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Abstract: Cloud’s indisputable value for SMEs and enterprises has led to its wide adoption for benefiting from its cost-
effective and on-demand service provisioning. Furthermore, novel systems emerge for aiding the cross-cloud 
application deployments that can further reduce costs and increase agility in the everyday business operations. 
In such dynamic environments, adequate reconfiguration support is always needed to cope with the fluctuating 
and diverse workloads. This paper focuses on one of the critical aspects of optimal decision making when 
adapting the cross-cloud applications, by considering time-related penalties. It also contributes a set of recent 
measurements that highlight virtualized resources startup times across different public and private clouds. 

1 INTRODUCTION 

In cloud computing besides the on-demand 
provisioning of resources, users are enabled with 
features that allow the seamless adaptation of the 
allocated resources, used for hosting applications 
according to the constantly fluctuating workload 
needs. This is achieved by either scaling in or scaling 
out the infrastructure in times of lower or higher 
demand, respectively. This ability to dynamically 
acquire or release computing resources according to 
user demand is defined in the computer science as 
elasticity (Verma et al., 2011). Providing 
infrastructural resources i.e. Virtual Machines (VMs), 
becomes very important when these resources can be 
ready in time to be used according to the users’ 
expectations.    

Nowadays, modern data-intensive applications 
increasingly rely on more than one cloud vendors, a 
fact that makes elasticity even more challenging as a 
feature (Horn et al., 2019).  In order to decide in each 
situation, based on a given application topology and 
fluctuating workload, several aspects of the 
reconfiguration costs should be considered (such as 
time cost, data lifecycle cost etc.). In this work, we 
present how the time dimension of this cost can be 
considered, based on the VM startup times and the 
application component deployment times. This cost is 

evaluated as a part of a utility function that can reveal 
whether a certain reconfiguration action is optimal for 
the current cross-cloud application. Specifically, an 
algorithm and a software tool are presented, in section 
3, for calculating the reconfiguration cost of each 
alternative topology that should be examined towards 
a cloud application reconfiguration. In section 4, we 
highlight the importance of the penalty calculator for 
the reconfiguration decision making by using an 
illustrative example. Through a set of related startup 
measurements of virtualised resources in prominent 
vendors, we reveal important findings about VM 
provisioning. Last, we conclude this work and discuss 
next steps in section 5. 

2 RELATED WORK 

In this section, we discuss some of the studies 
performed that focus on the reconfiguration costs in 
the cloud and the multi-cloud environment. Such a 
work (Mao and Humphrey, 2012) provides a 
systematic study on the cloud VM startup times 
across three cloud providers (i.e. Amazon EC2, 
Windows Azure and Rackspace). In this study, 
measurements were reported, while an analysis of the 
relationship among the VM startup time and different 
factors, is given for comparing the three cloud 
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providers. These factors include the size of OS 
instance image, the instance type of the VM, the 
number of instances concurrently deployed and the 
time within the day that the reconfiguration/startup is 
performed. Although this study is valuable the 
measurements have been performed back in 2012 and 
they need to be updated, while there is a lack of 
exploitation of such data in terms of reconfiguration 
decision making. In another work (Salfner et al., 
2011) the authors analyse the VM live migration 
downtime during the reconfiguration process using 
different cloud resources. The results from the 
analysis after various experiments, showed that the 
total migration time as well as the downtime of the 
services running on the migrated VMs are mainly 
affected by the memory usage of the VMs used. But 
besides the significant findings, there is no described 
method on how to take into consideration this time 
cost in the reconfiguration process of the cloud 
infrastructure in order to minimize its impact. What is 
more the multi-cloud case of reconfiguration is not 
examined at all.  In a different approach, the authors 
(Yusoh and Tang, 2012) propose a penalty-based 
Grouping Genetic Algorithm for deploying various 
Software as a Service (SaaS) composite components 
clustered on VMs in different clouds. Their main 
objective was to minimize the resources used by the 
application and at the same time maintain an adequate 
quality of service (QoS), respecting any constraints 
defined. Based on the experimental results, their 
proposed algorithm always produces a feasible and 
cost-effective solution with a quite long computation 
time though. In addition, no action is taken in this 
study to incorporate in this penalty calculation the 
time dimension for provisioning VMs, as a crucial 
aspect of the reconfiguration process and the 
availability of cloud applications.  

Considering time aspects for the reconfiguration 
penalty in the multi-cloud environments, it is also 
noteworthy to examine cases were resources should 
be used for which no prior data is available (e.g. a 
custom VM for which no previous measurements are 
available). In such cases several approaches exist that 
are valuable. Uyanik and Guler (Uyanik and Guler, 
2013) analyse in their study whether or not the five 
independent variables in the standard model were 
significantly predictive of the KPSS score (Kokoszka 
and Young, 2015), the dependent variable, based on 
ANOVA statistics (Rutherford, 2001). Their primary 
objective was to exemplify the multiple linear 
regression analysis with its stages. The assumptions, 
necessary for this analysis, were examined and the 

                                                                                                 
1 http://camel-dsl.org/  

regression analysis was performed using related data 
that were satisfying the assumptions. The standard 
model’s prediction degree of the dependent model 
was R=0.932, while the variance of the dependent 
variable was R2=0.87. The model seems to predict 
appropriately the dependent variable, but it is not so 
accurate as the ordinary least squares (OLS) Multiple 
Linear Regression algorithm (Rutherford, 2001). 
Specifically, in the case of OLS algorithm a greater 
than 95% value of R2 is achieved which means that 
the proportion of the variance in the dependent 
variable that is predicted from the independent 
variables is greater than 95%. OLS regression 
algorithm is one of the major techniques used to 
analyse data and specifically to model a single 
response variable which has been recorded on at least 
an interval. For the above reasons the specified OLS 
method is used for the Penalty Calculator Algorithm 
described in the section 3.2. 

3 PENALTY CALCULATOR 

In this paper, an innovative platform which is called 
Melodic is used as an automatic DevOps for 
managing the life cycle of cross-cloud applications 
(Horn et al., 2019), (Horn and Skrzypek, 2018). The 
Melodic platform is built around a micro-services 
architecture, able to manage container-based 
applications and support some of the most prominet 
big data frameworks. The main idea of Melodic is 
based on models@run.time and states that the 
application architecture, its components and the data 
to be processed can all be described using a Domain 
Specific Language (DSL). The application 
description includes the goals of the efficient 
deployment (e.g. reduce cost), complies with the 
given deployment constraints (e.g. use data centres 
located in various locations), and registers the current 
state of the application topology, through monitoring, 
in order to optimize the deployment of each 
application component.  

The Melodic platform-as-a-service (PaaS) is 
conceptually divided into three main parts: i) the 
Melodic interfaces to the end users; ii) the 
Upperware; and iii) the Executionware. The first part 
comprises tools and interfaces used to model users’ 
applications and datasets along with interacting with 
the PaaS platform. Moreover, the PaaS is using 
modelling interfaces that are established through the 
CAMEL1 modelling language, which provides a rich 
set of DSLs with modelling artefacts, spanning both 
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the design and the runtime of a cloud application as 
well as data modelling traits. The second part 
(Upperware) is responsible to calculate the optimal 
application component deployments and the 
appropriate data placements on dynamically acquired 
cross-cloud resources.The optimal configuration of 
the cross-cloud application topology refers to a utility 
function evaluation. The utility function can be 
defined as the function, introduced as a measure of 
fulfillment for applying reconfiguration for cross-
cloud applications. This utility function requires the 
use of a Penalty Calculator (used as a library) which 
focuses on the reconfiguration time cost. In this paper 
the time reconfiguration cost is mainly examined, 
while there can also be other parameters to consider 
such as the cost of transferring data. An important 
part of this evaluation includes the VMs startup times 
along with the expected deployment times of specific 
application components that are to be reconfigured. 
The Penalty Calculator provides normalized output 
values between 0 and 1, where 0 indicates the lowest 
possible penalty which indicates the most desired 
solution and 1 indicates the highest possible penalty 
which is the less desired solution.  

For example, a utility function can be defined as 
follows: 

Re

1

Solution configuration

UtilityFunction
C C




 (1)

Where the CSolution is a function of the number of 
resources used for deployment. This implies the 
satisfaction of certain goals (e.g. minimize the 
deployment cost, minimize response time etc.) 
expressed as a mathematical function:  

ௌ௢௟௨௧௜௢௡ܥ ൌ ݂ሺ݊ݏ݁ܿݎݑ݋ݏ݁ݎ_݂݋_݋ሻ (2)

While the CReconfiguration is a function of the result 
of the Penalty Calculator. This result represents the 
value given by the Min-Max normalization method, 
applied over the Ordinary Least-Squares Regression 
(OLS) algorithm result described in paragraph 3.2: 

ோ௘௖௢௡௙௜௚௨௥௔௧௜௢௡ܥ ൌ ݂ሺ݁ݑ݈ܽݒ_ݕݐ݈ܽ݊݁݌ሻ (3)

The third part of Melodic includes the 
Executionware which executes the actual cloud 
application deployments and reconfigurations by 
directly invoking the cloud providers APIs.  

3.1 Approach 

Penalty Calculator’s objective is to calculate a 
normalized reconfiguration penalty value by 

                                                                                                 
2 https://memcached.org/ 

comparing the current and the new candidate 
configuration, coming from a constraing 
programming solver component of the Upperware. 
Therefore, the system examines a sequence of 
candidate configurations under specific constraints 
and optimization goals (e.g. reduce cost and increase 
service response time) that will serve according to the 
desired QoS the incoming workload. The Penalty 
Calculator affects the decision on accepting and 
deploying a new candidate cross-cloud application 
topology based on its’ function value. The smaller the 
penalty function is, the better is for the candidate 
solution as it implies a smaller time for materializing 
the proposed reconfiguration. 

The Penalty Calculator is a part of the Melodic 
Upperware and it is used as a library by the Utility 
Generator, a component that calculates a single value 
for each candidate solution, according to a utility 
function that expresses the overall goals of the 
application. The Penalty Calculator receives from the 
Utility Generator, XMI files describing the 
collections of configuration elements for the current 
and the new proposed configuration (OS, hardware 
and location related information of the virtualised 
resources to host certain application components).In 
order to use a high-performance, distributed memory 
caching system intended to speed up the penalty 
function calculations, the VM startup time data are 
stored in memory, using the Memcache 2  solution. 
The categorization of various VM startup times 
include multiple variables for resources such as the 
RAM, CPU cores, Disk, VM types names etc. 
Regarding the component deployment times, these 
are persisted and retrieved from a time-series 
database. The various application components that 
are deployed in cross-clouds are constantly measured 
with respect to the deployment time needed and based 
on the virtualized resource used. By using a time-
series database for this purpose, it allows for a quick 
retrieval of the average deployment times. In this 
work InfluxDB3 was used. 

3.2 The Penalty Calculator Algorithm 

Based on the feed from the Utility Generator in 
Melodic, the Penalty Calculator algorithm is applied 
for comparing the old and the new proposed 
(candidate) solution, issuing a penalty value, thus 
affecting the decision on whether or not a specific 
new solution should be deployed. This algorithm uses 
measured VM startup times and measured component 
deployment times (their average values) for 

3 https://www.influxdata.com/ 
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calculating the time-related cost for changing from 
the current to a new application topology. If there are 
no component deployment times from past 
measurements, the algorithm takes into consideration 
only the VM startup times. In case of new custom 
VMs are to be provisioned, the Ordinary Least 
Squares Regression Algorithm (Hutcheson, 2011) is 
used to estimate the expected startup time by 
exploiting the measurements of the available 
predefined cloud providers’ flavours. The general 
flow of the Penalty Calculator is given in Figure 2. 

 

Figure 2: Penalty Calculator’s Flowchart. 

It is very important to note that since the VM 
startup times is not a constant property of the VM and 
of each cloud provider, but depends on the current 
state, load and configuration of each given cloud 
infrastructure in conjunction with the chosen VM, the 
used startup times values in the algorithm are real 
ones and are updated and fetched in real-time from a 
time-series database where these are stored. 

Regarding the OLS algorithm, a single response 
variable is used to model the VM startup time which 
has been recorded for a specified range of values. The 
specific technique is applied to multiple variables that 
have been appropriately coded (i.e. RAM usage, CPU 
core number and Disk usage). It’s purpose is to 
calculate startup times regarding (custom) VM 
flavours for which we do not have mesurements from 
previous deployments. The general format of the OLS 
model includes the relationship between a continuous 
response variable Y and some continuous variables X 
by using a line of best-fit, where Y is predicted at least 
to some extend by variables X: 

1 1 2 2 3 3* * *Y a b X b X b X     (4)

In equation (4), α indicates the value of Y when all 
values of the explanatory variables X are equal to 
zero. Each parameter b indicates the average change 
in Y that is associated with a unit change in X, whilst 
controlling the other explanatory variables in the 
model. The Min-Max normalization method is used 
as a last step in the Penalty Calculator by considering 
the average values of all the VMs (to be used) startup 
times of new configuration plus the average value of 
the component deployment times.   

4 AN ILLUSTRATIVE EXAMPLE 

We note that the Penalty Calculator, presented in this 
paper has been tested and evaluated in several  real-
application scenarios. In this section, we present one of 
them as an illustrative example for highlighting the 
value of such an approach. We refer to a traffic 
simulation application which is used by the company 
CE-Traffic for the analysis of traffic and mobility-
related data as a basis for optimization and planning in 
major European cities. The initial deployment consists 
of five main components instances (also seen in Figure 
3): i) traffic evaluation component (single instance); ii) 
simulation manager (single instance); and iii) 
simulation workers (three instances). The traffic 
evaluator component is responsible for the traffic 
analysis and sends to the simulation manager 
information about the need of executing a simulation. 
On the other hand, simulation workers are components 
responsible for evaluating traffic simulation settings 
received from the simulation manager. 

 

Figure 3: Model of CET Traffic Simulation App. 

We consider the following constraints and 
requirements described in the data farming 
application CAMEL model: 
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• Single instance of the traffic evaluation 
component 

• Single instance of the simulation manager 
• Between 0 and 10 instances of workers 
• At least 2 CPU Cores per worker 
• At least 2GB of RAM per worker 
As expressed in the CAMEL model of the 

application, reconfiguration and later horizontal 
scaling of simulation worker instances is supposed to 
happen within a limit of 1 to 100 instances. To trigger 
this reconfiguration, the simulation manager collects 
several metrics: 

• TotalCores - the total number of cores 
available in workers 

• RawExecutionTime - the time of performing 
a single task (running a single simulation) by 
a worker 

• SimulationLeftNumber - the number of tasks  
(simulations) which should be still performed 

• RemainingSimulationTimeMetric - the 
remaining time in which the data farming 
experiment should be finished 

Values of these metrics are computed and updated 
by the simulation manager which sends them to PaaS 
platform described in the introduction of section 3. In 
this PaaS platform we have implemented a distributed 
complex event processing system that is able to 
process incoming monitoring data in hierarchical way 
(Stefanidis et al., 2018). Based on this processing the 
system is able to detect at the appropriate time when 
a new reconfiguration should be initiated to cope with 
the detected current workload of the application.The 
specified system receives values of metrics and 
checks whether the data farming experiment is 
expected το be finished on time. Finally the 
‘MinimumCores’ composite metric is calculated  in 
order to help for the reconfiguration. In our case 
example, 2 new workers are added in order to finish 
the traffic simulation that described before. When the 
simulations are finished the ‘MinimumCores’ 
composite metric is equal to zero and in the next 
reconfiguration workers are being removed.  

Although the above system works fine in the 
majority of the cases, there are edge cases where a 
reconfiguration might start (based on the scalability 
rules) although the remaining simulation time is quite 
small. In fact this means that we might observe a 
behaviour where our system starts a reconfiguration 
cycle which until it is fully implemented, the 
application simulation will have been completed. 
Therefore the consideration of the time that is needed 
for any reconfiguration and as a consequence the time 
penalty that our component calculates, is a critical 
factor to be considered.  

Such cases are resolved succesfully by using a 
Penalty Calculator component that receives  two 
configurations schemas  that are provided to it as 
input. The new configuration schema presents new 
elements (i.e. a new predefined VM flavour) and 
some custom VM flavours, not predefined in the used 
cloud providers (i.e. t1.microcustom). Specifically, 
the predefined VM types in this example come from 
2 cloud vendors: Amazon EC2 and Openstack. By 
using the normalized value that it is produced from 
Penalty Calculator and considered in the Utility 
Function (UF) the previous described unecessary 
reconfigurations are avoided. Zero is the most desired 
output of Penalty Function and if the output is closer 
to that value, it implies a smaller time for 
materializing the proposed reconfiguration. On the 
other hand, if the output of Penalty Calculator is 
closer to one, then this is not desired and affects 
negatively the UF for a new reconfiguration. In this 
way reconfigurations that impose delays 
unacceptable according to the current  application 
context are avoided. 

4.1 Experiment Measurement Results 
and Analysis 

Table 1: Openstack Flavours Used. 

Openstack Flavours VCPUs RAM (in MB) 
m1.small2 2 1024 

m1.medium2 4 4096 
m1.large2 8 8192 
m1.xlarge 8 16384 

Table 2: Amazon EC2 Flavours Used. 

EC2 Flavours VCPUs RAM (in MB) 
t2.micro 1 1024 
t2.small 1 2048 

t2.medium 2 4096 
t2.large 2 8192 

t2.xlarge 4 16384 
t2.2xlarge 8 32768 

 
Considering the importance of the VM startup times 
in cloud application reconfigurations, we conducted a 
performance study that is presented in this section. 
Similar to this work (Mao and Humphrey, 2012), we 
conducted new measurements across one private and 
one public cloud provider, specifically: i) an internal 
testbed offered by the university of ULM in Germany 
that corresponds to an Openstack installation; and ii) 
Amazon AWS. A number of different regions from 
the public providers and several VM types were used 
in this analysis, which focused on the VM startup 
times. More than 2500 measurements were conducted 
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that involved the provisioning of different VM 
flavours, hosted in different data centre locations and 
with an increasing number of VMs instantiated 
simultaneously (Table 1, Table 2). For all of these 
VMs, the same Ubuntu images were used.  

To describe the lifecycle of the cloud VM 
instances, cloud providers use a set of status tags to 
indicate the states of the provisioned VM instances. 
To make the definition of startup time consistent 
across the cloud providers that were used in our 
measurements, we ignore the status tags and 
considered as VM startup time the duration from the 
time of issuing a VM provision request to the time 
that the acquired instances can be logged in remotely. 

 

Figure 4: Average Startup times by Openstack VM flavour 
(including standard deviations). 

The first set of measurements across the cloud 
providers focused on the relationship between the 
VM startup time and the VM flavour used. Each set 
of measurements included for each specific VM 
flavour the provisioning of 1-20 instances either 
sequentially or in parallel (by incrementally 
increasing the VMs requested simultaneously). The 
threshold of 20 instances per set of measurements was 
imposed by the API limitations of the providers. 

 

Figure 5: Average Startup times by Amazon EC2 VM 
flavour (including standard deviations). 

According to the outcome of these measurements 
which can be found in Figures 4-5 the VM startup 
time is longer for the private cloud provider than the 
public one. Specifically, the Openstack VMs are 
provisioned with an average startup time from 81 to 
123 seconds depending on the VM flavour, while the 
rest startup times are found from 49 to 66 seconds for 
EC2 Cloud VMs. This is quite expected if we 
consider the wide range of resources that is employed 
by big vendors. With respect to the variance of the 
conducted measurements, we found that the standard 
deviation in Openstack VMs’ startup time is also 
significantly higher than those of the public provider. 
This implies a much more unstable environment in 
the case of the private provider both in terms of 
infrastructural resources and scheduling mechanism.   

 

Figure 6: Average Startup times by Amazon EC2 
Availability Zones (including standard deviations). 

The second set of measurements was focused 
around the different data centre locations offered by 
the AWS public cloud providers and how this may 
impact the startup time of VMs. In Figure 6, we 
present the findings of our measurements. It is 
important to note that we do not find a significant 
fluctuation of the VM startup times as the requests for 
VMs provisioning change among regions and 
availability zones. The 55 seconds was the average 
startup time even for VMs provisioned in US 
locations. A slight improvement by 5 seconds was 
observed in all VMs provisioned from the data centre 
located in Paris, while the standard deviation of these 
measurements didn’t exceed the 15 seconds.  

In the last set of measurements, we tried to 
examine the impact in the VM startup times as we 
increased the number of VMs that were requested 
simultaneously, reaching up to 20 VMs in parallel 
(which is the threshold set by the Cloud providers).  
The results are presented in Figures 7-8. In Openstack 
VMs, we detected, as expected a much higher 
fluctuation in the VM startup times, which is 
gradually reduced as the requested VMs increase. In 
addition, we found significant fluctuations among the 
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same number of instances startup that reached even 
the amount of 89 seconds when 7 VMs requested in 
parallel, a fact that reveals unstable behaviour in case 
of the private cloud provider. In the case of the public 
provider, we witnessed a much more balanced 
behaviour with  minor fluctuations in the startup time. 
Specifically, we observed average startup times 
between 45 (for 10 instances) and 53 seconds (for 11 
instances) as different simultaneous VMs startup 
requests were submitted. This is quite reasonable as 
the scheduling is done online and there are always 
enough spare resources to directly schedule the 
considerably small amount of resources that we were 
requesting. We also note that in the previous similar 
work (Mao and Humphrey, 2012), the authors have 
measured in 2012 an average startup time in Amazon 
EC2 VMs that of 100 seconds while in our recent 
measurements we witnessed 48% shorter times. This 
fact affirms the significant investments in 
infrastructure that public cloud providers have made 
over the last years. 

 

Figure 7: Average Startup times in Openstack by the 
number of concurrent instances (including standard 
deviations). 

 

Figure 8: Average Startup times in Amazon EC2 by the 
number of concurrent instances (including standard 
deviations). 

 

4.2 Penalty Calculator Results 

According to the measured values from the previous 
paragraph 4.1, we present the VM startup times stored 
in the system (Memcached memory) in order to be 
used by the proposed Penalty Calculator for the needs 
of our example: t2.micro-56 sec, t2.small-58 sec, 
t2.medium-66 sec, t2.large-52 sec, t2.xlarge-50 sec, 
t2.2xlarge-49 sec, m1.tiny-55 sec, m1.small-80 sec, 
m1.medium-120 sec, m1.large-90 sec, m1.xlarge- 93 
sec. 

A table is used with the specific values on RAM, 
CPU cores, and Disk for each type described in Table 
3. This table is also stored in Memcached for fast 
retrieval. 

Table 3: VM Startup Times mapped to resources. 

VM startup 
time (sec) 

Number of 
cores for 

vCPU 
RAM (GB) Disk (GB) 

56 1 0.6 0.5 
58 1 1.7 160 
66 4 7.5 850 
52 8 15 1690 
50 7 17.1 420 
49 5 2 350 
55 1 0.5 0.5 
80 1 2.048 10 
120 2 4.096 10 
90 4 8.192 20 
93 8 16.384 40 

 
The values of Table 3 are used to train the 

Ordinary Least-Squares Regression algorithm which 
is used to help in the prediction of the unknown VM 
startup times. By that way, the weights of the OLS 
algorithm are adapted. The new custom VM type that 
is used in this case is the t1.microcustom with a 
predicted startup time of 57 sec. 

Moreover, the component deployment times have 
to be considered in the penalty calculator as explained 
in section 3. The measured component deployment 
times that have been stored in the InfluxDB are: Traffic 
evaluation compontent - 372.7659902248333 sec, 
Simulation manager component - 
383.61119407688045 sec and Simulation Worker (per 
each of the 3 instances) - 323.87364700952725 sec. By 
using the above VM startup times and the component 
deployment times the following regression parameters 
of the equation (4) are produced:  

A=96.69038582442504 
B1= -8.070707346640273 
B2=1.7404837523622727 
B3=7.407279675477281E-4 
With a r-Squared parameter: 0.9894791420723722
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Based on these results, this algorithm is quite 
accurate and depends on the value of the 3 
explanatory variables to 98.95% and 1.7% to the 
constant value of a. This is used in order to give an 
accurate prediction for any custom VM type that may 
be used as part of a new configuration in the new 
Cloud infrastructure. Last, by using the Min-Max 
normalization method, the system calculates a 
Penalty value which is the normalized average value 
of the VM startup time and component deployment 
time and equals to 0.52197146827194. Based on this 
value, the Utility Generator component is able to 
decide the most appropriate configuration out of all 
the available candidate configurations. 

5 CONCLUSIONS 

In this paper we focused on one of the critical aspects 
for optimal decision making, with respect to 
reconfiguration, in the dynamic environment of cross-
cloud applications. Specifically, we presented a 
system for calculating time-related penalties when 
comparing candidate new solutions that adapt a 
current application topology which is unable to serve 
an incoming workload spike. The algorithm 
implemented considers both VM startup times, across 
different providers and application component 
deployment times for calculating a normalized 
penalty value. This paper also discussed a set of 
recent measurements that highlight virtualization 
resources startup times across different public and 
private providers. 

The next steps of this work include the extension 
of the VMs startup time measurements across more 
providers, regions using additional VM flavours. 
Moreover, this work will continue with the 
consideration of data management and migration 
related times for considering the complete lifecycle 
management when calculating reconfiguration (time-
related) penalties.  
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