
Migration of Monolith Applications to Miniservices: A Case Study
from the Telecom Domain

Ümit Kanoğlu1 a, Ali İmre1 b and Oumout Chouseinoglou2 c
1Türk Telekom, Ankara, Turkey

2Department of Industrial Engineering, Hacettepe University, Ankara, Turkey

Keywords: Service Computing, Miniservices, Microservices, Miniservice Migration.

Abstract: More organizations are considering the transformation of their existing monolithic applications to
microservices in order to increase competitiveness and utilize the benefits of new software architectures which
meet their business needs. However, due to detailed and extensive requirements of the microservice
architecture (MSA), organizations either implement microservices at different granularity levels or decide not
to undertake this migration even though the business need is evident. Miniservices have been proposed as an
intermediate alternative between monoliths and microservices, with a larger scope of services and more
relaxed architectural constraints. This paper introduces the concept of miniservice architecture (MnSA) to the
industry domain, proposes a methodology to be implemented for the migration of a monolith application to
MnSA and shows the applicability of this methodology with a detailed case study from the telecom domain.

1 INTRODUCTION

Large enterprises over the years of their operation
generally accumulate a software inventory of large
and elephantine monolithic systems. Continuously
changing business requirements and environments
lead to these monolithic systems getting inevitably
larger and implementing changes while trying to meet
budget and schedule constraints but also satisfying
quality, availability, and reliability levels can be very
challenging (Levcovitz, Terra, & Valente, 2015)
(Dragoni, et al., 2017). One of the newest proposed
alternatives to the monolithic approach is the
microservice architecture (MSA), based on the
service-oriented computing and defined as “an
approach for developing a single application as a suite
of small services, each running in its own process and
communicating with lightweight mechanisms”
(Lewis & Fowler, 2014). Even though MSA has been
proposed as a solution for the inefficiencies and
problems caused by the monolith architecture and a
strong industry interest in migrating legacy systems
to MSA exists (Di Francesco, Lago, & Malavolta,
2019), MSA can also be a high-cost, disruptive, and

a https://orcid.org/0000-0001-8245-1355
b https://orcid.org/0000-0001-9477-0660
c https://orcid.org/0000-0002-8513-351X

often less predictable undertaking for many
enterprises due to the lack of experienced
development teams (Christudas, 2019). As a deficient
implementation of MSA would not fully resolve the
already existing problems of a monolithic application,
the miniservice architecture (MnSA) has been
proposed as an intermediary architectural approach.
MnSA, compared to monolithic architecture
aggregates functionality related to a specific domain,
whereas compared to MSA, MnSA has a larger scope
and more relaxed architectural constraints, and may
or may not use independent data (Christudas, 2019)
(Thomas & Gupta, 2017). In other words, a
miniservice can be described as a structure that may
consist of functionalities which could be decomposed
to more than one microservice and share databases
(DB) with other miniservices, thus allowing a more
relaxed design and development for the organization
with the realization of the advantages of the MSA.
The introduction of the concept of miniservices has a
specific importance as findings from the industry
show that not every implementation of microservices
adheres to the characteristics of “pure microservices”,
and service granularity is one of the characteristics

390
Kanoğlu, Ü., İmre, A. and Chouseinoglou, O.
Migration of Monolith Applications to Miniservices: A Case Study from the Telecom Domain.
DOI: 10.5220/0009408103900397
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 390-397
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

not followed in many microservice applications
(Bogner, Fritzsch, Wagner, & Zimmermann, 2019).

As in the case of microservices (Baresi, Garriga,
& De Renzis, 2017), when planning a migration of a
monolith system to an MnSA or when designing an
application from scratch considering an MnSA,
discovering the level of granularity and cohesiveness
that would be adequate for the miniservices is an
important problem that needs to be addressed by the
people responsible for the migration. To the best of
our knowledge, this is the first paper that proposes a
methodology for the migration of an existing
monolithic application to an MnSA, and displays the
applicability of the proposed approach with a case
study. However, it should be noted that the proposed
methodology is not a technical decomposition but a
high-level design and analysis, based on the business
needs of the organization evaluating the migration to
miniservices. The contributions of this research are
therefore threefold; we introduce the alternative of
MnSA as proposed by Christudas (2019) and Gartner
Research report (Thomas & Gupta, 2017) for
organizations that want to migrate to MSA but cannot
handle the detailed and extensive requirements of
microservices, we propose a migration methodology
to MnSA and finally evaluate its applicability with a
case study.

The aforementioned case study was conducted on
an enterprise application in Türk Telekom, one of the
largest telecommunication companies and the first
integrated telecommunication operator in Turkey,
with a history of 178 years. As of September 2019,
Türk Telekom provides telecommunication services
to 14.6 million land line, 11.3 million broadband, 3.6
million TV and 22.8 million mobile subscribers. In
this paper, the Customer Problem Management
(CPM) (TMForum Frameworx, 2019) application
from the enterprise application inventory of Türk
Telekom that serves all the aforementioned customers
has been selected, and the migration of CPM to
MnSA is examined and documented as a case study,
with a specific focus on the lessons learned
throughout the project management of this migration
process. The CPM application was developed initially
as a monolithic system with the aim of centralizing in
an end-to-end way numerous different service failure
management processes running on different systems
at Türk Telekom. CPM is providing the Service
Failure Management Product which facilitates the
failure management in different broadband services
of Türk Telekom (e.g. xDSL, PSTN, IPTV, Data,
P2P, etc.), allows reception of failures from different
channels, manages the sending and receiving of
failure notifications, stores and monitors end-to-end

records of failures, facilitates problem management,
provides inter-team workflows, and has the capability
of generating executive reports that may support
future investment decisions and further decisions at
strategic level. As CPM manages the failures
submitted by customers, its accessibility level is
required to be at the highest. Moreover, as a result of
the continuously introduced new products and
services, and rapidly changing legislations and
technology in the telecom domain, CPM is required
to meet the changing functional requirements of both
internal and external customers. However, as CPM is
a monolithic application, the deployment of any
changes to the live environment is only possible by
stopping the whole CPM and all associated services.

The rest of this paper is organized as follows:
Section 2 provides a brief literature review of related
studies and approaches from the microservices
domain, Section 3 describes the proposed
methodology, Section 4 summarizes the migration of
the CPM application to an MnSA as a case study, and
finally Section 5 concludes the findings, gives the
evaluation of the proposed approach by a team of
developers, summarizes the lessons learned and refers
to the planned future work.

2 LITERATURE REVIEW

The migration literature on MnSA is almost non-
existent as the concept of miniservices is considerably
new compared to microservices. Similarly, no case
studies documenting the success of migration to an
MnSA exist. However, a number of studies have
addressed the problem of decomposing an already
existing monolithic application to microservices or
documented case studies of migration from
monolithic applications to MSA. Even though there
are notable differences between the concept of MSA
and MnSA, we believe that similar studies in the
domain of microservices would shed light to better
understanding the implementation of miniservices.

Several software products exist that have been
developed as solution to the problem of microservice
identification, such as Service Cutter (Service Cutter;
Gysel, Kölbener, Giersche, & Zimmermann, 2016) or
graph based analysis by using Neo4J GraphGist
(Bastani, 2015). A systematic mapping study by Di
Francesco, Lago and Malavolta (2019) by examining
103 studies regarding microservices displays the
current trends in the microservices research and the
gap between academy and industry in this domain.

Baresi, Garriga and De Renzis (2017), by utilizing
a clustering approach, propose a solution to the

Migration of Monolith Applications to Miniservices: A Case Study from the Telecom Domain

391

problem of identifying microservice granularity
based on the semantic similarity between predicted
and available functionality of the application, with a
success rate of 80% in correct identification of
microservices. Levcovitz, Terra and Valente (2015)
propose a six-step technique to identify microservices
on existing monolithic systems and successfully
display the applicability of their proposed approach
on a 750KLOC real-world monolithic banking
system. Their proposed approach has as initial step
the evaluation and classification of the DB tables of
the monolith system into business subsystems, thus
not being entirely applicable to a miniservice
viewpoint where the organization may not require the
decomposition of the DB. Use cases or user interfaces
have also been proposed (Richardson, 2014) to be
used for the decomposition of monolithic applications
to microservices. Fritzch et al. (2019), by examining
the MSA migration of 14 systems from different
business domains, identify as an important drawback
the fact that most organizations preferred to rewrite
their codebase instead of splitting it as they had highly
complex legacy systems. The authors argue that in
some cases this was because of the absence of a
suitable decomposition approach, and therefore a
major technical challenge was finding the right
service cut. Mazzara et al. (2018) present a real-world
case study regarding the migration to MSA of a
mission critical system from the banking industry.
The authors identify and propose a repeatable
migration process that can be used to convert a
monolithic application coming from the financial
domain (with the characteristics of legacy systems
and batch-based processing on heterogeneous data
sources) into an MSA.

3 PROPOSED METHODOLOGY

As part of this study, a methodology to assess the
feasibility to migrate an existing monolithic
application to an MnSA is proposed. This migration
methodology is not a technical decomposition but
instead a high-level design and analysis, to be utilized
based on the business needs of the organization when
evaluating the migration to miniservices, and is in
accordance with the ITIL framework (What is ITIL,
2019).

The steps followed in the migration process are
given in a generic fashion and in the most general
form in Figure 1. In the first step of the migration
process a development team that is knowledgeable
about MSA and the application to be migrated is
formed and the application is logically decomposed
to miniservices. During this decomposition process
the mission and aims of the application, code isolation
in an MnSA basis, the integration of the application
with other applications, a viewpoint supportive of
continuous integration, delivery and development
(Microsoft, 2019) and the DB structure are
considered. Following this step, all updates done in
the previous year regarding the application in
question are collected from the respective change logs
and they are assigned to each proposed miniservice.
For each update an effort is estimated based on the
components of the miniservice that they are assigned
to and the historical effort data of this update. In the
third step the previous year’s updates are evaluated
based on the changes they resulted on the DB DDL.
If the updates have resulted in too many DB changes,
the decomposition of the DB at a miniservice level is
evaluated and discussed. At the fourth step the
proposed miniservices are examined with respect to

Figure 1: Steps of the followed migration process.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

392

the number of updates that they have been assigned
and if there are miniservices with excessive number
of updates, a new logical MnSA decomposition is
reconsidered. In the next step, the integration of the
miniservices with external applications is examined:
if the impact of the external applications concentrates
on a single miniservice the decomposition process is
executed again to form a new MnSA decomposition.
In the final step, if the decomposition of the
application to the proposed miniservices is acceptable
with respect to the aforementioned steps by the team,
the project management process within the
organization is initiated.

It should be noted that further steps may be added
to the proposed approach with respect to the specific
characteristics of the application being evaluated and
the overall requirements of the organization. The
main aim, however, should be realization of the
architectural and technological advantages of the
MnSA through the migration of the application to this
new architecture.

4 CASE STUDY

4.1 Current Architecture (AS-IS)

In this section, the migration process from monolith
to MnSA of CPM (TMForum Frameworx, 2019), an
enterprise application that resides in the Customer
domain of Türk Telekom as specified by the
TMForum Application Framework (Application
Framework - TAM, 2019) is documented. The
existing version of CPM was developed according to
monolithic architecture; that is development was
conducted on a single codebase in Java and the
application runs with a single DB. The monolith CPM
application consists of approximately 200 KLOC,
2,681 Java classes and 305 DB tables, and has
approximately 3,000 active users who execute an
average of 30,000 transactions per day. This version
of the CPM is being used for the last five years (2014-
2019) and has accumulated a DB size of
approximately 20 TB. When the planned and realized
application updates are examined it is observed that
during the last year of operations, 85 update requests
that required a total of 1,377 person/day effort were
realized and put to live, resulting to 22 planned
shutdowns of the live system that lasted
approximately a total of 35 hours. Figure 2, in order
to better describe the importance of the CPM
application, displays the enterprise applications
within Türk Telekom that CPM is related to and
works in an integrated fashion. As CPM is a monolith,

Figure 2: Relationship of CPM with other enterprise
applications in the organization.

even a single update or change in the code requires
the update of the whole application. Due to the
predefined enterprise application update policies,
during planned updates all servers and access to CPM
are shutdown. Moreover, in case of a problem in the
implemented update the application in all servers
needs to be rolled back.

4.2 Proposed Architecture (To-Be)

Considering the problems existing with the monolith
CPM, a migration of the application to MSA was
initially evaluated. With the employment of an MSA
approach it was intended to deploy updates more
rapidly and in a more flexibly fashion, decrease the
downtimes resulting from updates, and eliminate the
rollback process complexity in case of problems after
the deployment of updates. According to the MSA
principles each microservice is required to be able to
execute independently, needs to be associated with a
single functionality or task and data independence is
mandatory. However, as a result of the evaluation it
was decided that an MnSA approach would be more
appropriate for the migration from the monolith
architecture, and the migration methodology
described in Section 3 was followed.

The miniservices were identified by a migration
team of five software professionals, consisting of one
project manager, one solution architect, one
operations manager and two software developers. The
migration team have decomposed the monolith CPM
to miniservices by considering the existing codebase,
their experiences with the functionality of CPM and
the requirements of the organization by this
migration. One of the most important requirements
considered was the minimization of the downtimes
resulting from application updates. Following the
steps identified in Figure 1, the technical components
of the application were grouped and the miniservices

Migration of Monolith Applications to Miniservices: A Case Study from the Telecom Domain

393

were decomposed logically in such a way to support
continuous integration (CI) and continuous
deployment (CD). Following these steps, two major
MnSA versions were obtained, namely MnSA-1 and
MnSA-2, respectively shown in Figure 3 and 4.

Figure 3: Proposed MnSA-1.

In order to evaluate the efficiency of the proposed
MnSA’s, the updates realized during the last one year
were associated with the miniservices proposed in
each MnSA alternative. Table 1 and Table 2 show
how each one of the 85 updates and their actual effort
is associated with the MnSA alternatives developed
by the migration team. This miniservice and update
association was realized by evaluating the update
details by examining the update logs, the
functionalities that an update was related to, how
these functionalities were distributed to each
miniservice and by using the expert knowledge of the
team on how the update effort would be distributed to
the detailed components of each update.

Table 1: Analysis of the Proposed MnSA-1.

Changes Number %

Effort as
Person/

Day %
Total CPM + DB
Changes 59 69 1058 77
Only BPM Changes 3 4 16 1
Only LOV Changes 6 7 20 1
Only GUI Changes 5 6 65 5
Only NPM Changes 1 1 13 1
Multiple Changes
except CPM 11 13 205 15
Total Changes except
CPM + DB 26 31 319 23

Total Changes 85 100 1377 100

When MnSA-1 in Figure 3 is examined, it is
observed that 69% of the updates and 77% of the
realized effort is associated with the Customer
Problem Management miniservice that deals with the
problems transferred by other enterprise applications

and users to CPM. The migration team evaluated
these update and effort numbers to be too high, the
methodology given in Figure 1 was repeated taking
into account this observation. As a result, the
Customer Problem Management miniservice of
MnSA-1 was further decomposed to two
miniservices, proposing Customer Problem Entry
(CPE), a new miniservice that deals with the external
integrated enterprise applications. The new MnSA is
shown in Figure 4. When Table 2 is examined, it is
observed that with MnSA-2, 62% of all updates can
be realized without shutting down the CPE
miniservice which is vital for the reception of
problems communicated by other enterprise
applications and users.

According to the MnSA-2 proposal, the
monolithic CPM is decomposed consequently to
seven miniservices: CPE encompasses the web
services that receive user problem notifications by
other enterprise applications, Customer Problem
Management miniservice manages the overall
customer problems process, Network Problem
Management (NPM) miniservice are the web services
that allow the receipt of problems sent from other
enterprise applications regarding the problems in
network devices, Business Process Management
(BPM) miniservice manages the business processes,
List of Values (LOV) miniservice encompasses web
services that allow the query of a list of values that
exist in the problem management process and define
complaint types and problem causes by the external
WFM enterprise application, GUI miniservice is the
interface of the CPM application, and finally the DB
miniservice.

Figure 4: Proposed MnSA-2.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

394

Table 2: Analysis of the Proposed New MnSA-2.

Changes Number %

Effort as
Person/

Day %
Total CPE + DB
Changes 32 38 565 41
Only CPM Changes 13 15 133 10
Only BPM Changes 3 4 16 1
Only LOV Changes 6 7 20 1
Only GUI Changes 5 6 65 5
Only NPM Changes 1 1 13 1
Multiple Changes
except CPE 25 29 565 41
Total Changes except
CPE + DB 53 62 812 59

Total Changes 85 100 1377 100

As the data integrity has been evaluated by the
migration team to be of high importance and the
percentage of updates that have affected the DB
during the last year have been identified as only 12%,
it was decided that there is no necessity of
decomposing the DB at the miniservice level, thus
justifying the reasoning of using an MnSA approach
instead of MSA. Figure 4 also shows the number of
Java classes that are associated with each proposed
miniservice.

4.3 MnSA Migration Process

In order to migrate to the proposed MnSA-2, the
codebase of the monolithic CPM is required to be
decomposed with respect to the proposed
miniservices. At this point, it was assessed by the
migration team that there is no need for changing the
tools and techniques used by the development team
for the realization of this migration, but it would
suffice to manage the development, compile and
deploy steps of each miniservice separately.
However, if the application servers are migrated to a
container structure then the development tools should
be updated to alternatives that would be compatible
with the container structure. It is proposed that in the
ideal case, similar to the MSA, the communication
between miniservices should be realized with
messages, however, it is argued that if required this
communication can be done through RESTful web
services. Moreover, a separate miniservice
development team may be formed for each
miniservice according to the MnSA approach. In the
current case study, it was decided by the migration
team that a single development team would manage
all proposed miniservices, and that as the
organizational experience regarding MnSA increases

and the teams mature on the migration and
management of miniservices future migration efforts
may be undertaken with the specialization of separate
teams at the miniservice level.

4.4 MnSA Operational Processes

As required by different legislations, the change
management processes in Türk Telekom are being
governed by the ITIL framework (What is ITIL,
2019). A foreseen further gain of the MnSA
migration, from the operational viewpoint, is making
the change management process more agile. Due to
the services that will be designed in a distributed
fashion on a cluster structure, it will be possible to
make deployments related to the CPM services
without affecting the operation of other enterprise
applications integrated to the CPM. Moreover, with
the use of the automatic test run tools placed on top
of CI and CD pipeline it is expected that defects will
be resolved more rapidly and new updates will be
deployed to the live system in a timelier manner.

However, together with the gains at the
operational level, it is expected that the use of new
tools and techniques with the novel MnSA would
result in experiencing several difficulties at the
operational processes, in accordance with the findings
of Fritzch et al. (2019). These difficulties are foreseen
to be related to the configuration and use of new tools
for server management (e.g. Kubernetes), intra-
service communication (e.g. Kafka and Zookeeper),
and log management (e.g. Elasticsearch, Graphana,
Prometheus) by the operational users at the starting
level. Moreover, code management of miniservices
that have been decomposed with some predefined
logic by the migration team and are built on top of a
container structure is expected to be more difficult
compared to the monolithic architecture alternative.
Finally, as the DB in the proposed MnSA is still
designed in a relational way, no changes at the
operational are expected with respect to this
miniservice.

5 CONCLUSION

This paper introduces the possibility of migrating
monolith applications to MnSA at the industrial
setting, consequently proposes a methodology for the
migration of monolithic enterprise application
software to an MnSA, and applies and documents the
implementation of this methodology on a monolithic
enterprise application at Türk Telekom to display its
applicability at the organisational domain.

Migration of Monolith Applications to Miniservices: A Case Study from the Telecom Domain

395

As the case study of the proposed methodology,
the CPM, an enterprise application of five operation
years from the Türk Telekom application inventory is
selected. A migration team consisting of five software
professionals with experience at both microservices
and the CPM application was formed. In order to
decompose the monolith application to miniservices,
as a first step the codebase of the existing application
is investigated. By following the steps of the proposed
methodology and taking the codebase structure into
account, the basic functions and the processes of the
application, together with the experience and
knowledge of the migration team on microservices,
the first architecture, that is MnSA-1, is proposed.
The development of MnSA-1 required a 16
person/hour effort by the migration team. To evaluate
the efficiency of the proposed MnSA, the
implemented updates of the last year on the CPM
application were collected from the change logs of the
organization and each update was allocated by the
migration team to a miniservice in the proposed
MnSA, the effect and effort of each update on each
miniservice was estimated. The migration team spent
a 24 person/hour effort for this allocation process.
Having evaluated the findings of this allocation it was
decided that the proposed MnSA can be improved as
specific miniservices are overloaded, thus with an
extra effort of 24 person/hours the second architecture
was decomposed, that is MnSA-2. A project plan was
developed and was submitted to the Project
Management Office of Türk Telekom together with
the feasibility analysis and expected gains of this
migration. The migration of CPM to MnSA according
to the proposed MnSA-2 has been accepted to the
2020 Master Plan and will be evaluated with respect
to the overall Türk Telekom budget and priority
requirements.

In order to assess the effectiveness and the
possible gains of migrating CPM to MnSA as
proposed by migration team, an internal questionnaire
was prepared and distributed to the software team of
CPM. The development team consists of 16
individuals with an average of professional
experience in software development being 12 years
and an average experience at the organization being 9
years. The respondents are all university graduates
(10 bachelors, 6 graduate level), with 12 of them
having a diploma in Computer Science or Computer
Engineering. The development team members were
asked six questions based on the proposed benefits of
microservice migration in the literature and especially
selected from the work of Taibi, Lenarduzzi and Pahl
(2017), and the responses are given in Table 3.

The questions were specifically adapted to the
concept of miniservices. When the responses are
examined, even though the proposed architecture by
the migration team is not a pure MSA but instead an
MnSA, it is evident that the developers believe the
application will benefit from this transformation in all
six areas, namely agility, deployment risk, distributed
development, technology flexibility, server
scalability and increased resiliency.

Table 3: Responses of Development Team members
regarding the benefits of migrating to MnSA.

Question:
“Migration to this MnSA would… N

o
id

ea

N
o

S
om

e

V
er

y

E
xt

re
m

el
y

…increase the agility of the
application”

1 1 1 10 3

…decrease the risks associated
with deployment”

2 1 1 10 2

…would facilitate distributed
development”

3 0 1 6 6

…would allow technology
flexibility”

1 0 1 8 6

…would increase server
scalability”

3 0 0 8 5

…would increase server
resiliency”

5 2 0 7 2

In the documented case study, the MnSA was
developed with the use of approaches and techniques
introduced for microservices and MSA, as it is
apparent that these approaches may be used for
miniservices and migration to MnSA. Moreover, the
proposed MnSA is based to the requirements of the
organization and a logical decomposition of services.
Subsequent to this decomposition, the application
itself was decomposed to separate codebases.
Considering the requirement of data integrity, a DB
decomposition was not proposed as each miniservice
will be working with separate parts of the single DB
and moreover historical updates that were examined
show that DB updates are rare. Each proposed
miniservice may be deployed as a separate
application or can be managed accordingly with a
migration to a container structure. With the migration
to this structure the aim was to flexibly manage the
integration dependencies between applications,
decrease the service shutdowns and associated risks
during deployments, and thus adding agility to the
development process. Moreover, it is argued that with
a container server structure, improvements in
availability and scalability are realized. The most
evident gain of the proposed MnSA is that CPE, one
of the basic miniservices of the proposed MnSA and
which is associated with 62% of all updates realized
during the last year, can now be updated and deployed

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

396

without stopping the operation of other services
within the CPM application. This would significantly
decrease the downtime of the overall CPM
application, which was recorded to be 35 hours during
the operations of previous year.

The development of the methodology presented
in this paper has contributed to the existing
organizational know-how on microservice migration
and MSA/MnSA transformation. Moreover, the
proposed methodology was presented and
communicated with different IT units of Türk
Telekom to disseminate the microservice and
miniservice migration awareness. As a result of the
conducted presentations the Enterprise Architecture
Unit is considering the addition of the developed
methodology to the already existing two-phase
migration framework as a third and final step to be
implemented in future MSA/MnSA transformation
processes within Türk Telekom.

Depending on the success and organizational
reception of the proposed MnSA migration of the
CPM application, further enterprise applications from
the application inventory of Türk Telekom are
considered to be transformed following the proposed
methodology. As a future study, the applicability of
the MnSA migration methodology on applications
with different characteristics and requirements, and
the findings of these migration processes may be
documented and presented to provide a deeper insight
on the topic of miniservice migration. Moreover, we
are planning to investigate and model a methodology
for the required transformation of server
infrastructure, business processes and organizational
processes to meet the migration to an MnSA.

REFERENCES

Application Framework - TAM. (2019). Retrieved 12 10,
2019, from TMForum: https://www.tmforum.org/
application-framework/

Baresi, L., Garriga, M., & De Renzis, A. (2017).
Microservices identification through interface analysis.
European Conference on Service-Oriented and Cloud
Computing. Cham: Springer.

Bastani, K. (2015). Using Graph Analysis to Decompose
Monoliths into Microservices with Neo4j. Retrieved 12
24, 2019, from Kenny Bastani: https://
www.kennybastani.com/2015/05/graph-analysis-
microservice-neo4j.html

Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A.
(2019). Microservices in Industry: Insights into
Technologies, Characteristics, and Software Quality.
2019 IEEE International Conference on Software

Architecture Companion (ICSA-C) (pp. 187-195).
IEEE.

Christudas, B. (2019). Practical Microservices
Architectural Patterns: Event-Based Java
Microservices with Spring Boot and Spring Cloud.
Springer.

Di Francesco, P., Lago, P., & Malavolta, I. (2019).
Architecting with microservices: A systematic mapping
study. Journal of Systems and Software, 150, 77-97.

Dragoni, N., Giallorenzo, S., Lafuente, A., Mazzara, M.,
Montesi, F., Mustafin, R., & Safina, L. (2017).
Microservices: yesterday, today, and tomorrow. In
Present and ulterior software engineering (pp. 195-
216). Cham: Springer.

Fritzsch, J., Bogner, J., Wagner, S., & Zimmermann, A.
(2019). Microservices Migration in Industry:
Intentions, Strategies, and Challenges. arXiv preprint
arXiv:1906.04702.

Gysel, M., Kölbener, L., Giersche, W., & Zimmermann, O.
(2016). Service Cutter: A Systematic Approach to
Service Decomposition. European Conference on
Service-Oriented and Cloud Computing (pp. 185-200).
Cham: Springer.

Levcovitz, A., Terra, R., & Valente, M. (2015). Towards a
technique. III Workshop de Visualização, Evolução e
Manutenção de Software (VEM), (pp. 97-104).

Lewis, J., & Fowler, M. (2014). Microservices: a definition
of this new architectural term. Retrieved 12 24, 2019,
from martinfowler.com: https://martinfowler.com/
articles/microservices.html

Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A.,
Larsen, S., & Dustdar, S. (2018). Microservices:
Migration of a mission critical system. IEEE
Transactions on Services Computing.

Microsoft. (2019). CI/CD for microservices architectures.
Retrieved 12 1, 2019, from Microsoft Azure:
https://docs.microsoft.com/en-
us/azure/architecture/microservices/ci-cd

Richardson, C. (2014). Microservices: Decomposing
Applications for Deployability and Scalability.
Retrieved 12 24, 2019, from InfoQ: https://
www.infoq.com/articles/microservices-intro/

Service Cutter. (2019). Retrieved 12 24, 2019, from Service
Cutter: https://servicecutter.github.io/

Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes,
motivations, and issues for migrating to microservices
architectures: An empirical investigation. IEEE Cloud
Computing, 4(5), 22-32.

Thomas, A., & Gupta, A. (2017). Innovation Insight for
Miniservices. Retrieved 12 10, 2019, from Gartner
Research: https://www.gartner.com/en/documents/
3615120

TMForum Frameworx. (2019). Retrieved 11 12, 2019, from
ILSA: http://www.ilsa.kz/etom/main/
tamapplication2.htm

What is ITIL. (2019). Retrieved 12 16, 2019, from ITIL:
https://www.axelos.com/best-practice-solutions/itil/
what-is-itil

Migration of Monolith Applications to Miniservices: A Case Study from the Telecom Domain

397

