
Empirical Study about Class Change Proneness Prediction using
Software Metrics and Code Smells

Antonio Diogo Forte Martins, Cristiano Melo, José Maria Monteiro and Javam de Castro Machado
Federal University of Ceara, Fortaleza, Ceara, Brazil

Keywords: Machine Learning, Change-proneness Prediction, Software Quality.

Abstract: During the lifecycle of software, maintenance has been considered one of the most complex and costly phases
in terms of resources and costs. In addition, software evolves in response to the needs and demands of the
ever-changing world and thus becomes increasingly complex. In this scenario, an approach that has been
widely used to rationalize resources and costs during the evolution of object-oriented software is to predict
change-prone classes. A change-prone class may indicate a part of poor quality of software that needs to
be refactored. Recently, some strategies for predicting change-prone classes, which are based on the use of
software metrics and code smells, have been proposed. In this paper, we present an empirical study on the
performance of 8 machine learning techniques used to predict classes prone to change. Three different training
scenarios were investigated: object-oriented metrics, code smells, and object-oriented metrics and code smells
combined. To perform the experiments, we built a data set containing eight object-oriented metrics and 32
types of code smells, which were extracted from the source code of a web application that was developed
between 2013 and 2018 over eight releases. The machine learning algorithms that presented the best results
were: RF, LGBM, and LR. The training scenario that presented the best results was the combination of code
smells and object-oriented metrics.

1 INTRODUCTION

During the development and lifespan of software,
maintenance is considered one of the most arduous
and expensive tasks (Koru and Liu, 2007). Soft-
ware systems evolve in response to the needs and re-
quirements of a dynamic and ever-changing world.
Hence, a change may occur due to bugs, new fea-
tures, code refactoring, or adoption of new technolo-
gies. Throughout its evolution, software becomes
larger and more complex (Koru and Liu, 2007). Thus,
manage and control changes is one of the most con-
cerns of the software development industry. During
a software system evolution, it is impractical for the
development team to focus equally on all parts of the
system (Elish and Al-Rahman Al-Khiaty, 2013).

The quality of software may decrease over time
due to different factors, such as aging, inconsistent
design, and inadequate requirements design. In soft-
ware engineering, the study about code smells is re-
cent and is gaining importance to analyze different
aspects of software quality, because they may point
out problems related to structure, efficiency, maintain-
ability, and readability of code (Fowler, 2018). Any-

how, even if a code smell does not represent a bug di-
rectly, because they are not technically incorrect and
do not interfere in the code execution, they should not
be ignored, because they may compromise the soft-
ware quality and then lead to larger problems (Singh
and Chopra, 2013).

In this context, a change prone class can be de-
fined as a class that probably will suffer alterations
for the next software release, representing a part of
low quality of the system. Therewith, the capability
of performing a prediction of a class change prone-
ness may be handy to guide the software development
team, because, with this information, they can better
allocate resources, allowing project managers to focus
their efforts and attention on these classes during the
evolution process of a software system (Elish et al.,
2015).

Although many works make use of machine learn-
ing techniques to predict class change proneness, no
practical guide had been proposed to assist software
engineers in using these techniques properly and be
able to extract correct conclusions from the results.
In (Melo. et al., 2019), the authors, recognizing the
urgency of methodology standardization for the task

140
Martins, A., Melo, C., Monteiro, J. and Machado, J.
Empirical Study about Class Change Proneness Prediction using Software Metrics and Code Smells.
DOI: 10.5220/0009410601400147
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 1, pages 140-147
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



of class change proneness prediction, propose a com-
prehensive practical guide to help make predictions
methodologically correct. The practical guide con-
sists of a list of minimal activities, from proper data
set construction to perform predictions, that must be
executed to optimize the performance of the class
change proneness classifier.

The objective of the following paper is, using
the methodology based on the practical guide pro-
posed in (Melo. et al., 2019), build an appropriate
data set to perform class change proneness prediction
with 8 object-oriented metrics and 32 types of code
smells, empirically examine the performance of ma-
chine learning techniques in the task of class change
proneness prediction, and evaluate the techniques in
three scenarios of training: only object-oriented met-
rics, only code smells, and a combination of object-
oriented metrics with code smells.

2 RELATED WORK

In (Kaur et al., 2016), the authors compare the perfor-
mance of object-oriented software metrics and code
smells when used as features to train machine learn-
ing algorithms to perform class change proneness pre-
diction in an imbalanced data set. The authors used
eight machine learning algorithms e to balance the
data set they used SMOTE for over-sampling and
RUS for under-sampling. The authors chose AUC
and F-score metrics to evaluate the performance of
the classifiers. According to their experiments, when
trained with code smells, the classifiers achieve better
performance than when trained with object-oriented
software metrics. The authors conducted experiments
with both imbalanced and balanced data, and classi-
fiers trained with code smells performed better in both
scenarios.

In (Catolino et al., 2019), the authors investigate
the effect of adding a new metric, called the intensity
index of a code smell, to three sets of metrics used to
perform the task of class change proneness prediction
found in the literature. The value assigned to this in-
dex is equivalent to how much the metric evaluated to
detect a code smell exceeds the limit set by the rule,
normalized between 0 and 10. The authors use a clas-
sifier that uses the LR algorithm and train it separately
with each set of metrics. After taking these results as a
baseline, they train once again by adding the intensity
index as a feature and evaluate its effect. The chosen
performance metrics were AUC, F-score, sensitivity,
and specificity. After analysis, the authors state that
performance in class change proneness prediction is
statistically better after adding the intensity index to

the features. In the end, they merge all metric sets
and intensity index into one single data set and retrain
the classifier obtaining the best prediction result.

In (Melo. et al., 2019), the authors propose a prac-
tical guideline to support an object-oriented change-
prone class prediction. The practical guide consists
of good practices that must be adopted to properly
perform class change proneness prediction since the
authors identified several possibly misleading results
in the literature for not performing activities consid-
ered crucial by them. The authors present in detail all
the activities that must be performed from the data set
design to the class change proneness prediction and,
in the end, carry out a case study replicating the activ-
ities step by step. The authors conclude that the prac-
tical guide can be used as a standard minimum activ-
ity list to develop class change proneness classifiers
optimally. The case study performed to validate the
method is based on an extremely imbalanced data set
extracted from commercial software containing eight
object-oriented metrics proposed by (Chidamber and
Kemerer, 1994) and (McCabe, 1976).

3 METHODOLOGY

The methodology of this work was based on the prac-
tical guide proposed in (Melo. et al., 2019). The prac-
tical guide is designed to support class change prone-
ness prediction. It contains a comprehensive step-by-
step that covers all the steps necessary to build a use-
ful data set and the correct way to make predictions.

3.1 Phase 1: Data Set Design

The first phase of the practical guide focuses on the
data set design that will be used to perform class
change proneness predictions. This phase consists
of the following steps: Choose Independent Variable,
Choose Dependent Variable, and Collect Metrics.

3.1.1 Choose Independent Variable

We chose the independent variables, also known as
predictors or features, taking into consideration the
metrics found in the literature. The papers that study
class change proneness prediction use the metrics pro-
posed by (Chidamber and Kemerer, 1994) and (Mc-
Cabe, 1976), which are metrics capable of quantify-
ing structural aspects of a class in object-oriented ab-
straction.

We decided to use the following object-oriented
metrics: Class Between Object (CBO), Cyclomatic
Complexity (CC), Depth of Inheritance Tree (DIT),

Empirical Study about Class Change Proneness Prediction using Software Metrics and Code Smells

141



Lines Of Code (LOC), Number Of Children (NOC)
and Weighted Methods per Class (WMC). In addition,
we decided to use code smells as metrics, too, because
they are also a feature of a class.

3.1.2 Choose Dependent Variable

Also known as the label, we chose to be the dependent
variable the change proneness of a class. A class is
said change prone if it has changed from one release
to another, the parameter used to know if this change
occurred is by checking the value of LOC in the two
releases (Lu et al., 2012). If there has been a change,
label 1 is assigned. If not, label 0 is assigned to the
class under analysis.

3.1.3 Collect Metrics

We use in this paper a data set generated from the
source code of a web application that was devel-
oped between 2013 and 2018. We analyzed the class
change proneness of 8 releases of the application.
This application is a collection of modules that man-
age the needs of a company concerning its internal
processes, such as product return control and product
quality management.

The object-oriented metrics of the application is
available in a public GitHub repository (Melo. et al.,
2019)1. The metrics were extracted from the source
code using a Visual Studio plug-in called NDepends
(NDpends, 2018). NDepends is a static analysis tool
for C# code. In addition to other features, this tool
has a specific one called CQLinq that allows the user
to recover attributes and metrics by writing queries.
The authors wrote and executed the CQLinq queries
to precisely extract all the metrics available in their
data set. The final data set is available as a csv file
containing the metrics of each class in each release.

We performed the code smells extraction using the
Designite tool (Sharma, 2016). This tool detects code
smells in C# code and other relevant metrics, for in-
stance, code smells density and number of classes in
a project. We found 32 types of code smells after an-
alyzing all the classes from all eight releases.

When the Designite tool analyzes a project, in
our case, one release of the application, it generates
object-oriented metrics and code smells reports. The
code smells report is divided into three levels of gran-
ularity: Architecture (namespace), Design (class),
Implementation (method). These reports are exported
as a csv file being one file for each level. We devel-
oped Python scripts to organize and join all the files
in a single csv per release.

1https://github.com/cristmelo/PracticalGuide

Although there is a difference in granularity be-
tween the code smells types, the tool always asso-
ciates the code smell occurrence to a class, for in-
stance, if an Architecture code smell is identified,
the tool is capable of point which classes inside the
namespace are responsible for this occurrence. There-
fore the classes in question will account for one oc-
currence of this code smell. We used the same oc-
currence extraction logic for the Implementation code
smells, since the tool tell us in which class the method
that has a code smell belong.

After we finish the two data sets, we had to join
the two to build the complete data set with the object-
oriented metrics and code smells for each class. Cre-
ating isolated small data sets for each release facili-
tated the construction of the final set, as we ensured
that if a class appears in more than one release, the
object-oriented metrics and code smells were of the
same release for a given class. In the end, we con-
catenated the eight isolated releases data sets forming
a final set with all class of all releases with their re-
spective features containing a total of 11576 classes.

3.2 Phase 2: Apply Class Change
Proneness Prediction

The second phase of the practical guide focuses on
developing class change proneness prediction mod-
els. We treated the class change proneness prediction
problem as a classification problem and we used algo-
rithms that work via supervised learning. This phase
of the practical guide also indicates what the best per-
formance metrics are, how to present results, and how
to ensure the reproducibility of experiments.

3.2.1 Statistical Analysis

First, we performed a statistical analysis to extract rel-
evant information about how object-oriented software
metrics and code smells behave in the data set built at
the end of Phase 1. Table 1 shows the descriptive sta-
tistical data for object-orientated software metrics.

The information in Table 1 is essential for under-
standing the domain of variables, whether they are
discrete or continuous variables, and notions of their
distributions. We did not include descriptive statisti-
cal data about code smells as they are mostly binary
data. In the paper repository, it is possible to visualize
the data in detail.

After analyzing the data distribution, we could
highlight the large number of zero values that the met-
rics have. In the case of the code smells, the fact that
there are many zeros is that most of these code smells
are already avoided by the use of development tools

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

142



Table 1: Descriptive Statistics.

Metric Min. Max Avg. Median Std. Dev. Kurtosis Skewness

CBO 0 162 5.73 3 9.57 32.4 4.43
CC 0 488 12.27 7 22.15 103.37 7.99
DIT 0 7 0.73 0 1.60 6.85 2.63

LCOM 0 1 0.14 0 0.27 0.82 1.55
LOC 0 1369 25.40 12 66.49 122.32 9.44
NOC 0 189 0.44 0 5.19 409.06 18.57
RFC 0 413 7.05 1 18.96 79.11 7.31

WMC 0 56 1.23 0 3.24 77.39 7.26

and good programming practices (de Almeida Filho
et al., 2019).

3.2.2 Normalization and Outlier Detection

As stated in Section 3.2.1, the features of the con-
structed data set have very different domains. For
instance, the metric LOC has values between 0 and
1369, while LCOM varies between 0 and 1. When
faced with such situations where metrics are at dif-
ferent scales, it is interesting to normalize the data so
that the models to be trained are not biased because of
this difference.

In this paper, we normalized all the features,
object-oriented software metrics and code smells, us-
ing the min-max normalization technique. When us-
ing this technique, all features will have their mini-
mum value set to 0 and their maximum value set to
1.

About outliers detection and removal, in this pa-
per, because the data distribution shows that there are
many zeros and the averages have low values, we de-
cided not to remove the outliers.

3.2.3 Feature Selection

First, we performed feature selection only on the
object-oriented software metrics. The selected fea-
tures are the same proposed by the practical guide
(Melo. et al., 2019), because they are the same met-
rics from the same analyzed data set. The eight met-
rics were submitted to five feature selection tech-
niques: Chi-Square, One-R, Information Gain, Sym-
metrical Uncertainty, and Correlation Analysis.

In (Melo. et al., 2019), the authors defined a cri-
terion to choose the features from the results of the
four first techniques. They ordered the results and the
best-evaluated metric received 8 points and the worst
1 point. The metrics with the total number of points
higher than half of the maximum were selected. Five
metrics had the total number of points inside the lim-
its, but CBO and RFC have Pearson’s correlation co-

efficient of 0.87, in other words, they are strongly cor-
related, then the chosen metric was CBO because it
had a higher total number of points than RFC. Lastly,
the authors selected four metrics: CBO, WMC, CC,
and LCOM.

In the case of feature selection for code smells,
we performed an analysis using PCA (Abdi and
Williams, 2010). We applied the technique on the
group of code smells of the same level, i.e., the 32
features of code smells found were reduced to only
three features. However, this approach worse results
than using the 32 features. After analysis, we selected
all 32 features as necessary, because each one rep-
resents particular and peculiar characteristics of the
source code.

In the end, the features selected to be used in
the prediction model were the 32 found code smells
and the object-oriented software metrics CBO, WMC,
CC, and LCOM.

3.2.4 Data Balancing Techniques

First, we need to analyze the change prone labels pro-
portion to check if it will be necessary to use any data
balancing technique. As we stated before if a class
has label 1 it is because this class is change prone. If
it is not, it will receive the label 0. Our data set is ex-
tremely imbalanced, 11263 classes have the label 0,
while, only 313 have label 1, i.e., only 2.7% of the
analyzed classes are change prone.

Using an imbalanced data set to train classification
algorithms can lead to misclassification as the classi-
fier may be biased and not correctly classify instances
of the minority label (Melo. et al., 2019). In real
machine learning problems, most data sets are imbal-
anced and the label of interest for classification is usu-
ally minority one.

The practical guide suggests using data under-
sampling and over-sampling techniques to solve
the imbalance problem. Under-sampling tech-
niques: Random UnderSampler (RUS), Edited Near-
est Neighbours (ENN) (Wilson, 1972), and Tomek’s

Empirical Study about Class Change Proneness Prediction using Software Metrics and Code Smells

143



Link (TL) (Tomek, 1976). Over-sampling tech-
niques: Synthetic Minority Over Sampling Technique
(SMOTE) (Chawla et al., 2002), Adaptive Synthetic
Sampling (ADASYN) (He et al., 2008), and Random
OverSampler (ROS). To assist in performing this step
of the practical guide, we used the Python library
Imbalanced-Learn (Lemaı̂tre et al., 2017). It is es-
sential to emphasize that balancing techniques should
be applied only to the training set.

3.2.5 Cross-Validation

There are many Cross-Validation techniques, but the
most used, and the one we applied in this paper is
the k-fold Cross-Validation. This technique consists
of split the data set in k equal parts. With these sub-
sets, the model is trained in k different rounds, in each
round, one of the subsets is previously separated as
the test set, and the rest is used for training. At the
end of the k rounds, we calculate the average value of
the results to evaluate the performance of the model.
In our paper, we use ten as value for k, as the practi-
cal guideline suggests (Melo. et al., 2019). To ensure
that the data is split into subsets keeping the labels
proportion, we used the scikit-learn function Strati-
fiedKFold.

3.2.6 Tuning the Prediction Model

In this paper, we used the following machine learning
algorithms: Logistic Regression (LR), Support Vector
Machine (SVM), Decision Tree (DT), Random For-
est (RF), K-Nearest Neighbours (KNN), Light Gradi-
ent Boost Machine (LGBM), and eXtreme Gradient
Boost Machine (XGB).

The scikit-learn Python library implements all
the used algorithms, except LGBM and XGB that
have their library. All these algorithms have hyper-
parameters, which, if properly adjusted and well se-
lected, can improve the algorithm results (Melo. et al.,
2019).

In this paper, we used the Grid Search as the
method of search and evaluation of the hyper-
parameters. We chose the vectors arbitrarily, as pre-
viously mentioned, the model tuning process is a trial
and error work.

Since we use Grid Search, it is necessary to
use the nested Cross-Validation technique to esti-
mate the model generalization with the chosen hyper-
parameters, as suggests the practical guide (Melo.
et al., 2019).

3.2.7 Selection of Performance Metrics

For classification problems the most commonly used
performance metrics are: accuracy, precision, sensi-
bility, specificity, F-score and AUC. The confusion
matrix also gives a notion of how the model per-
formed the classification.

In the case of this paper, where the data set is im-
balanced, the practical guide (Melo. et al., 2019) rec-
ommends using either F-score or AUC, as they take
into account the correct classification of the minor-
ity class. We decided to use AUC as the main per-
formance metric, but the other metrics were also col-
lected.

3.2.8 Ensure the Reproducibility

The practical guide(Melo. et al., 2019) suggests that
the authors of scientific papers ensure that their work
can be reproduced and used as a basis for future work.
To this end, the data set created at the end of Phase 1,
statistical analysis for code smells and object-oriented
software metrics, Jupyter Notebooks with the experi-
ments already executed and the results of the evalua-
tion of the trained models are organized and available
in a repository on GitHub2.

4 RESULTS AND DISCUSSION

At the experimentation step, we defined three training
scenarios for the machine learning algorithms. The
first trains the algorithms using only object-oriented
software metrics. The second one train the algorithms
using only code smells. Lastly, the third scenario
uses both object-oriented software metrics and code
smells as features. In all three scenarios, all the ex-
periments were performed using the same steps de-
scribed in Section 3.2.

Tables 2, 3, 4 show the 10 best results after the
execution of the nested cross-validation process for
each algorithm using the data set imbalanced, sub-
sampled, and over-sampled having as features the
ones defined for the scenario 1, 2, and 3 respectively.
The values presented are the average value of AUC
after the 10 rounds of nested cross-validation and also
the standard deviation values for the execution.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

144



Table 2: Results for nested Cross-Validation - Only object-oriented software metrics - 10 best classifiers.

Algorithm Balancing Tech. AUC (%) Std. Dev. (%)

RF RUS 73.3 2.8
LGBM ROS 72.7 3.3
LGBM RUS 72.5 4.2
LGBM SMOTE 71.7 2.3

LR SMOTE 71.5 3.3
LR ROS 71.4 3.2

XGB RUS 71.3 3.5
LR ADASYN 71.2 3.2

LGBM ADASYN 71.1 3.3
KNN RUS 71 3.9

4.1 Only Object-oriented Software
Metrics

We can observe that classifiers using the LGBM al-
gorithm figure 4 times between the 10 best-evaluated
classifiers using the three over-sampling techniques
and the under-sampling technique RUS. The classi-
fier with the better average value of AUC found in our
experiments was RF trained with data under-sampled
by RUS. Classifiers based on the LR algorithm trained
with data over-sampled with the three techniques are
also in the 10 best. It is interesting to highlight that
the most straightforward algorithm, KNN, figure as
the tenth best classifier when trained with data under-
sampled by RUS.

Classifiers trained with over-sampled data figured
more in the 10 best classifiers than the ones trained
with under-sampled data in scenario 1. Furthermore,
out of three under-sampling techniques, only RUS
achieved good results.

4.2 Only Code Smells

From the results, we can observe that classifiers using
LR with the three over-sampling techniques and the
under-sampling technique RUS are present in the 10
best-evaluated classifiers, being the classifier that uses
LR trained with data over-sampled by ROS the best in
scenario 2.

The classifiers that use LGBM and over-sampled
data are also present among the best 10 classifiers.
The classifier using RF trained with data under-
sampled by RUS is also figuring in the best classi-
fiers for this scenario. The classifiers that use XGB
trained both with data under-sampled by RUS and
over-sampled by ROS are among the best for scenario
2.

2https://github.com/diogofm/TCC-ChangeProneness
Prediction

4.3 Code Smells and Object-oriented
Software Metrics

In scenario 3, the classifier trained with the RF algo-
rithm and using the RUS under-sampling technique
was again the best-evaluated classifier. The classi-
fiers trained with the LGBM and LR algorithms us-
ing over-sampling techniques are among the 10 best-
evaluated classifiers models, highlighting the over-
sampling technique ROS that made the algorithms
have better performance in our experiments. The al-
gorithm DT figures for the first time among the best
classifiers when trained with data over-sampled by
ROS.

4.4 Discussion

As expected, the classifiers trained with imbalanced
data did not perform well in our experiments, because
the algorithms would be exposed to a few observa-
tions of the minority class and would not be able
to classify well. Similarly, the TL and ENN under-
sampling techniques did not achieve satisfactory re-
sults, because these techniques are distance-based,
depending on the data set, they do not balance cor-
rectly, and this fact could be verified in our experi-
ments because when these techniques were used the
data set remained highly imbalanced.

Scenario 2 classifiers, trained only with code
smells, achieved the worst performance among the
three scenarios. No classifier reached an average
value of AUC after the 10 rounds of nested cross-
validation greater than 70%, which is the value, gen-
erally, considered to be an acceptable performance
threshold for a classifier.

The classifiers trained in scenarios 1 and 3 showed
the best performance in predicting class change
proneness. Object-oriented software metrics when
used to train the classifiers, scenario 1, allowed sim-

Empirical Study about Class Change Proneness Prediction using Software Metrics and Code Smells

145



Table 3: Results for nested Cross-Validation - Only code smells metrics - 10 best classifiers.

Algorithm Balancing Tech. AUC (%) Std. Dev. (%)

LR ROS 68.8 3.6
LR ADASYN 68.7 4.1

LGBM ROS 68.7 4.4
LR SMOTE 68.6 4.5
RF RUS 68.6 4.3

XGB ROS 67.9 3.8
LR RUS 67.9 4.2

LGBM SMOTE 67.3 4.5
XGB RUS 67.2 4.4

LGBM ADASYN 67.1 3

Table 4: Results for nested Cross-Validation - Object-oriented software metrics and code smells metrics - 10 best classifiers.

Algorithm Balancing Tech. AUC (%) Std. Dev. (%)

RF RUS 73.5 3.7
LGBM ROS 73.4 3.1
LGBM RUS 72.8 2.9

LR ROS 72.5 4.2
LR ADASYN 71.5 3.5
LR SMOTE 71.1 4.1

LGBM ADASYN 70.8 3.4
LGBM SMOTE 70.6 3.7

DT ROS 70.6 2.8
LR RUS 70.3 4.1

ple classifiers, such as KNN and LR, to achieve good
average value of AUC after the 10 rounds of nested
cross-validation.

The addition of the code smells to the object-
oriented software metrics improved the performance
of some classifiers. For instance, the best classifier
in scenario 1 remained the best in scenario 3, the RF
algorithm trained with data under-sampled by RUS.
It had a 0.2% improvement in the average value of
AUC. It is also essential to highlight the performance
improvement of the classifier that uses the DT algo-
rithm trained with data over-sampled by ROS since
when trained only with object-oriented metrics, the
classifier did not even figure among the 10 best, the
performance increase was of 9.5%.

The fact that the performance of the classifiers
trained in scenario 2 was below acceptable threshold
conflicts with the results found by (Kaur et al., 2016),
where the authors state that code smells are better pre-
dictors than object-oriented software metrics. Our ex-
periments showed that the code smells collected for
this particular software and detected by the Designite
tool were poor predictors, but when combined with
the object-oriented software metrics, they were able
to achieve a significant performance increase.

5 CONCLUSION

In this paper, we presented an empirical study about
the performance of 8 machine learning techniques
while performing the task of class change proneness
prediction. We have proposed three training scenarios
using a data set containing eight object-oriented soft-
ware metrics and 32 types of code smells extracted
from the source code of a web application that had
its development between 2013 and 2018, having eight
releases following the activities of the practical guide
proposed by (Melo. et al., 2019).

From the results of the experiments, we concluded
that using our data set, when training in the scenario
3 that uses both object-oriented software metrics and
code smells combined, the class change proneness
prediction classifiers achieve better performance than
when trained with object-oriented metrics and code
smells separate. The classifier that uses RF as the
machine learning technique trained with data under-
sampled by the RUS technique was the best in our ex-
periments achieving the average value of AUC after
the 10 rounds of nested cross-validation of 73.5%, in
scenario 3. Also, in scenario 3, LGBM has presented
good results achieving the average value of AUC af-

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

146



ter the 10 rounds of nested cross-validation of 73.4%
when trained with data over-sampled by ROS tech-
nique.

In summary, for the case of the data set con-
structed during the paper and used for the experi-
ments, code smells alone are not good class change-
proneness indicators as object-oriented software met-
rics. However, when combined, they can lead to good
results, increasing the performance of machine learn-
ing algorithms. Furthermore, the best performing ma-
chine learning techniques, based on the average value
of AUC after the 10 rounds of nested cross-validation
and algorithm simplicity, were RF, LGBM, and LR.

As future work, there are several possibilities and
different approaches to be investigated. From the
point of view of the data set design, one approach
would be adding new software metrics such as evolu-
tionary (Elish and Al-Rahman Al-Khiaty, 2013) and
intensity index of a code smell (Catolino et al., 2019).
Moreover, for the class change proneness prediction,
it is viable to test another machine learning and deep
learning techniques and use more modern and elabo-
rate methods to create synthetic training data.

ACKNOWLEDGEMENTS

This research was funded by LSBD/UFC.

REFERENCES

Abdi, H. and Williams, L. J. (2010). Principal component
analysis. WIREs Comput. Stat., 2(4):433–459.

Catolino, G., Palomba, F., Fontana, F. A., Lucia, A. D.,
Zaidman, A., and Ferrucci, F. (2019). Improving
change prediction models with code smell-related in-
formation. CoRR, abs/1905.10889.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16:321–357.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Trans. Softw.
Eng., 20(6):476–493.

de Almeida Filho, F. G., Martins, A. D. F., Vinuto, T. d. S.,
Monteiro, J. M., de Sousa, I. P., de Castro Machado,
J., and Rocha, L. S. (2019). Prevalence of bad smells
in pl/sql projects. In Proceedings of the 27th Interna-
tional Conference on Program Comprehension, ICPC
’19, pages 116–121, Piscataway, NJ, USA. IEEE
Press.

Elish, M., Aljamaan, H., and Ahmad, I. (2015). Three em-
pirical studies on predicting software maintainability
using ensemble methods. Soft Computing, 19.

Elish, M. O. and Al-Rahman Al-Khiaty, M. (2013). A
suite of metrics for quantifying historical changes to
predict future change-prone classes in object-oriented
software. Journal of Software: Evolution and Process,
25(5):407–437.

Fowler, M. (2018). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn:
Adaptive synthetic sampling approach for imbalanced
learning. In 2008 IEEE International Joint Confer-
ence on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 1322–1328.

Kaur, A., Kaur, K., and Jain, S. (2016). Predicting software
change-proneness with code smells and class imbal-
ance learning. In 2016 International Conference on
Advances in Computing, Communications and Infor-
matics (ICACCI), pages 746–754.

Koru, A. G. and Liu, H. (2007). Identifying and charac-
terizing change-prone classes in two large-scale open-
source products. Journal of Systems and Software,
80(1):63 – 73.

Lemaı̂tre, G., Nogueira, F., and Aridas, C. K. (2017).
Imbalanced-learn: A python toolbox to tackle the
curse of imbalanced datasets in machine learning.
Journal of Machine Learning Research, 18(17):1–5.

Lu, H., Zhou, Y., Xu, B., Leung, H., and Chen, L.
(2012). The ability of object-oriented metrics to pre-
dict change-proneness: a meta-analysis. Empirical
Software Engineering, 17(3).

McCabe, T. J. (1976). A complexity measure. IEEE Trans-
action on Software Engineering.

Melo., C. S., da Cruz., M. M. L., Martins., A. D. F., Matos.,
T., da Silva Monteiro Filho., J. M., and de Cas-
tro Machado., J. (2019). A practical guide to support
change-proneness prediction. In Proceedings of the
21st International Conference on Enterprise Informa-
tion Systems - Volume 2: ICEIS,, pages 269–276. IN-
STICC, SciTePress.

NDpends (2018). [Online; posted 09-November-2018].
Sharma, T. (2016). Designite - A Software Design Quality

Assessment Tool.
Singh, G. and Chopra, V. (2013). A study of bad smells

in code. Int J Sci Emerg Technol Latest Trends,
7(91):16–20.

Tomek, I. (1976). Two modifications of cnn. IEEE Trans.
Systems, Man and Cybernetics, 6:769–772.

Wilson, D. L. (1972). Asymptotic properties of nearest
neighbor rules using edited data. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-2(3):408–
421.

Empirical Study about Class Change Proneness Prediction using Software Metrics and Code Smells

147


