
An Adaptive System Architecture Model for the Study of Logic and
Programming with Learning Paths

Adson M. da S. Esteves1, Aluizio Haendchen Filho2,3, André L. A. Raabe1 and Rudimar L. S. Dazzi2
1Laboratory of Technologic Innovation in Education, University of the Itajaí Valley (UNIVALI),

Rua Uruguay, 458, Itajaí, Brazil
2Laboratory of Applied Intelligence, University of the Itajaí Valley (UNIVALI), Rua Uruguay, 458, Itajaí, Brazil

3Univertity Center of Brusque (UNIFEBE), Brusque, Brazil

Keywords: e-Learning, Intelligent Tutoring Systems, Adaptive System, Constructivism, Constructionism.

Abstract: The number of dropouts and evasion rates in computing courses are among the highest in Brazilian
universities. To reduce this rate, eLearning technologies are being used to compose solutions. Because of such
reality, this work aims at showing an adaptive system architecture with learning paths that best fit the student’s
profiles and interests. In order to take student’s profiles and interests into account, two theories will be used:
constructivist and constructionist. The fundamentals of these theories were analysed to formulate a teaching
structural model for the system. The literature was researched to find adaptive systems with theories similar
to constructivism and constructionism. Then it was designed a collaborative agent system based on intelligent
software agent techniques to help the student on its paths and content choices. In this system, the student’s
difficulties, characteristics, and knowledge obtained from other users can be reused. An environment with a
content hierarchy which allows more attractive learning path construction options may ease the learning, make
the study more interesting and help reduce evasion rates in computing courses.

1 INTRODUCTION

Dropout is a negative phenomenon present in
Brazilian higher education. Related to the negative
phenomenon, it is possible to explicit: the students
themselves, the teaching institutions, and the market.
For students who drop out of college, it reduces their
chances of personal and professional growth. For the
institutions, they fail to fulfil their social function of
educating, on the one hand, and fostering the labour
market, on the other. Related to the market, it is
noteworthy that it is increasingly interested in new
professionals related to the areas of computing and
information technology (IT), as shown by various job
search sites (Guia da Carreira, 2018; MichaelPage,
2019; Pattabiraman, 2019; CareerCast, 2019; Trade
Schools 2019). Young people seeking professional
growth in this market choose computer-related
courses to meet this demand.

Even though there is a good number of students
entering these courses, the dropouts in Brazil are quite
high. Dropout rates can range from 22% to 32% and
is the second highest rate among courses at Brazilian
universities (Filho et al, 2007; Lobo, 2017). Among

the reasons that lead to this, it is the difficulty of the
initial subjects that are the pillars of the course:
Algorithms and Programming. These subjects are
considered difficult by many beginners because of the
need for the required abstraction and logical-
mathematical skills they do not have in their daily life
(Raabe and da Silva, 2005).

Seeking to better understand this problem, Giraffa
and Mora (2016) conducted a survey with students
who stopped attending computer science courses at
PUCRS during the period of 2012-2013. In this
research, it was found that the main reasons that
contributed for the dropouts were: (i) lack of study
time, as many have working hours; (ii) difficulties in
understanding issues in the classroom and in
activities; and (iii) teachers not so well qualified to
serve several students. Such difficulties point not only
to the problem of lack of prior skills, but to the
didactic organization of teachers and the formulation
of activities, as well as students’ individual problems.

Teachers specific to each individual student
would be ideal for solving problems, but the cost
makes this practice unfeasible (Weragama, 2013). In
addition, the difficulty of classroom issues may be

Esteves, A., Filho, A., Raabe, A. and Dazzi, R.
An Adaptive System Architecture Model for the Study of Logic and Programming with Learning Paths.
DOI: 10.5220/0009412406790690
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 1, pages 679-690
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

679

related to the different types of students entering
computer courses. Heterogeneous profiles such as
gender, age, education level, way of learning, and
problem-solving skills make it difficult to create
unique content that addresses them all (Oliveira et al,
2015).

In order to reduce the problem, two points are
highlighted: changing teaching methodologies and E-
learning.

E-learning is a web-based learning ecosystem
integrating several stakeholders with technology and
processes. It provides a flexible and personalized way
to learn, allowing learning on demand and reducing
its cost (Cidral, 2018).

The application of E-learning is possible with the
Intelligent Tutoring Systems (ITS). Nowadays, also
called Adaptive Systems, they incorporate Artificial
Intelligence (AI) techniques to develop tutors who
know what, for whom and how they teach (Nwana,
1990), that is, they consider the peculiarities of the
student.

On ITS development, many authors have
successfully used Multi-Agent Systems (MAS)
proposed (Giraffa, 1999; Yaghmaie and
Bahreininejad, 2011; Dolenc and Aberšek, 2015;
Hooshyar et al, 2015; Harley et al, 2015; Vaidya and
Sajja, 2016). Using MAS can help with complex tasks
such as monitoring student activity, capturing
information about their dynamic contexts,
recommending content based on their profiles, and
more (Frade, 2015).

Another way to solve problems may be by
changing teaching methodologies. Some suggest a
change in the form of general education to facilitate
learning, such as constructivism (Piaget, 1967) and
constructionism (Papert, 1980). In the constructivist
approach, during the learning process, the student
may be able to decide how to learn and act proactively
in knowledge building (Bada 2015). In addition,
constructionism points out that building a product
related to students’ interests helps learning to occur in
a more efficient way.

One way to enable students to conduct their
learning in computing is to provide choices on
learning paths. Paths are different types of skills or
knowledge that follow a user-definable sequence.
Thus, led by the adaptive system, the students can
define their own learning path, facilitating the
acquisition of the content.

Learning environments can be tools for applying
constructionism (Baranauskas, 1999). They can be
applied with microworld building, hypermedia text,
and programming environments. Programming
environments that help the user and facilitate the

learning of logic present constructivist
characteristics.

This paper presents an adaptive system
architecture model with learning paths for
programming teaching. For the development of
learning paths, the IDE Portugol Studio (Noschang,
2014) is used. It was developed with the purpose of
facilitating the learning of programming logic in
Brazil and has architectural features that facilitates to
create adaptable learning paths for the students.

The adaptive system is designed to provide the
following features: (i) learning paths with adaptive
options, led by an intelligent tutor so that students can
choose the knowledge of interest; (ii) adapted
resolution tips and support materials during the
exercise, if the student has difficulties; and (iii)
providing exercises adapted to the student's personal
interests. The proposed solution utilizes MAS
technology, and the MIDAS platform provides
infrastructure services such as communication,
management, and interaction between agents.

2 BACKGROUND

The following subsections describe the main
foundations used for solution development.

2.1 e-Learning and Adaptive Systems

Considering the rapid growth of Technology and
Population, it seems inevitable that E-learning is
going to be the main agent for education. It involves
innovative pedagogy, advanced teaching strategies
and learning methodologies and approaches tightly
connected with flexibility, accessibility, openness,
and communication through modern services.
Personalized intelligent agents and recommender
systems have been widely accepted as solutions
towards overcoming information retrieval challenges
by learners arising from information overload (Tarus,
2017).

That’s why Intelligent Tutoring Systems are great
systems to integrate into E-learning environments
(Phobun, 2010). For years, there have been several
proposals on how ITS can be modelled. The
following works have similar themes and ideas that
helped in the development of the architecture
proposed in this work.

Cabada et al (2017) developed Java Sensei, an
adaptive learning environment based on student
preferences. The system recommends exercises based
on other students’ grades who have previously used
the system. It uses sentiment analysis captured

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

680

through cameras to provide personal instruction to
users. It also allows the creation of exercises without
the need to program. The system architecture consists
of the following layers: (i) presentation, which is the
interface that communicates with the user; (ii) tutor,
comprising a domain module, a tutor module, a
student module and an exercise recommendation
system; (iii) intelligence, which infers the
characteristics of the students using the system by
analysing their emotions; (iv) web content, which
contains key files for the logic of previous layers; and
(v) data, which contains the student and domain saved
data.

De Meo et al (2007) used the MAS technique to
develop the X-Learn. The virtual learning system is
structured in XML. The system consists of 3 main
agents: (i) User Device Agent (UDA); (ii) Skills
Management Agent (SMA); and (iii) Learning
Program Agent (LPA). Knowledge is stored in a
learning object repository. By activating the UDA
associated with it, the student has access to a list of
skills they can learn. This list is made in collaboration
with the SMA, which analyses the skills he has
already learned, and the skills he can learn. After the
user selects what they want to learn, SMA brings up
a list of subjects needed to learn that specific skill. It
then cooperates with LPA to define the best learning
program based on knowledge and user profile
information.

Panagiotis et al (2016) developed the APLe
(Agents for Personalized Learning). They based their
system in 2 ontologies: (i) Learner Model and (ii)
Learning Object and Outcomes. The first models the
student’s characteristics like learning and social style,
use of technology, literacy, experience, time of study
and reasons for education. The second stands for the
knowledge domain. It used Learning Objects, which
are units of educational digital content and Learning
Outcomes which are what the student is expected to
know. The tutor Agents designated to each student
uses a LSM (Learning Space Management) and a
LTC (Learning Tactic Control). The LSM is the
knowledge to be learned; it used learning objects to
create a graph structure. The Learning Objects and
Outcomes are placed in this graph with the actual
states of the learner. They tell if the student learned
something depending on the states they are. The LTC
is a reactive component that selects the tactic to apply
to the LSM. When the learner asks for a
recommendation, the system triggers the LTC to use
a formula to balance the LSM nodes and determine
which nodes of content should be recommended.

All these works use Multi-Agent Systems. While
they are not obligatory to make them function, MAS

allows for more scalability, error tolerance,
robustness and security. These works help
formulating some structures from the proposed
system as it will be seen in sections 3 and 4.

2.2 Constructivism and
Constructionism in Learning Paths

The constructivism, proposed by Piaget (1980), is
based on the principle that learning is a process of
knowledge construction in which the student is an
active part of the process. Children not only record
what they are taught, but also formulate their own
ideas with prior knowledge. Previously acquired
knowledge is not necessarily wrong, but with
experience, by validating this knowledge, it is
possible to correct and define new solutions.

By giving the learner a leading role in learning,
during the process of knowledge building
constructivism allows one to confront the results of
experiments and re-evaluate their ideas about how the
world works (Philips, 1995).

However, Papert (2008) studies Piaget’s research
and criticizes some aspects. He points out how
concrete learning, described by Piaget, is a subjective
term that leads to misinterpretation. Papert proposes
constructionism as a form of “reconstructed” learning
of Piaget’s constructivism.

For Papert, learning is not just about
experimentation, building objects in the world plays
a more important role in knowledge building. For
him, the construction is not only theoretical, but also
practical of a real product. Moreover, the context of
this construction being relevant to the student allows
the construction of the mental model itself to be
facilitated by association with a subject that already
knows.

To provide the student with the possibility of
construction and protagonism, the chosen form was
the use of learning paths. These paths are like a
sequence of nodes, where each node is related to a
skill or subject learned. These subjects and skills have
various contents within them that serve as a learning
possibility for the student. The student who wants to
learn some skill can look at the contents and look for
the one of their choice. A student looking at various
content in sequence will build a content path,
ultimately called the learning path. Details of the path
structure can be seen in section 4.1.

Raabe et al (2016) points out how contexts
applied in exercise statements can influence the
resolution of activities, as they show a real application
of this knowledge. This, however, cannot be
generalized since students have their own context. If

An Adaptive System Architecture Model for the Study of Logic and Programming with Learning Paths

681

an exercise that is not in a context is applied, that
application may not be relevant to learning. Thus, in
addition to the paths, each tree node contains a series
of content with different contexts to learn. The tutor
suggests to the student the one with the best context
for him to learn, depending on his interests.

2.3 Portugol Studio

Many authors propose tools that facilitate and remove
barriers in early learning. There are several
environments in the literature that help beginners in
programming (Cooper, 2000; Ng, 2005; Resnick,
2009; Wolber, 2011; Paiva, 2016; Romagosa 2019)
and Portugol Studio (PS) (Noschang 2014) is an IDE
focused on Brazilian learners.

PS is a beginner-oriented programming IDE. The
language syntax is defined in Portuguese and has a
simplified interface for easy learning. Even as a
beginner IDE, it has several libraries that allow more
complex programs to be developed.

The IDE has a language like C and PHP. It has
syntax documentation tabs, and library
documentation in the help tab. It has several examples
of programs already made, from simpler programs
with “Hello World” writing to complete games using
the existing graphics mode. It also has didactic error
messages as standard which can help smart tutors.
These messages tell the user the location of the error,
why the error occurred, and examples of
troubleshooting.

Some works that enable more effective intelligent
tutoring have already been developed for this tool
(Pelz, 2011; Hodecker, 2014). They deal with the
development of an automatic exercise corrector as a
plugin for PS.

The PS platform is open source and is already
used in more than 7 universities. It has over 200,000
downloads and keeps up to date. Besides being able
to change IDE source code, it is also possible to
develop plugins, create buttons with functions in the
code editor, add libraries, among others.

3 PROPOSED SOLUTION

The system was designed with features of an adaptive
STI. It offers content on various topics with different
themes. This enables the student to choose the content
they want to learn and set up their own learning path.
Meanwhile the system helps the student to choose the
content that fits his profile. In addition, the system
provides solving tips and support materials when
performing exercises tailored to their profile if the

students experience difficulties. The following
subsections present the learning path structure, the
generic architecture, and the proposed role model for
the agents.

3.1 Path Model

The path model developed for the system uses a level
and topic structure. In the system domain there are
several different topics of programming learning,
however some need previously taught topics to be
learned. Because of that, the framework uses levels to
define the order in which some topics need to be
learned. This structure can be seen in Figure 1.

Figure 1: Structure of knowledge domain levels.

Existing topics at the same level can be learned in
any order. Conversely, topics that are at different
levels need to be learned according to the order of the
levels at which they are located, starting from the
lowest level to the highest level. The student using the
system will need to complete all topics at the same
level to advance to the next one. However, this does
not mean that he will need to complete all existing
content on that topic.

This is possible because each topic has several
contents that validate the topic as complete if used by
the student. These contents may vary between: (i)
exercises and (ii) support materials. The contents
have attributes that represent their characteristics that
differentiate them from each other. Attributes range
from: (i) Difficulty, (ii) Complexity, (iii) Content
Type, (vi) Taxonomy, and (v) Tags. This can be seen
in Figure 2.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

682

Figure 2: Topic structure, and knowledge domain exercise.

The tags in each content are related to the themes
that the content addresses outside the programming.
These themes are related to different preferences that
students may have when using the system. For
example, a student may prefer songs, so music-tagged
content will be recommended to them.

When selecting content, students will have their
option recorded in their account and linked to their
previous content. This connection in sequence of
contents is called the learning path. This can be seen
in Figure 3.

Figure 3: Generic example of a learning path.

The topics in a path do not necessarily have to be
in order of levels. Topics that have already been
completed by the student can always be revisited, so
lower level exercises after higher levels can occur on
the paths. This can happen in cases where the student
realizes or is driven by the system that needs to
reinforce content they should have already learned.
The students, in these cases, will be directed to a
different exercise of the same topic and placed on
their path.

The track is recorded in the system, allowing it to
be reused to help new students select their content.
Similarities between student characteristics may
identify paths that best suit them because they have

already been used and successful by previous
students.

3.2 Generic Architecture

The generic architecture is an abstract representation
of the system, as shown in Figure 2. In Localhost, it
is the PS system with its functions (AutoCorrect and
Error Messages). The proposed solution is
represented in two modules: the Web Platform and
the Tutor Plugin.

Figure 4: Proposed system generic architecture.

Domain and student models are contained in the
web platform. They keep the content and student data
respectively. Structured content data for learning
paths as well as students’ doubts registered in the
system are stored in the domain model. In the student
model, the consolidated profile data of all students in
the system is stored.

Students using the system must create an account
so that their profile and usage information is saved
and help the tutor develop their teaching method. For
the adaptive system to learn over time, information
from all students using the system must be
consolidated into a database.

In the web platform, the following five agents act:
(i) Pedagogical Tutor, who collaborates with

Classifier and Recommender agents to provide
students with exercises recommended by their
preferences and similarities with other students;

(ii) Interface, which interacts with the student by
recording their questions and answering them, and by
creating an interface for the system administrator and
the student;

(iii) Tracker, which is responsible for capturing
student interactions with the system and storing them
in the database;

An Adaptive System Architecture Model for the Study of Logic and Programming with Learning Paths

683

(vi) Classifier, which is responsible for clustering
students according to their interactions and
preferences;

(v) Recommender, to recommend to the tutor
module the best student exercise based on other
students. With these agents working together, we seek
to meet the needs of students in programming
learning.

The web platform uses the MIDAS platform
(Haendchen Filho, 2017) responsible for the
execution of the multi-agent system, the management
of communication between agents and the
mechanisms of access to the database. Information on
the operation of this system is described in section
2.1.

3.3 Tutor Module Specifications

The specifications of the agents that make up the
Tutor Module were defined using the role model. This
model is used in several approaches (Gonçalves 2009;
Haendchen Filho, 2019) to provide a summary of
agent activities. According to theory, a role can be
described by two basic attributes: (i) Responsibilities:
the role of obligations that indicate functionality; and
(ii) Permissions: the rights associated with the role,
indicating the features that the agent can use. Table 1
presents the role model of the agents.

Table 1: Agent Responsibility Table.

The Tracking Agent is responsible for capturing
student interactions with Portugol Studio. It is located

on the web platform and receives user interaction data
through the plugin interface. This agent is therefore
responsible for recording in the student module the
following student information: (i) clicks on the
interface; (ii) length of stay in the system; (iii)
exercise response time; (iv) solved exercises; (v)
chosen paths.

The Interface Agent is responsible for formatting
the interface for the system administrator. It has
access to domain and student module information to
allow the administrator to see this information on
their screen. It also receives questions from users
through an existing plugin interface. When a user asks
a question, the agent searches the domain module for
answers to similar questions and show the student. If
they do not have similar questions already logged in
the system, it will be logged until an administrator
answers it. Therefore, their responsibilities are: (i) to
record student’s questions; (ii) notify the
administrator about unresolved student’s questions;
(iii) send the students who asked the questions the
respective answers of the administrators; (iv) answer
student’s questions without the need for an
administrator if a similar question has already been
asked by another student and answered.

The Tutor Agent is the one who chooses the best
teaching strategy for the student. It has access to
student module and domain module information. This
agent collaborates with the Classifier agents to cluster
students and discover similarities, and the Advisory
agent to suggest student-tailored content. This
enables new students to learn from the tutor’s
experiences with previous students. In addition, to
better identify these groups, it identifies errors in
exercises by enumerating by types of errors, and
students' personal preferences and content selection.
Finally, it analyses the reading time and resolution of
each content, identifying which students spent more
and less time. Thus, this agent’s responsibilities are:
(i) to suggest learning paths based on student
preferences and profile (collaboration with Classifier
and Recommender Agent); (ii) suggest real-time
exercise solving tips with the aid of the automatic
correction module to help you learn programming
content more easily; (iv) identify errors in exercises
(collaboration with Tracking Agent); (v) identify
student preferences according to chosen exercises
(collaboration with Tracking Agent); (vi) identify the
average exercise resolution time (collaboration with
Tracking Agent).

The Classifier Agent uses Clustering techniques
to group students with similar characteristics, and
Machine Learning techniques to identify students
with potential dropout characteristics. The Classifier

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

684

Figure 5: Content request process in BPMN model.

collaborates with the Pedagogical Agent. Once the
student is classified into a group, you can check
which exercises best fit them and their preferences.
The profile data that allow classification are: (i) age,
(ii) gender, (iii) educational level, (iv) personal
preferences, (v) chosen paths, (vi) resolved exercises,
(vii) average time exercise resolution and (viii) most
frequent types of errors. This information is stored in
the user accounts created by each student using the
system. The first four attributes are obtained at the
time of user’s account creation, and the others are
captured while using the system.

Referring Agents are responsible for
recommending content to a student. It receives from
the Pedagogical Agent the student group to which the
student belongs and uses this group to find the content
that had the best results in terms of time and user
errors. When the analysis and selection is completed,
it sends to the Pedagogical Agent the content that best
fits your profile and level of knowledge.

This communication between agents can be
represented in a BPMN model (Küster, 2012). The

BPMN (Business Process Modelling Notation) is a
leading process modelling language that was
designed to be readable by all its business users
(OMG, 2006). Figure 3 presents an example of
communication between system agents using the
BPMN model.

The initial process with the user requesting the
pedagogical agent and then requesting the interest
group that student is to the classifying agent. This
agent will identify the group that the student
requesting belongs to and will return to the
pedagogical one. Then the pedagogical agent will
send the recommending agent the group of students
requesting the exercise recommendations for him.
The recommender will compare content paths among
students in the group and indicate the most common
content among them for the student who requested it.
This list returns to the pedagogical agent who
responds to the student with the list of contents
recommended to him, along with the exercises of the
level the student is at.

An Adaptive System Architecture Model for the Study of Logic and Programming with Learning Paths

685

4 IMPLEMENTATIONS

An implementation of the system is being developed
for this work. The system is already structured on the
MIDAS platform with all agents and their services.
Agents on the platform interface show only
communication services, which allow collaboration
between agents. Responsibilities that do not require
communication with other agents such as user
tracking through the interface or calculating user time
when using some content are intrinsic to the platform
interface as can be seen in Figure 6.

Figure 6: Agent structure modelled on MIDAS platform.

The life cycle of each agent differs according to
its objectives and services. The tracking agent must
capture and organize the user's information while
using the system. The interface agent must
communicate with the user taking questions and with
the administrator presenting information. The tutor
agent must select the teaching strategies for the user,
using the sociability between the agents of the system.
The classification agent must group similar students
to facilitate the identification of characteristics.
Finally, the recommendation agent must select the
most adapted content according to the group of
student characteristics.

The system in the Portugol interface will
communicate with agents on the web platform. Figure
7 shows the system content selection image. It is
under development and it will be changed, but it can
already be seen inside the Portugol Studio system.

Figure 7: Interface prototype working on PS.

The above presented interface is in Portuguese
idiom. It contains, on the top panel, the contents
recommended by the system for the user. In the panel
below, the contents that can be selected by the user
are They can be filtered by: (i) type, (ii) level, (iii)
difficulty and (iv) themes.

4.1 Methodological Procedures

The project was planned in several phases described
below:

(i) Systematic literature review to find related work
and platforms to assist the implementation

(ii) Definition of the learning trails structure

(iii) Elaboration of the system architecture

(iv) Specification of the role model for system
agents

(v) Specification of agent services workflow

(vi) Adaptation of the Portugol Studio tool to
receive the system as its plugin

(vii) Population of the database

(viii) Implementation of the agents

(ix) Development of the Graphical User Interface

(x) Experiments with students

(xi) Analysis of the experiments

Phases (i) to (iv) are concluded. Phases (vii), (viii)
and (ix) are in progress. A partial implementation of
the Agents and the User Interface was illustrated in
figures 6 and 7 and the population of the database is
currently being held. Phases (x) and (xi) will be held
in the near future.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

686

5 DISCUSSION

In trying to solve the problem of dropout, intelligent
tutoring systems focused on programming teaching
were researched and applied in Brazilian universities,
but they use tools with the problems already reported
in research with the PS. In recent updates, PS allows
the development of plugins in the tool, so the
possibility of an adaptive system being integrated into
the tool has become palpable.

Thus, researching the works with Adaptive
Systems and teaching methodologies, it was possible
to develop the architecture presented in this work.
The system described is based on two points: (i)
Learning Paths and (ii) Multi-Agent System
Architecture.

The learning path structure was developed by
trying to use the constructivist and constructionist
concepts developed by Piaget and Papert
respectively. However, assisting the student in what
activities he should do and allowing him a freedom to
choose what he wants to do are almost opposite
concepts. To solve this point, the literature sought the
uses of learning paths.

In the literature, the concepts of learning paths are
already used by some authors such as De Meo (2007)
and Panagiotis (2016). With De Meo, paths are used
to define the way a student must take to complete a
project. The options to choose from in his work are
only from existing projects. The paths and topics the
student must follow to achieve their project goal are
predefined by the system. On the other hand,
Panagiotis uses learning paths as suggestions for the
student. The student can select a learning object
within that track without necessarily having to follow
it as recommended.

Works such as De Meo’s only let a momentary
protagonism to the student. The student, even doing a
project he has chosen, must still follow predetermined
instructions. Panagiotis' work already gives the
student greater freedom, the intelligent tutor being
just someone who suggests what he should learn.
Both works, however, do not allow the student to set
up their own track.

The proposed track structure for the system uses
student choices to assemble the paths. Each student
using the system will receive suggestions for the
following paths, but he or she can assemble their own
by selecting the order of content they want to watch
or play. Paths are made of content that is like
Panagiotis learning objects and uses tags that define
the characteristics of each content. They are an
expansion of the work of Santos el al (2013). Not only
are exercise topics, taxonomy and complexity

highlighted, but also the topics they cover in
explaining the topics. This allows the student to learn
according to the subject of interest.

Recommend content according to the student’s
topic of interest and interactions with other users is
part of the smart tutor’s responsibilities. Modeling the
smart tutor is an important part of the development
process and one of the contributions of this work.

Many works on intelligent and adaptive tutors are
developed with multi-agent system technologies as
already mentioned in section 1. As these systems are
constantly updated, they need to be modular to reduce
errors and facilitate maintenance. Multi-agent
systems are great for that.

In this paper, we use the concept of service
oriented intelligent agents as proposed through
MIDAS. Analyzing some works in the literature it
was possible to see which agents are well used and
which are adaptable to this work.

The use of recommending agents is an existing
practice among intelligent tutors, as in the study by
Cabada et al (2017). He proposes an architecture
composed by a tutor and an exercise recommender. In
the proposed model, the tutor is used solely to assist
the user in activities with suggestions, while the
recommender only provides exercises based on the
user’s characteristics.

This separation is applied in the proposed
architecture. The recommending agent has only the
function of recommending the exercises based on the
characteristics of the students who have already used
the system. However, the discovery of these similar
characteristics is the responsibility of another agent,
the classifying agent.

Both agents collaborate with the main agent, the
pedagogical tutor. It coordinates agent collaboration
and uses existing exercise correction modules in
Portugol Studio to deliver exercise resolution tips.

This separation of intelligence from
recommendation and activity aid is like that of
Cabada’s work. Meanwhile two other agents were
added. The tracking agent, whose primary function is
to track all user interactions and store them, and the
interface agent that is responsible for communicating
interfaces with the administrator.

Both improve system maintenance. The tracker
further modularizes tasks, and the interface agent
makes it easy for the administrator to change system
settings without having to make changes to the source
code. In addition, the interface agent allows the
administrator to answer student questions and save
them so that they can answer similar questions from
other students.

An Adaptive System Architecture Model for the Study of Logic and Programming with Learning Paths

687

These system features and Portugol Studio
functionality can therefore help students improve
their programming learning with the support of the
intelligent tutor.

The tutor architecture presented here follows
current technological and methodological standards.
The main difference from similar work is the learning
paths structure. It allows different and personal
learning paths to be suggested for new students
according to previous students with similar
characteristics.

This might reduce the slope of the students
learning curve since successful cases will be used to
help them. The Portugol Studio (PS) tool also helps
in the same direction since it was developed to aid
novice programming students in universities, and it is
widely used in Brazil.

The plugins the PS have are easily available on its
interface. This will allow the proposed Adaptive
System to be found by many Computer Science
students in Brazil and also independent learners and
will certainly foster the development of new research
projects.

6 CONCLUSION AND FUTURE
WORKS

There is a recurring need in the Computer Science
area for tools to assist the learning process, especially
programming logic. Students often do not have time
to study or cannot adapt to classroom teaching.
Adaptive systems emerge as one of the alternatives to
this reality.

Alternatively, constructivist and constructivism
methodologies can also help students learn new
concepts in programming using IDEs. Systems with
adaptive features and assisted learning techniques
like Portugol Studio can be a way to facilitate learning
for beginning programmers.

The main contribution of this work is the proposal
of an architectural model with low-level diagrams
representing the functionalities of the agents for an
adaptive system. The purpose is to facilitate the logic
learning and programming with learning paths. This
can generate gains in preparing a generation in a high
demand market for this knowledge type.

The next steps in implementing the system are as
follows: (i) implementation of the services, (ii)
population of the content tags and (iii)
implementation of the communication interface
between Portugol and the Agents on the web.

The implementation of the services will allow
communication between agents on the MIDAS
platform. Each agent service implemented must
follow the definitions shown in subsection 3.3.

Content tags are one of the bases of the system's
intelligence. They will allow the recommending agent
to identify topics of interest to students in each
content. This will permit him to learn to program
within his context of interest, following
constructionist theory.

Finally, Portugol's communication interface with
web agents will start the connections that will allow
agents to receive student information and collaborate
to send students learning suggestions.

As the system is finished, the future works in the
project are: (i) experiments with students and (ii)
analysis of the experiments, following the procedures
described on subsection 4.1.

The experiments will be held made with classes of
computer science real students of the authors from the
local university. The students will use the system as a
support to discover their difficulties in programming.

 The main goal is to assess whether the system
gives them coherent personalized suggestions
according to their difficulties and preferences. The
student’s acceptance on the recommendations are
also going to be measured.

Since the Portugol Studio tool is widely adopted
in Brazilian universities, further work also can be
done to collected data to find patterns about general
difficulties of Brazilian programming learners and
which learning paths can help the most.

These researches might help find better ways to
help students learn programming and reduce the
dropouts on universities caused by the difficulties
they have in the initial courses.

REFERENCES

Bada, S. O., & Olusegun, S. (2015). Constructivism
learning theory: A paradigm for teaching and learning.
Journal of Research & Method in Education, 5(6), 66-
70.

Baranauskas, M. C. C., Vieira, H., Martins, R. M. C., &
D’ABREU, J. V. (1999). Uma taxonomia para
ambientes de aprendizado baseados no computador. O
computador na sociedade do conhecimento, 45.

Cabada, R. Z., Estrada, M. L. B., Hernández, F. G.,
Bustillos, R. O., & Reyes-García, C. A. (2018). An
affective and Web 3.0-based learning environment for
a programming language. Telematics and Informatics,
35(3), 611–628. doi:10.1016/j.tele.2017.03.005

CareerCast (2019) The Toughest Jobs to Fill in 2019,
Available at: https://www.careercast.com/jobs-

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

688

rated/2019-most-difficult-jobs-to-fill (Accessed: 30th
December 2019).

Carmen-Leocadia Pesantez Pozo (2017) 'Smart Education
and Smart e-Learning', Conference proceedings of
»eLearning and Software for Education« (eLSE),
III(01), pp. 89-95.

Cidral, W. A., Oliveira, T., Di Felice, M., & Aparicio, M.
(2018). E-learning success determinants: Brazilian
empirical study. Computers & Education, 122, 273–
290. doi:10.1016/j.compedu.2017.12.001

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D
tool for introductory programming concepts. Journal of
Computing Sciences in Colleges, 15(5), 107-116.

De Meo, P., Garro, A., Terracina, G., & Ursino, D. (2007).
Personalizing learning programs with X-Learn, an
XML-based, “user-device” adaptive multi-agent
system. Information Sciences, 177(8), 1729–1770.
doi:10.1016/j.ins.2006.10.005

Dolenc, K., & Aberšek, B. (2015) "TECH8 intelligent and
adaptive e-learning system: Integration into technology
and science classrooms in lower secondary schools"
Computers and Education, 82, 354–365, doi:10.1016/
j.compedu. 2014.12.010

Elham Mousavinasab, Nahid Zarifsanaiey, Sharareh R.
Niakan Kalhori, Mahnaz Rakhshan, Leila Keikha &
Marjan Ghazi Saeedi (2018) Intelligent tutoring
systems: a systematic review of characteristics,
applications, and evaluation methods, Interactive
Learning Environments, doi: 10.1080/10494820.2018.
1558257

Frade, R. V. C. (2015) "UNIVIRTUAL – Ambiente Virtual
3D Multiagente com Recomendação Personalizada de
Objetos de Aprendizagem", Dissertação (Mestrado em
Ciência da Computação) - Universidade Estadual do
Rio Grande do Norte, Universidade Federal Rural do
Semi-Árido, Mossoró.

Giraffa, L. M. (1999). Uma arquitetura de tutor utilizando
estados mentais. 1999 (Doctoral dissertation, Tese
(Doutorado em Ciências da Computação) – Instituto de
Informática, UFRGS, Porto Alegre).

Giraffa, L. M., & da costa Mora, M. (2013). Evasão na
disciplina de algoritmo e programação: um estudo a
partir dos fatores intervenientes na perspectiva do
estudante. In Congresos CLABES.

Gonçalves, E. J. T. (2009). Modelagem de arquiteturas
internas de agentes de software utilizando a linguagem
MAS-ML 2.0 (Doctoral dissertation, Dissertação de
Mestrado. Universidade Estadual do Ceará. Centro de
Ciência e Tecnologia. Fortaleza).

Guia da Carreira (2018) Saiba quais as 8 profissões que
mais crescem no Brasil, Available at:
https://www.guiadacarreira.com.br/profissao/profissoe
s-que-mais-crescem/ (Accessed: 30th December 2019).

Haendchen Filho, A. (2005). Um Framework do tipo
Middleware para Sistemas Multi-Agentes na Internet
(Doctoral dissertation, PUC-Rio).

Filho A., Thalheimer J., Dazzi R., Santos V. and Koehntopp
P. (2019). Improving Decision-making in Virtual
Learning Environments using a Tracing Tutor Agent. In
Proceedings of the 21st International Conference on

Enterprise Information Systems - Volume 1: ICEIS,
ISBN 978-989-758-372-8, pages 600-607. DOI:
10.5220/0007744006000607

Harley, J. M., Bouchet, F., Hussain, M. S., Azevedo, R., &
Calvo, R. (2015) "A multi-componential analysis of
emotions during complex learning with an intelligent
multi-agent system". Computers in Human Behavior,
48, 615–625, doi:10.1016/j. chb.2015.02.013

Hodecker, Andrei. Aprimoramento e avaliação do corretor
de questões do Portugol Studio. 2014. TCC (graduação
em Ciência da Computação) - Universidade do Vale do
Itajaí, Itajaí, 2014.

Hooshyar, D., Ahmad, R. B., Yousefi, M., Yusop, F. D., &
Horng, S.-J. (2015) "A flowchart-based intelligent
tutoring system for improving problem-solving skills of
novice programmers", Journal of Computer Assisted
Learning, 31(4), 345–361.

Küster, T., Lützenberger, M., Heßler, A., & Hirsch, B.
(2012). Integrating process modelling into multi-agent
system engineering. Multiagent and Grid Systems, 8(1),
105–124. doi:10.3233/mgs-2012-0182

Lobo, R. (2017) 'A Evasão No Ensino Superior Brasileiro –
Novos Dados', Estadão, 07 October.

MichaelPage (2019) The World’s Most In Demand
Professions, Available at: https://www.michaelpage.co.
uk/minisite/most-in-demand-professions/ (Accessed:
30th December 2019).

Ng, S. C., Choy, S. O., Kwan, R., & Chan, S. F. (2005). A
Web-Based Environment to Improve Teaching and
Learning of Computer Programming in Distance
Education. Lecture Notes in Computer Science, 279–
290. doi:10.1007/11528043_28

Noschang, L. F., Pelz, F., & Raabe, A. (2014). Portugol
studio: Uma ide para iniciantes em programaçao. Anais
do CSBC/WEI, 535-545.

Nwana, H. S. (1990). Intelligent tutoring systems: an
overview. Artificial Intelligence Review, 4(4), 251-277.

Oliveira, C. M., Pimentel, A., & Krynski, E. M. (2015,
October). Estudo sobre o sequenciamento inteligente e
adaptativo de enunciados em programaçao de
computadores. In Anais dos Workshops do Congresso
Brasileiro de Informática na Educação (Vol. 4, No. 1,
p. 1320).

OMG Business Process Modeling Notation. "Version 1.0."
OMG Final Adopted Specification. OMG (2006).

Paiva, J. C., Leal, J. P., & Queirós, R. A. (2016). Enki.
Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science
Education - ITiCSE ’16. doi:10.1145/2899415.289
9441

Papert, Seymour. "A máquina das crianças." Porto Alegre:
Artmed (1994).

Panagiotis, S., Ioannis, P., Christos, G., & Achilles, K.
(2016). APLe: Agents for Personalized Learning in
Distance Learning. Computer Supported Education,
37–56. doi:10.1007/978-3-319-29585-5_3

Pattabiraman K. (2019) LinkedIn’s Most Promising Jobs of
2019, Available at: https://blog.linkedin.com/2019/
january/10/linkedins-most-promising-jobs-of-2019
(Accessed: 30th December 2019).

An Adaptive System Architecture Model for the Study of Logic and Programming with Learning Paths

689

Pelz, Fillipi Domingos. Correção automática de algoritmos
no ensino introdutório de programação. 2011. TCC
(graduação em Ciência da Computação) - Universidade
do Vale do Itajaí, Itajaí, 2011.

Philips, D. C. (1995). The Good, the Bad, and the Ugly. The
many Faces of Constructivism. I.

Phobun, P., & Vicheanpanya, J. (2010). Adaptive
intelligent tutoring systems for e-learning systems.
Procedia - Social and Behavioral Sciences, 2(2), 4064–
4069. doi:10.1016/j.sbspro.2010.03.641

Piaget, J. (1980). The psychogenesis of knowledge and its
epistemological significance. In M. Piatelli-Palmarini
(Ed.), Language and learning (pp. 23-34). Cambridge,
MA: Harvard University Press.

Raabe, A., Zanini, A. S., Santana, A. L. M., & Vieira, M. F.
V. (2016). Influência dos enunciados na resolução de
problemas de programação introdutória. Revista
Brasileira de Informática na Educação, 24(1), 66.

Raabe, A. L. A., & Silva, J. D. (2005). Um ambiente para
atendimento as dificuldades de aprendizagem de
algoritmos. In XIII Workshop de Educação em
Computação (WEI’2005). São Leopoldo, RS, Brasil
(Vol. 3, p. 5). sn.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., ... & Kafai, Y. B.
(2009). Scratch: Programming for all. Commun. Acm,
52(11), 60-67.

Romagosa i Carrasquer B. (2019) The Snap! Programming
System. In: Tatnall A. (eds) Encyclopedia of Education
and Information Technologies. Springer, Cham.

Santos, A., Gomes, A., & Mendes, A. (2013). A taxonomy
of exercises to support individual learning paths in
initial programming learning. 2013 IEEE Frontiers in
Education Conference (FIE). doi:10.1109/fie.2013.
6684794

Silva Filho, R. L. L., Motejunas, P. R., Hipólito, O., &
Lobo, M. B. C. M. (2007). A evasão no ensino superior
brasileiro. Cadernos de pesquisa, 37(132), 641-659.

Tarus, J. K., Niu, Z., & Mustafa, G. (2017). Knowledge-
based recommendation: a review of ontology-based
recommender systems for e-learning. Artificial
Intelligence Review, 50(1), 21–48. doi:10.1007/
s10462-017-9539-5

Trade Schools (2019) 31 High-Demand Jobs in 2019 for
Almost Every Type of Person, Available at:
https://www.trade-schools.net/articles/high-demand-
jobs.asp (Accessed: 30th December 2019).

Vaidya, N. M., & Sajja, P. S. (2016). Agent based system
for collaborative learning environment in an
educational habitat. 2016 International Conference on
ICT in Business Industry & Government (ICTBIG).
doi:10.1109/ictbig.2016.7892644

Weragama, D. S. (2013). Intelligent tutoring system for
learning PHP (Doctoral dissertation, Queensland
University of Technology).

Wolber, D. (2011). App inventor and real-world
motivation. Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education -
SIGCSE’11. doi:10.1145/1953163.1953329

Yaghmaie, M., & Bahreininejad, A. (2011). A context-
aware adaptive learning system using agents. Expert
Systems with Applications, 38(4), 3280-3286.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

690

