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Abstract: With distributed computing platforms deployed on affordable hardware, Big Data technologies have 
democratised the processing of huge volumes of structured and semi-structured data. Still, the costs of 
installing and operating even relatively small cluster of commodity servers or the cost of hiring cloud 
resources could prove inaccessible for many companies and institutions. This paper builds two predictive 
models for estimating the main drivers of the data processing performance for one of the most popular Big 
Data system (Apache Spark) deployed on gradually increased number of nodes of a Beowulf cluster. Data 
processing performance was estimated by randomly generated SparkSQL queries on TPC-H database schema, 
with variable number of joins (including self-joins), predicates, groups, aggregate functions and subqueries 
included in FROM clause. Using two machine learning techniques, random forest and extreme gradient 
boosting, predictive models tried to estimate the query duration on predictors related to cluster setup and 
query structure and also to assess the importance of predictors for the outcome variability. Results were 
positive and encouraging for extending the cluster number of nodes and the database scale.    

1 INTRODUCTION 

Before Big Data advent, massive data processing and 
analysis was accessible to only big companies and 
institutions. Both Big Data and Cloud Computing 
opened the gates for data processing “democracy”. 
Cloud computing has provided scalable storage and 
processing platforms with prices depending on 
consumed or rented resources (Josep et al., 2010; 
Yang, 2017). The umbrella of technologies labelled 
as Big Data provided, among other options, the 
possibility to create data processing infrastructures by 
deploying distributed storage and computing on 
commodity hardware (Assunção, 2015; Van Dijck, 
2014; Hashem et al., 2015). 

While dramatically decreasing the cost for  
operating private/organisational data centers, the 
necessary hardware for deploying private Big Data 
systems is far from negligible. Also costs associated 
with hiring big data resources in cloud can steeply 
increase when data volume and processing 
complexity amplify (GCP, 2019). 
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For many categories of non-critical data 
processing and data analysis tasks, deploying big data 
clusters on the organisation’s workstations and using 
them when they are idle (off the office hours) can be 
appealing, especially when building and testing 
prototypes, summarise/aggregate data, develop/apply 
algorithms etc. (Fotache et. al, 2018b; Cluci et al., 
2019).  

This paper tries to assess the data processing 
performance of a popular big data platform (Apache 
Spark) installed on small, but gradually extended 
Beowulf cluster. Data processing performance is 
expressed by the duration of a series of various 
SparkSQL (Spark’s SQL dialect) queries executed on 
different settings of the cluster and different sizes of 
the database. In order to ensure data variability and 
appropriateness for statistical analysis, queries were 
generated randomly, using a module developed by the 
authors. Resulted queries varied in terms of length, 
number of joins, number of subqueries in FROM 
clause, predicates included in WHERE clause, 
groups, etc. 

Fotache, M., Cluci, M. and Greavu-Şerban, V.
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Collected data was subsequently examined. Two 
series of predictive models were fitted and assessed 
through repeated cross-validation using random 
forests and extreme gradient boosting. Models not 
only estimated the query duration on various cluster, 
database and query parameters, but also assessed the 
importance of the predictors in explaining the 
variability of the outcome. 

2 RELATED WORK 

Apache Spark (Spark, 2019) is a unified analytics 
engine with excellent performances in large-scale 
data processing (Gopalani & Arora, 2015; Armbust et 
al., 2018; Lin & Hsu, 2019). SparkSQL module 
provides support for running SQL queries on top of 
the Spark framework by exploiting the cluster 
capabilities and DAG optimizations. It can ingest data 
from various sources such as .csv files, Avro, Parquet, 
Hive tables, and many NoSQL and SQL data stores.  

Ilias (2017) showed that SparkSQL is faster than 
Apache Hive (a big data processing contender), since 
Spark has a set of techniques to reduce reads and 
writes to disk. Moving the core of data processing 
from disc to memory makes Spark suitable for 
Beowulf clusters since they usually lack impressive 
hardware resources.  

Similar to other types of computer clusters, 
Beowulf clusters share storage and processing among 
nodes, but they can be deployed on commodity 
hardware. Unfortunately, studies on deploying Spark 
on Beowulf clusters are sparse, since this big data 
architecture is less glamorous and performs poorer. 

Huamaní et al. (2019) deployed an experimental 
cluster to test big data features using workstations 
similar to the study described in this article. They 
assess the cluster performance based on the 
calculation of prime numbers. Other research 
approached the parallel processing performance of 
non-commodity hardware devices, such as Raspberry 
Pi (Papakyriakou, et. al., 2018) or were concerned 
with low energy consumption (Qureshi & Koubâa, 
2019). 

We share the idea that the future of parallel 
processing technologies is based on cloud 
technologies (public, private or hybrid), generally 
accepting the costs associated with them. But, as this 
study will show, the internal resources of companies 
can still be cheaply and efficiently exploited in 
creating models for analysing data on small and 
medium datasets, or in deploying and testing features 
and performance of some big data tools. 

3 EXPERIMENTAL DESIGN 

The paper’s main objective was to build models for 
estimating (predicting) the duration of SparkSQL 
queries, controlling for various parameters of the 
cluster, database size and query complexity. For three 
database sizes (1GB, 10 GB and 100GB) 100 queries 
were randomly generated and then executed varying 
the cluster manager (Standalone, YARN and Mesos 
1), the available RAM on the workstations (4GB, 
6GB and 8GB) and the cluster’s number of nodes (3, 
6 and 9). 

The setup was deployed between January and 
June 2019 in a university lab off the class activities, 
i.e. from 20:00 PM to 6:00 AM and also during 
weekends and holidays. The idea was to use the 
systems after the daily schedule, in order to assess 
whether this could work in a real-life situation. 
Further information about the cluster is displayed in 
section 3.1, but the technical proprieties of those 
machines fit our design.    

Some of the queries were cancelled by the system 
due to their complexity (mainly, because of large 
numbers of self-joins and subqueries in FROM 
clause). For the completed queries the execution time 
was collected. 

The second objective of the predictive models was 
to identify the most important predictors for the 
outcome variability. Both objectives were achieved 
using two of the most popular Machine Learning 
techniques, random forests and extreme gradient 
boosting.  

3.1 Beowulf Cluster 

For this paper the cluster consisted of 10 computers 
of which, one was the master and the other 9 worked 
as nodes. The computers were equipped with 16GB 
of DDR3 RAM, the Intel i5-4590 3.30GHz processor 
with 4 cores, 4 threads and 6MB of cache memory; 
the hard disk capacity was 500GB; the network was 
of type 100Mbps. 

Each computer had Windows 8.1 64-bit installed 
and run VMs in VirtualBox 5.2.26, which is a 
distribution of Linux Ubuntu 18.04 LTS (Bionic 
Beaver); Ubuntu was updated with the latest patches 
and fixes as of 2 February 2019. Apache Spark 2.4.3 
was installed along with Hadoop 3.1.2 for transferring 
data (and for its resource manager), Apache Mesos 
1.8.0, Scala 2.11.12 and JDK1.8_201. Monitoring 
was performed with NMON v6.0 and Ganglia 3.7.2. 

The dataset used for testing was provided by TCP-
H 2.4.0, a tool used by so many scholars and 
professionals for benchmarking the data processing 
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performance (Chiba & Onodera, 2016). Three 
datasets with the scales of 1 (representing 1 GB of 
hard disk space), 10 (10 GB) and 100 (100 GB) were 
stored in their raw format.  

Data distribution among cluster nodes was 
achieved with Hadoop Distributed File System 
(HDFS). The block size was set at 256 MB and the 
replication factor was the same as the number of 
nodes in the test scenario (3, 6 or 9 accordingly). 

Depending by the test case, each working node 
was configured with either 4GB, 6GB or 8GB of 
RAM. We decide not to go over 8GB because some 
spare RAM should be reserved for the swap memory, 
disk cache/buffer, paging and other OS operation 
which could hinder our research, according to the 
study made by Chen et al. (2016).  

3.2 Apache Spark 

SQL queries was processed by the SparkSQL module 
which generates directed acyclic graphs (DAG) and 
chooses the most efficient execution plan for each 
specific query. Thus, there was no need to translate 
the queries into Scala in order to run them on the 
dataset.  

For each query executed, Spark records the time 
needed to complete and some other details, such as 
how many stages and tasks were completed or used 
for intermediate results. The stages and tasks are 
created according to the DAG and resembles the steps 
required to get the query result; the tasks are 
distributed among the nodes for distributed 
processing. DAG are also useful for recovering a 
resilient distributed dataset (RDD) and instrumental 
for Spark’s acknowledged performance and fault 
tolerance (Jinbae et al., 2019). Furthermore, the 
RDDs can also tweak performance, by using 
Parallelized Collections which allow parallel usage of 
a chunk (also called slice) from the dataset at the same 
time in parallel by avoiding locks (Spark, 2019). All 
these features, plus the in-memory computing, make 
Apache Spark an excellent solution for Big Data 
processing. 

Regardless of the how well optimized are the 
default algorithms used for scheduling, some 
tweaking is still needed for some of the parts in the 
ecosystem, such as optimizations to the HDFS 
settings, dataset, the cluster manager used and 
especially to the JVM (Chiba & Onodera, 2016).  

3.3 Data Processing Tasks (Queries) 

One the most popular benchmark for assessing the 
data processing performance of various systems is 

TPC-H (TPC-H, 2018a). The benchmark provides an 
8-table database schema, a tool (DBGen) for 
generating random data for various scale factors 
(TPC-H, 2018b) and a set of 22 pre-defined queries. 
Even if the pre-defined queries were designed to 
stretch the data processing capabilities of the tested 
systems, they lack variability and randomness. Also, 
their small number is not particularly suitable for 
statistical or machine learning analysis. 

Consequently, the tested queries were generated 
by a special module (Fotache and Hrubaru, 2016; 
Fotache et al., 2018a) which randomly builds valid 
TPC-H queries in various SQL dialects. Generated 
queries contain various number of tables (to be joined 
or self-joined), WHERE predicates, grouping 
attributes, simple HAVING predicates and 
subqueries included in the FROM clause of the main 
query. The values included in the predicates are 
extracted (also randomly) from the records populated 
with DBGen. The appendix shows a generated query.  

4 METHOD, TOOLS 

For each database size (scale factor) the 100-query set 
was executed varying the cluster manager, the 
workstations available RAM and cluster number of 
nodes. Query duration of the completed queries was 
collected. Next, exploratory data analysis examined 
the variable distribution (trough bar plots and 
histogram) and correlations among predictors (in 
order to identify possible collinearities). 

After data exploration, predictive models were 
built using two popular machine learning techniques, 
random forests and extreme gradient boosting. Model 
performance was assessed with repeated cross-
validation. Both techniques also provide predictor 
(variable) importance for the outcome variability.  

4.1 Variables 

The outcome variable of the predictive models is the 
duration of each query completion. Variability of the 
outcome was examined in relation to various 
predictors related to the cluster setting, database size 
and the query complexity. 

Of the completed queries, 30% were executed on 
limited 4GB-RAM workstations, 31% on limited 
6GB-RAM and 39% on 8GB-RAM workstations 
(predictor available_ram__gb). Grouped by the 
Apache Spark cluster manager (variable 
cluster_manager), 39% of the completed queries 
were executed on Mesos, 35% on YARN and only 
26% on Standalone manager. Also, the number of 
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cluster nodes (variable n_of_nodes) was gradually 
increased and the number of queries completed on 
each of three settings (3-node, 6-node and 9-node 
cluster) was similar.   

The second group of predictors refers to the 
database size (db_size__gb) and its relation to the 
total memory available on the cluster (db_oversize). 
Variable db_oversize signals if, when executing a 
query, the database size exceeds or not the summed 
cluster RAM. The class imbalance (82% frequency 
for value “db < ram” and only 18% for “db >= ram”) 
appears since, of the three scale factors, two had the 
size smaller than the cluster total memory and only 
one exceeded the cluster memory (100GB). Variable 
db_size__gb had three values: 1 GB (frequency of 
47%), 10GB (35%) and 100GB (18%). 

The third series of predictors are related to the 
query complexity and describe the structure of 
SELECT, FROM, WHERE, GROUP BY, HAVING 
and ORDER BY clauses. 81% of the completed 
queries contain at least a filter included in WHERE 
clause (predictor where_clause) and 32% contain 
filters at group level included in HAVING (predictor 
having_clause). The main FROM clause includes two 
subqueries in 44% of the completed queries, one 
subquery in 2% of the queries and no subquery for 
54% of the queries (predictor sub_clauses).  

 

Figure 1: Predictors related to query complexity (1). 

In figure 1, variable aggr_functions records the 
number of aggregation functions (COUNT, SUM, 
MIN, MAX, AVG) appearing in the main query and 
the subqueries, no matter if they are in conjunction 
with GROUP BY or not; inner_joins keeps track of 
the number of inner joins included in the query 
syntax, whereas order_by and group_by record the 
number of attributes used in ORDER BY and 
GROUP BY clauses.  

Variable and_clause (figure 2) acts as a proxy for 
the number of predicates included in WHERE, since 
predicates are randomly connected by AND and OR. 
Variable in_clause keeps track of the number of 
values included in predicates using IN option.   

 

Figure 2: Predictors related to query complexity (2). 

A special note on tasks_runned predictor (also in 
figure 2): even it is not directly controllable in the 
experiment, it acts as an additional proxy for query 
complexity, being a consequence of the execution 
plan performed by the system. It does not completely 
overlap with the number of join and number of 
subqueries variables, since any join could be a 
“simple” join or a self-join, performed among two 
tables or “chain” of tables – see the example in 
appendix. 

After data exploration, predictive models were 
built using two popular machine learning techniques, 
random forests and extreme gradient boosting. Model 
performance was assessed with repeated cross-
validation. Both techniques also provide predictor 
(variable) importance for the outcome variability.  

4.2 Tools for Data Exploration and 
Predictive Modelling 

All the data processing and analysis was performed in 
R (R Core Team, 2019). Data processing was 
deployed using the tidyverse ecosystem of packages 
(Wickham et al., 2019). Graphics were created with 
ggplot2 (Wickham, H., 2016) package which is part 
of the tidyverse, except the correlation plot in figure 
6 generated with corrplot package (Wei & Simko, 
2017). 

Predictive models were built, assessed and 
visualized using the tidymodels (Kuhn and Wickham, 
2019) ecosystem, mainly the following packages: 
rsample, recipe, parnsip and yardstick. Also, caret 
(Kuhn & Johnson, 2013), ranger (Wright & Ziegler, 
2017) and xgboost (Chen et al., 2019) packages were 
used in model fitting and extracting the variable 
importance. Package furrr (Vaughan & Dancho, 
2018) helped speeding up the repeated cross-
validation of the models. 
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5 RESULTS, DISCUSSION 

As pointed out in previous sections, the main variable 
of interest for assessing the data processing 
performance of Apache Spark deployed on a basic 
Beowulf cluster was the interval (in seconds) 
necessary for completing every SQL (SparkSQL) 
query. Figure 3 displays the density plot of the 
outcome limited to [0, 1000] seconds range. 

 

Figure 3: Outcome density plot ([0, 1000] range). 

The limitation was imposed for visualization 
purposes. Otherwise, the values are scattered on the 
[0.013 - 19440] range. Duration median is 15.4 
whereas average duration was 225 seconds, which 
provides a clear imagine of the extreme distribution 
asymmetry.  

The imbalance of the values frequency for the 
db_size__gb predictor (section 4.1) was a signal of 
the decreased number of completed queries when 
increasing the database size. Only 18% of the queries 
launched on 100GB database were completed and this 
is a consequence of having numerous queries 
containing subqueries and self-joins. 

The asymmetry of query duration also suggests 
that, for larger database scale factors, complex 
queries, involving larger number of joins, self-joins 
and subqueries, queries cannot be finalized and the 
number of observations containing large values of the 
outcome decreased drastically. 

Before proceeding to the building and assessment 
of the predictive models, correlations among 
predictors was examined – see figure 4. Even if 
machine learning techniques are not as sensitive to 
collinearity as the parametrical techniques (such as 
linear regression), collinearity must be taken into 
consideration. 

The correlation plot shows no strong collinearity 
among predictors. Due to the skewness of the 
predictors, non-parametric Spearman correlation 

coefficient was preferred. The largest correlation was 
recorded for (sub_clause, inner_join) pair of 
predictors – 0.76. 

 

Figure 4: Correlation among predictors. 

In the next step predictive models were build 
using random forest and extreme gradient boosting 
techniques. Both random forests and extreme gradient 
boosting belong to the tree-based family. Both 
techniques growth ensembles of classification or 
regression trees (CART). 

Random forests combine bagging sampling 
approach with the random selection of features so that 
it increases the prediction accuracy and reduces the 
prediction variance (Breiman, 2001). Random forests 
manifest both computational (fast and easy to train, 
few tuning parameters, parallelizable, built-in error 
estimation, high-dimensional problems handling) and 
statistical (measure of variable importance, missing 
value imputation, class weighting) strengths (Cutler 
et al., 2012). 

Extreme gradient boosting (Chen & Guestrin, 
2016) is a new, regularized implementation of 
gradient boosting framework (Friedman et al., 2000). 
Boosting combines the predictions of several "weak" 
learners (e.g. one-level trees) using a gradient 
learning strategy in order to develop a "strong" 
learner. Extreme gradient boosting show sometimes 
similar better results than the random forests, 
handling complex data with high speed and prediction 
accuracy. 

Repeated cross validation (n = 5, k = 10) was used 
to assess the model performance. Three metrics were 
collected for each fold assessment sub-set (the fold’s 
assessment data) – the concordance correlation 
coefficient (Lin, 1989), mean square error and r-
squared. Figure 5 displays the distribution of 
performance metrics across the folds for both families 

0.000

0.005

0.010

0.015

0.020

0 250 500 750 1000
duration

de
ns

ity

1 0.09

1

0.12

0.12

1

0.02

−0.01

0.06

1

−0.01

−0.01

−0.09

0.58

1

0.01

0.01

0.05

0.09

0.14

1

−0.02

−0.02

−0.18

0.32

0.48

0.27

1

−0.03

−0.03

−0.28

0.11

−0.01

0.06

−0.04

1

−0.01

−0.02

−0.15

0.04

−0.09

0

0.03

0.65

1

−0.01

−0.01

−0.06

0.43

0.76

0.24

0.51

−0.01

−0.01

1

−0.02

−0.01

−0.1

0.19

0.1

0.13

0.13

0.15

0.06

0.08

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n_
of

_n
od

es

av
ai

la
bl

e_
ra

m
__

gb

db
_s

iz
e_

_g
b

ta
sk

s_
ru

nn
ed

in
ne

r_
jo

in
s

in
_c

la
us

e

an
d_

cl
au

se

gr
ou

p_
by

ag
gr

_f
un

ct
io

ns

su
b_

cl
au

se
s

or
de

r_
by

n_of_nodes

available_ram__gb

db_size__gb

tasks_runned

inner_joins

in_clause

and_clause

group_by

aggr_functions

sub_clauses

order_by

Low Cost Big Data Solutions: The Case of Apache Spark on Beowulf Clusters

331



of models. Average ccc was .90 for random forests 
and .88 for xgboost, whereas the average rsq was 0.84 
for random forests and 0.80 for xgboost.  

 

Figure 5: Main performance metrics for random forests and 
xgboost models. 

Since there was not so much variability in the 
number of cluster nodes and available RAM, results 
can be qualified as good. Also, for the given dataset, 
random forests seem to perform better than xgboost. 

 

Figure 6: Variable importance - Random Forests. 

Both random forests and xgboost provides the 
estimated importance of the predictors for the 
outcome variability. Figure 6 shows the variable 
importance estimated by the random forests using 

permutation (Cutler et al., 2012). The most important 
predictor is tasks_runned followed by the database 
size. This underlines the importance of query 
complexity, compared to the size of the database and 
other cluster settings. The lack of importance for 
predictors like number of nodes, db_oversize and the 
cluster manager came as a surprise, since the quantile 
regression model in (Cluci et al., 2019) identified 
both the number of nodes and the cluster manager to 
be statistically significant in explaining query 
duration variability (admittedly, for both predictors 
the Epsilon-squared and Freeman’s theta reported 
small effect sizes). 

Variable importance estimated by the xgboost 
model is presented in figure 7. Similar to random 
forest, in the xgboost final model the most important 
predictor was tasks_runned, followed by 
db_size__gb. Also, similar to previous chart, number 
of nodes is not significant in the model. Surprisingly, 
db_oversize is even less important in the xgboost 
model. 

 

Figure 7: Variable importance – xgboost. 

Also, the number of joins, the presence of 
WHERE and HAVING clauses are less prominent in 
the xgboost model.  

6 CONCLUSIONS AND 
FURTHER RESEARCH 

The main objective of the paper was to deploy and 
assess the data processing performance (including the 
performance drivers) of an Apache Spark distribution 
deployed on a simple, affordable Beowulf cluster 
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using (mainly off the office hours) a small subset of 
modest organisational workstations.  

Even if the variability of some predictors (such as 
number of cluster nodes) was low, both machine 
learning models have good results in predicting the 
query duration based on main query and cluster 
parameters. Random Forests model performed 
slightly better than the xgboost model, with the 
concordance correlation coefficient above 90% and 
the R2 about 85%.   

Variable’s importance provided by both models 
suggest, as expected, that the query complexity 
(approximated the necessary Spark tasks for query 
completion and the number of joins) is the main 
driver of query performance. Also, the database size 
was ranked as an important predictor. 

Unexpectedly, predictors such as the cluster 
number of nodes, the gap between the cluster memory 
and the database size, the tuples grouping and group 
filtering, the cluster manager were qualified as less 
important (in the outcome variability) by the both 
models.   

Some further research directions may include: 
 Increasing the number of cluster nodes; 
 Running the queries on TPC-H databases with 

larger sizes; 
 Adding Kubernetes as a cluster manager in 

order to have a whole image of all the available 
resource managers; 

 Making optimization to the JVM, the garbage 
collection, and OS parameter for accelerating 
Spark performance; 

 Assess the performance of other Spark features 
such as   Streaming, Machine Learning and 
GraphX in order to see how they perform on a 
Beowulf cluster; 

 Test with the dataset in other formats not just 
the default generated by TCP-H: AVRO, 
Parquet, blob storage and AWS S3, to see if 
there are any performance gains;  

 Diversify the hardware resources and storage 
types (e.g. add SSDs or RAID configuration); 

 Take into account the hardware bottlenecks 
which might occur during the testing, and 
quantification their effect on performance; 

Run the queries on other Big Data systems (such 
as Hive and Pig) to compare the performance; 

Overall results suggest that running SQL queries 
on Spark using modest Beowulf clusters is a viable 
solution, but this need subsequent comparisons with 
other Big Data solutions, on disk (e.g. Hive, Pig) or 
in-memory (e.g. in-memory features of SQL servers, 
MemSQL, VoltDB, Impala). 
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APPENDIX  

SELECT t2.s_name, t2.n_name, 
    SUM(t1.l_quantity * t1.l_extendedprice)  
      AS expr 
FROM ( SELECT * FROM lineitem lineitem1 
    INNER JOIN partsupp partsupp1 ON  
      lineitem1.l_partkey = 
   partsupp1.ps_partkey 
        and lineitem1.l_suppkey =  
           partsupp1.ps_suppkey 
    INNER JOIN supplier supplier1 ON  
      partsupp1.ps_suppkey =  
        supplier1.s_suppkey) t1 
  inner join  
( SELECT * FROM supplier supplier2 
      INNER JOIN nation nation2 ON  
      supplier2.s_nationkey =  
        nation2.n_nationkey 
      ) t2 on  

t1.s_suppkey = t2.s_suppkey 
WHERE t1.s_suppkey < 7150 or 
  t1.l_commitdate between '1993-09-19' and  
  '1995-12-16' and  t1.ps_availqty <> 2026 or  
  t2.n_regionkey <> 2 and t2.s_acctbal <= 
2029.1 
GROUP BY t2.s_name, t2.n_name 
HAVING SUM(t1.l_quantity *  
  t1.l_extendedprice) >= 575085 
ORDER B 1 DESC, 3 DESC 
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