. The student can select a learning object 
within that track without necessarily having to follow 
it as recommended. 

Works such as De Meo’s only let a momentary 
protagonism to the student. The student, even doing a 
project he has chosen, must still follow predetermined 
instructions. Panagiotis' work already gives the 
student greater freedom, the intelligent tutor being 
just someone who suggests what he should learn. 
Both works, however, do not allow the student to set 
up their own track. 

The proposed track structure for the system uses 
student choices to assemble the paths. Each student 
using the system will receive suggestions for the 
following paths, but he or she can assemble their own 
by selecting the order of content they want to watch 
or play. Paths are made of content that is like 
Panagiotis learning objects and uses tags that define 
the characteristics of each content. They are an 
expansion of the work of Santos el al (2013). Not only 
are exercise topics, taxonomy and complexity 

highlighted, but also the topics they cover in 
explaining the topics. This allows the student to learn 
according to the subject of interest. 

Recommend content according to the student’s 
topic of interest and interactions with other users is 
part of the smart tutor’s responsibilities. Modeling the 
smart tutor is an important part of the development 
process and one of the contributions of this work. 

Many works on intelligent and adaptive tutors are 
developed with multi-agent system technologies as 
already mentioned in section 1. As these systems are 
constantly updated, they need to be modular to reduce 
errors and facilitate maintenance. Multi-agent 
systems are great for that. 

In this paper, we use the concept of service 
oriented intelligent agents as proposed through 
MIDAS. Analyzing some works in the literature it 
was possible to see which agents are well used and 
which are adaptable to this work. 

The use of recommending agents is an existing 
practice among intelligent tutors, as in the study by 
Cabada et al (2017). He proposes an architecture 
composed by a tutor and an exercise recommender. In 
the proposed model, the tutor is used solely to assist 
the user in activities with suggestions, while the 
recommender only provides exercises based on the 
user’s characteristics. 

This separation is applied in the proposed 
architecture. The recommending agent has only the 
function of recommending the exercises based on the 
characteristics of the students who have already used 
the system. However, the discovery of these similar 
characteristics is the responsibility of another agent, 
the classifying agent. 

Both agents collaborate with the main agent, the 
pedagogical tutor. It coordinates agent collaboration 
and uses existing exercise correction modules in 
Portugol Studio to deliver exercise resolution tips. 

This separation of intelligence from 
recommendation and activity aid is like that of 
Cabada’s work. Meanwhile two other agents were 
added. The tracking agent, whose primary function is 
to track all user interactions and store them, and the 
interface agent that is responsible for communicating 
interfaces with the administrator. 

Both improve system maintenance. The tracker 
further modularizes tasks, and the interface agent 
makes it easy for the administrator to change system 
settings without having to make changes to the source 
code. In addition, the interface agent allows the 
administrator to answer student questions and save 
them so that they can answer similar questions from 
other students. 
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These system features and Portugol Studio 
functionality can therefore help students improve 
their programming learning with the support of the 
intelligent tutor. 

The tutor architecture presented here follows 
current technological and methodological standards. 
The main difference from similar work is the learning 
paths structure. It allows different and personal 
learning paths to be suggested for new students 
according to previous students with similar 
characteristics. 

This might reduce the slope of the students 
learning curve since successful cases will be used to 
help them. The Portugol Studio (PS) tool also helps 
in the same direction since it was developed to aid 
novice programming students in universities, and it is 
widely used in Brazil. 

The plugins the PS have are easily available on its 
interface. This will allow the proposed Adaptive 
System to be found by many Computer Science 
students in Brazil and also independent learners and 
will certainly foster the development of new research 
projects. 

6 CONCLUSION AND FUTURE 
WORKS 

There is a recurring need in the Computer Science 
area for tools to assist the learning process, especially 
programming logic. Students often do not have time 
to study or cannot adapt to classroom teaching. 
Adaptive systems emerge as one of the alternatives to 
this reality. 

Alternatively, constructivist and constructivism 
methodologies can also help students learn new 
concepts in programming using IDEs. Systems with 
adaptive features and assisted learning techniques 
like Portugol Studio can be a way to facilitate learning 
for beginning programmers. 

The main contribution of this work is the proposal 
of an architectural model with low-level diagrams 
representing the functionalities of the agents for an 
adaptive system. The purpose is to facilitate the logic 
learning and programming with learning paths. This 
can generate gains in preparing a generation in a high 
demand market for this knowledge type. 

The next steps in implementing the system are as 
follows: (i) implementation of the services, (ii) 
population of the content tags and (iii) 
implementation of the communication interface 
between Portugol and the Agents on the web. 

The implementation of the services will allow 
communication between agents on the MIDAS 
platform. Each agent service implemented must 
follow the definitions shown in subsection 3.3. 

Content tags are one of the bases of the system's 
intelligence. They will allow the recommending agent 
to identify topics of interest to students in each 
content. This will permit him to learn to program 
within his context of interest, following 
constructionist theory. 

Finally, Portugol's communication interface with 
web agents will start the connections that will allow 
agents to receive student information and collaborate 
to send students learning suggestions. 

As the system is finished, the future works in the 
project are: (i) experiments with students and (ii) 
analysis of the experiments, following the procedures 
described on subsection 4.1. 

The experiments will be held made with classes of 
computer science real students of the authors from the 
local university. The students will use the system as a 
support to discover their difficulties in programming. 

 The main goal is to assess whether the system 
gives them coherent personalized suggestions 
according to their difficulties and preferences. The 
student’s acceptance on the recommendations are 
also going to be measured. 

Since the Portugol Studio tool is widely adopted 
in Brazilian universities, further work also can be 
done to collected data to find patterns about general 
difficulties of Brazilian programming learners and 
which learning paths can help the most.  

These researches might help find better ways to 
help students learn programming and reduce the 
dropouts on universities caused by the difficulties 
they have in the initial courses. 
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