
Predicting SQL Query Execution Time  
with a Cost Model for Spark Platform 

Aleksey Burdakov1, Viktoria Proletarskaya1, Andrey Ploutenko2, Oleg Ermakov1 and Uriy Grigorev1 
1Informatics and Control Systems, Bauman Moscow State Technical University, Moscow, Russia 

2Mathematics and Informatics, Amur State University, Blagoveschensk, Russia 

Keywords: SQL, Apache Spark, Bloom Filter, TPC-H Test, Big Data, Cost Model. 

Abstract: The paper proposes a cost model for predicting query execution time in a distributed parallel system requiring 
time estimation. The estimation is paramount for running a DaaS environment or building an optimal query 
execution plan. It represents a SQL query with nested stars. Each star includes dimension tables, a fact table, 
and a Bloom filter. Bloom filters can substantially reduce network traffic for the Shuffle phase and cut join 
time for the Reduce stage of query execution in Spark. We propose an algorithm for generating a query 
implementation program. The developed model was calibrated and its adequacy evaluated (50 points). The 
obtained coefficient of determination R2=0.966 demonstrates a good model accuracy even with non-precise 
intermediate table cardinalities. 77% of points for the modelling time over 10 seconds have modelling error 
<30%. Theoretical model evaluation supports the modelling and experimental results for large databases. 

1 INTRODUCTION 

Database query execution forecasting has always 
been an important task. This task has become even 
more valuable in the Database as a Service (DaaS) 
(Wu, 2013) context. A DaaS provider has to manage 
infrastructure costs, and Service Level Agreements 
(SLA). Query execution estimates can help system 
management (Wu, 2013) in: 

1. Access Control: by evaluating whether a query 
can be executed (Tozer et al., 2010; Xiong et al., 
2011). 

2. Query Planning: by planning for delays and 
query execution time limits (Chi et al., 2011; Guirguis 
et al., 2009). 

3. Progress Monitoring: by eliminating 
abandoned large queries that overload the system 
(Mishra et al., 2009). 

4. System Calibration: by designing and tuning 
the system based on query execution time 
dependency on the hardware resources (Wasserman 
et al., 2004). 

There are two major approaches for database 
query execution time forecasting:  

1) Machine Learning (ML) methods that look at 
the DBMS as a black box and attempt to build a 

prognostic model (Tozer et al., 2010; Xiong et al., 
2011; Akdere et al., 2012; Ganapathi et al., 2009),  

2) Cost Models (Wu, 2013; Leis et al., 2015). 
ML methods give a significant error as shown in 

(Wu, 2013). This is potentially caused by assumed 
test and model training queries similarity. This 
assumption is not correct for real dynamic database 
loads. In this case, the query execution plans can 
differ dramatically and the time changes radically. 

Using exact table row counts in cost models 
allows building a precise linear correlation between 
query execution time and query cost for real 
databases (Leis et al., 2015). Model parameters 
calibration and utilization of exact row counts give 
the lowest query execution time error for the cost 
model (Wu, 2013). 

Sources (Wu, 2013; Leis et al., 2015) consider the 
predictive cost model only for relational databases. At 
the same time MapReduce (Dean et al., 2004) is 
widely used to implement big database queries. It 
assumes a parallel execution of the queries to data 
fragments distributed over many nodes (workers). 
Several data access platforms use this technology 
(Mistrík et al., 2017; Armbrust et al., 2015). The 
source (Armbrust et al., 2015) shows that Apache 
Spark SQL has advantages. The original query is split 
into tasks and tasks into stages. Each stage usually 
includes Map and Reduce execution. 
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The paper discusses a new cost model for SQL 
query execution time prediction for the Spark 
platform. This model accounts for Bloom filter and 
small tables duplication over the nodes. These aspects 
significantly reduce the original query execution time 
(Burdakov et al., 2019). The developed model also 
helps in making an optimal SQL query execution plan 
in a distributed environment. 

In Paragraph 2, we illustrate how the source 
queries can be represented as subqueries and where 
you can connect and use Bloom filters. Then we 
extend this approach to the general case (Table 1). 
Details of the developed method for SQL query 
implementation and its comparison with traditional 
tools are given in (Burdakov et al., 2019). Paragraph 
3 develops a cost model of query execution processes. 
It can be represented in the form of nested structures 
with a “star” scheme (Fig. 6). Paragraph 4 shows the 
results of model calibration and its adequacy 
assessment with the Q3, Q17 queries and their stages. 

2 REPRESENTATION OF AN 
ORIGINAL QUERY WITH 
SUBSEQUENT SUB-QUERIES 

Let us start with examples for an original query 
transformation into a sequence S of sub-queries {Zi} 
and their execution results join {Ji}. 
 

Example 1: Fig. 1 shows the Q3 query from the TPC-
H test (TPC, 2019).  

The Q3 query execution schema is shown in Fig. 
2. Each box Zi provides a source table identifier along 
with a filter condition shown in round brackets. 
 

select l_orderkey, sum(l_extendedprice*(1-l_discount)) as revenue, 
o_orderdate, o_shippriority  
from customer, orders, lineitem  
where c_mktsegment = '[SEGMENT]' and c_custkey = o_custkey  

and l_orderkey = o_orderkey and o_orderdate < date '[DATE]'  
and l_shipdate > date '[DATE]'  

group by l_orderkey, o_orderdate, o_shippriority  
order by revenue desc, o_orderdate; 

Figure 1: Q3 query from TPC-H test. 

The following TPC-H source table identifiers are 
provided: D1 – customer, F1 – orders, F2 – lineitem. 

Fig. 2 has two join stars: Z1, Z2 - J1, and J1, Z3 - J2. 
Each star has one dimension and one fact table 
(separated with a comma). The join result in the first 
star (J1) becomes a dimension in the second star. 

Fig. 2 shows that each star can have a Bloom filter 
applied (Bloom, 1970; Tarkoma, 2012). Bloom filter 

is generated at the creation of a dimension table (see 
Fig. 2). During the fact table creation (usually large) 
its records are additionally filtered with that Bloom 
filter (see squares in Fig. 2). This significantly 
reduces the volume of data transmitted over the 
network at the shuffle phase and cuts the table join 
time at the Reduce phase (Burdakov et al., 2019). 

 

 

Figure 2: Q3 query execution schema. 

Example 2: Fig. 3 shows Q17 query with a correlated 
sub-query from TPC-H test. 

Please, note that Spark SQL cannot execute this 
query in its original form. It has to be decomposed 
into sub-queries. Fig. 4 presents the Q17 query 
execution schema. The following identifiers denote 
the source tables from the TPC-H database schema: 
D1 – part, F1 – lineitem. 

 

select sum(l_extendedprice)/7.0 as avg_yearly from lineitem, part 
where p_partkey = l_partkey and p_brand = '[BRAND]'  

and p_container = '[CONTAINER]' and l_quantity < (  
select 0.2 * avg(l_quantity) from lineitem where  

l_partkey = p_partkey ); 

Figure 3: Q17 query from TPC-H test. 

We can identify here the following two stars: Z1, 
Z2-J1, and J1, Z3 - J2. 

Each star has an enabled Bloom filter. Fig. 4 
shows that for the first star a broadcast distribution is 
executed for a small dimension table Z1 (see 
diamond) over the nodes that store fact table Z2(BF1) 
fragments. There Z1 and Z2(BF1) tables join is 
performed in RAM at the Map stage (w/o shuffle and 
w/o Reduce task execution). 

Let us call the structure depicted in Fig. 2 and Fig. 
4 as a query structure. Representation of the source 
queries in the form of stars allows describing the 
source query as a Zi sequence of sub-queries and Jj 
joins, and connecting Bloom filter or executing a 
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D1

(p_brand = '[BRAND]' and 
p_container = '[CONTAINER]')

SELECT   p_partkey 

F1

SELECT l_partkey,
l_extendedprice,
l_quantity

 

Z1.p_partkey = 
Z2.l_partkey 

SELECT sum(J1.e1)/7.0 as 
avg_yearly 

J1. q1<Z3.a1 and  
J1.pr1=Z3.pr1

J1 

J1

GROUP BY  pr1
SELECT pr1, 0.2*avg(q1) as a1

J2Z3

SELECT l_partkey as pr1,
l_extendedprice as e1,
l_quantity as q1

 

Z1 

Z2 

Z1 

BF2

BF2

BF1

BF1

 

Figure 4: Q17 query execution schema. 

broadcast distribution of small dimension tables. This 
can be done for almost any SQL query. To do this, all 
“select” queries have to be represented in 
intermediate tables and include them into the “from” 
clause of the original query. Table 1 provides the 
intermediate tables composition schemas for various 
SQL “select” sub-queries (Date et al., 1993). The 
corresponding TPC-H test query names are shown in 
round brackets. DataFrame/DataSet can implement 
intermediate tables in Spark. 

Table 1: Intermediate table composition schemas. 

SQL “select”  
sub-queries 

Intermediate table  
composition schema

Sub-query is in 
the “from” clause 
of the original 
query (Q7, Q8, 
Q9, Q13). 

Represent the sub-query in the form 
of a new table after the “from” 
clause of the original query.  

Non-correlated 
sub-query (Q11, 
Q15, Q16, Q18, 
Q20, Q22). 

Represent the sub-query in a form 
of a scalar (aggregate, EXISTS, 
NOT EXISTS) or table with one 
column; use table with IN, NOT IN, 
and use scalar in comparison 
operations of the original query.

Correlated sub-
query (Q2, Q4, 
Q17, Q20, Q21, 
Q22). 

Add required attributes from 
the original query into sub-query, 
perform group by; represent the 
sub-query in a table form; add table 
name into “from” of the original 
query; replace condition with a sub-
query after “where” of the original 
query with a condition with 
required comparison operations.

 

The steps described in Table 1 are recursive. A 
“select” sub-query can be treated as an original query. 

To generate an original query execution program, 
a query schema shall be built (please, see Fig. 2 and 

4). The following language operator generation 
algorithm shall be applied in the next step (Fig. 5). 

Fig. 5 has the following elements: 
𝐽௝

௥ - j-th join (as a dimension) in the r-th three of 
the query schema, 𝐽௝

௥ ∈ ሼ𝐽ଵ, … , 𝐽ே௃ሽ,  
𝑍௝

௥ - j-th sub-query (as a dimension) in the r-th star 
of the query schema, 𝑍௝

௥ ∈ ሼ𝑍ଵ, … , 𝑍ே௓ሽ. 
 

main: 
 star( ); 

delete join  and sub-query  duplicates (if any); 
duplicates will exist if the same joins or sub-queries are 
used as sub-queries in a few stars;  

end main; 
star (  ): 
 r:  
 CYCLE on j 
  star( ) 

 END OF CYCLE 
 CYCLE on j 
  Select statement for sub-query  

  [Bloom filter create or apply operators] 
 END OF CYCLE 
 Select statement for  join 
 [Bloom filter creation operators] 
end star; 

Figure 5: Program generation algorithm for source code 
execution in Spark. 

Each star has one dimension table and one fact 
table in the provided examples 1 and 2. One can 
derive from the algorithm shown in Fig. 5 that each Jr 
join corresponds to a star with a join of a few 
dimension tables {Di} and fact table F (cycle on j). 
This is true for the “snowflake” query schema. 

Fig. 6 shows dfDi sub-queries implementation 
schema of the original query star and their join with 
the F fact table. 

The transformation and action sequence (see Fig. 
6) forms DAG (Directed Acyclic Graph) for the star 
implementation. It works like a conveyor processing 
df fragments in parallel through the graph nodes (the 
fragments stored on the cluster nodes). This is a plan 
for the “star” schema (D1,..., Dn – F), which can be 
used as a dimension in another star. The partition 
processing track is provided below (stages 1-4): 

1. Read Di dimension tables, filter records with 
the Pi condition, obtain the projection (ki, wi). 

2. Build Bloom filters for dfDi table partitions in 
RAM (by ki key for each dimension), assemble each 
Bloom filter in a Driver (logical OR) followed by 
broadcast distribution of the Bloom filter to all 
Executors which perform fact table filtration (F).  
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Figure 6: Original query star implementation general 
schema. 

3. Read fact table, filter records with PF condition 
and with Bloom filters, obtain projection ({fki}, kF, 
wF). 

4. Join the filtered fact table with the filtered 
dimension tables (dfF Join dfDi). Group and sort if 
applicable to the particular “star” schema. Jump to a 
new star in the query schema. 

3 COST MODEL DEVELOPMENT 

A cost model has the following features (Leis et al., 
2015): 
1. Uniform distribution: it is assumed that all values 
of an attribute are uniformly distributed in a given 
interval. 
2. Independence: attribute values are considered 
independent (whether in the same table or different 
tables). 
3. Inclusion principle: join key domains overlap in a 
way that the smaller domain’s keys are present in the 
larger domain. 

A dataset that adheres to features 1-3 is called 
synthetic, e.g. TPC-H database is synthetic. 

Spark creates one or a few parallel processes at 
each stage. Fig. 7 demonstrates an example. 

The lines in Fig. 7 denote process intervals (the 
beginning and the end). The duration of the intervals 
(tiх), i.e. resource consumption time, is shown above 
the lines. We will consider the average values. A 
process can create another process (at the end of tiх). 
For example, the chain of created processes for node 
1 looks as follows: P1D→P1P→P1B. The Fig. 7 shows 
that two processes with the same name executed on 
different nodes (or on different processor cores of the 
same node) form a group of parallel similar processes 
(PSP). The following three groups can be identified: 
(P1D, P2D), (P1P, P2P), (P1B, P2B).  
 

 

Figure 7: Spark-created Processes Example. 

Let us denote the PSP group with a line 
corresponding to the group interval definition (see 
Fig. 8). The parent PSP creates descendant PSPs, e.g. 
descendant PSP PP is created by parent PSP PD and so 
on. Let us call a PSP groups set as connected parallel 
processes (CPP). For example, PD, PP, PB PSPs form 
CPP with P identifier (see Fig. 8). 

 

Figure 8: PSP Group (PD, PP, PB) and CPP (P) Notation. 

Let us represent CPP for simplicity with one line 
that corresponds to a CPP interval. The interval 
duration is equal to the duration between the 
beginning and the end of all activities of the PSP 
included in the set. Let us call it the duration for the 
execution of connected parallel processes. Each CPP 
interval will be provided with an identifier (e.g. P in 
Fig. 8). CPP instance frequently corresponds to a task 
that is executed in the Executor slot. 

Based on the Spark processes analysis (see Fig. 6) 
we developed a mathematical model. Fig. 9 provides 
a process execution description for sub-queries and 
joins related to one star of the original query. The 
lines in Fig. 9 correspond to a CPP:  
1. Ri CPP. Reading and processing of dimension 
tables, creation of Bloom filters for a key 
(BFi=bloomfilter(ki)). 
2. А CPP. Assembly of the Bloom filters in the Driver 
program, OR join, broadcast distribution throughout 
the nodes. 
3. RF CPP. Reading and processing of fact tables, 
record filtration with the Bloom filter (fki is the 
foreign key of the fact table).  

F

BF1=broadcast( 
bloomFilter(k1)) 

BF2=broadcast( bloo
mFilter(k2))  

BFn=broadcast( bloo
mFilter(kn))  

dfD1=(Select k1,w1 
From D1Where P1)

dfF=(Select fk1,...,fkn,kF,wF   

From F Where PF). 
filter(BF1,fk1).... filter(BFn,fkn)

dfD2=(Select k2,w2 
From D2 Where P2)

dfDn=(Select kn,wn 
From Dn Where Pn)

df=(Select kF,{si},sF 
From {dfF Join dfDi 
On  ki=fki}
[Group By Order By])

Dn, D2, D1 1
2

4

3

Dimension in 
another star 

t1D

P1D: read table split on node 1

P1

P1B: build Bloom filter for split records key

t1P t1B

t2D t2P t2B

P2D: read table split on node 2 (or another split 
on a different processor core of node 1)

P2P: filter split records in the processor core of node 2

P2B: build Bloom filter for split records key

P1P: filter records in the processor core of node 1

P2
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A “group by” operation for a fact table sometimes 
precedes Bloom filter application.  

The items 4 and 5 are then executed if L>0 (L is 
the number of small tables). 
4. B CPP. Broadcast distribution of filtered dimension 
tables which size does not exceed the VM threshold.  
5. C CPP. Hash Join of fact table with 1…L 
dimension tables in RAM. 

Items 6 and 7 are executed further if L<n. 
6. Xi (i=1…n-L+1) CPP. Sorting on the Map side of 
each dimension table partition (dfDL+1...dfDn) or fact 
table (dfFH) by the join key, storage of the sorted 
partitions in the local file system (Shuffle Write).  
7. Yi (i=1…n-L) CPP. Pairwise join of the fact and 
dimension tables.  

If the original query has a “group by” (Z1) or 
“order by” (Z2) parts then items 8 and 9 are also 
executed. 
8. Z1 CPP. Grouping at the end of the query execution. 

If there is order by part then item 9 is also 
executed. 
9. Z2 CPP. Sorting at the end of the query execution. 

The table obtained as the result of the sub-queries 
execution and star joins of the original query can 
serve as a dimension in the next star. 

The original query execution time is estimated as 
a sum of CPP intervals 1-9 of all stars.  

The limited volume of the paper does not allow 
providing all formulas for calculation of CPP 1-9 
intervals. Let us provide formulas for Ri CPP interval 
calculation. The formulas (1)-(7) use the following 
elements: 

N – cluster nodes (workers) number; NC – total 
CPU quantity in a cluster (the number of Executor 
slots, quantity of physical cores); VS – split block size 
(bytes); VDi, QDi – compressed volume and the 
number of records in the i-th dimension table 
(i=1…n); Pi - probability that a record satisfies the 
search condition for the i-th dimension table; RH - 
data read intensity from HDFS file system (byte/sec); 
τd – processor time for task deserialization in 
Executor slot; τf – processor time for filtration per 
record; τb – processor time for record read/write from 
Bloom filter. 

The number of slots (tasks) required to process the 
i-th dimension table is equal to: 

 

𝑁ௌ௜ ൌ ⌈𝑉஽௜/𝑉ௌ⌉ .                         (1) 
 

The following formula gives the records number per 
slot: 

 

𝑄ௌ௜ ൌ 𝑄஽௜/𝑁ௌ௜ .                         (2) 
 

Split volume for the i-th dimension table equals to: 
 

𝑉ௌ௜ ൌ ൜
𝑉ௌ, 𝑖𝑓 𝑁ௌ௜ ൒ 2,
𝑉஽௜, 𝑖𝑓 𝑁ௌ௜ ൌ 1                     (3) 

 

Let us calculate one task execution time connected to 
record processing in the i-th dimension table: 

 

𝑟௜ ൌ 𝜏ௗ ൅ 𝑉ௌ௜/𝜇ோு ൅ 𝜏௙𝑄ௌ௜ ൅ 𝜏௕𝑃௜𝑄ௌ௜.        (4) 
 

The Executor slot may be consequentially processing 
a few tasks. Let a task related to the m-th dimension 
table be planned for a slot: 

 

𝑚: 𝑟௠ ൌ 𝑚𝑎𝑥ሼ𝑟௜ሽ .                     (5) 
 

The split blocks of the table are distributed over the 
cluster nodes uniformly. Hence the probability that 
the same slot would get the rest of the dimension table 
tasks planned where each task processes one table 
split equals to: 

 
ଵ

ே
⋅

ଵ

ே஼/ே
ൌ

ଵ

ே஼
 .                           (6) 

 

The dimension tables processing time will be equal 
to: 

 

𝑟 ൌ 𝑟௠ ൅
ேೄ೘ିଵ

ே஼
𝑟௠ ൅ ∑ ேೄ೔

ே஼
𝑟௜ ൌ௡

௜ୀଵ
௜ஷ௠

ሺ1 െ
ଵ

ே஼
ሻ𝑟௠ ൅

ଵ

ே஼
∑ 𝑁ௌ௜𝑟௜

௡
௜ୀଵ  .  (7) 

4 MODEL CALIBRATION AND 
ADEQUACY EVALUATION 

The mathematical model of the processes shown in 
Fig. 9 was implemented in Python. A test stand that 
included a virtual cluster was used to calibrate the 
model. The cluster had 8 nodes with HDFS, Hive, 
Spark, Yarn (Vavilapalli et al., 2013). Each node had 
a double core processor, 200 GB SSD disk, Ubuntu 
14.16 OS. The results of the experiments were split 
into two subsets.  

The first subset had execution of ten queries: five 
Q3 queries with SF=500 (NBF=40 million), SF=250 
(NBF=50 million), SF=100, SF=50, SF=10 (NBF=15 
million) database population parameters, where SF is 
the scale factor for database size of TPC-H (TPC, 
2019), NBF – anticipated number of element in BF1 
and BF2 Bloom filters; and five Q17 queries with 
SF=500, SF=250, SF=100, SF=50, SF=10 (NBF=15 
million). 

The corresponding query execution time (10 
points) was used to calibrate model parameters with 
the Least Squares Method (LSM) with gradient 
descent. Table 2 provides the calibrated parameters of 
the model, their variation ranges and optimal values.  
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Figure 9: Implementation processes description for sub-queries and joins correspondent to the original query star. 

The optimal values for the calibrated model 
parameters were found in the following way: the 
outer cycle randomly selected a point inside 9-
dimensional parallelepiped (9 is the number of 
calibrated parameters), while the inner cycle 
performed error minimization by numerical methods 
with gradient descent. The error function equals the 
sum of squared differences between the execution 
times of ten experimental and modelled queries. 
Since the error function may have multiple minimums 
and there is a possibility of going beyond the ranges, 
the outer cycle was repeated 100 times.  

The sum of squared deviations of modelled time 
from the experiment measurements equalled to 27079 
for 10 queries. 

We developed a universal interface allowing 
setting up and calibrating an arbitrary model. 

The second subset of experimental results had 
query execution time for 40 query stages: stages 
0,1,2,3,6,7,8 of Q3 query with SF=500 (NBF=40 
million), SF=250 (NBF=50 million), SF=100, SF=50, 
SF=10 (NBF=15 million) database population 
parameters; and stages 0, 2, (3+5), 4, (6+7) of Q17 
query with SF=500 (NBF=15 million) database 
population parameters.  

1. R1

r1

read dimension table D1(k1,w1) split, filter (P1), BF1=bloomfilter(k1)

broadcast(BF1),…, broadcast(BFn)

…

rn

Rn

a
2. A

read dimension table Dn(kn,wn) split, filter (Pn), BFn=bloomfilter(kn)

3. RF read fact table F({fki},kF,wF) split, filter (PF), filter(BF1,fk1),
…,filter(BFn,fkn)

dfD1

dfDn

dfF

DR1=broadcast(dfD1),…,DRL=broadcast(dfDL) and hashing4. B
b

dfF.filter(DR1)....filter(DRL) - HashJoin5. C
c

dfDL+1: sort, shuffle write6. X1

x1

rF

dfFH

…

dfDn: sort, shuffle writeXn-L

xn-L

dfFH: sort, shuffle writeXn-L+1

xn-L+1

shuffle read (X1,Xn-L+1),  sort (and 
join), sort, shuffle write

7. Y1

y1

shuffle read (X2,Y1),  sort (and join), 
sort, shuffle write

y2
Y2

shuffle read (Xn-L,Yn-L-1),  sort 
(and join) 

yn-L
Yn-L

agg  or (shuffle write (Yn-L), 
shuffle read,  agg) 

z1
8. Z1(if group by) 

sort, shuffle write (Z1), 
shuffle read,  sort

z2
9. Z2(if order by) 

…
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Stages execution time (40 measurements) were 
used for model adequacy evaluation.  

Table 2: Model Calibration Parameters and their Optimal 
Values. 

Calibrated Model Parameter 
Lower 
Limit 

Upper 
Limit 

Optimal 
Value

τf – processor time of filtration 
per record, s 

1.0E-06 1.0E-05 1.14E-06 

τb – processor time for record 
read/write from Bloom filter, 
s 

1.0E-08 1.0E-07 2.07E-08 

τs – record sorting time per 
records, s 

1.0E-08 1.0E-07 2.11E-08 

τd – deserialization processor 
time for a task in the Executor 
slot, s 

1.0E-06 1.0E-04 7.59E-05 

τh – hashing time per record 
(for further comparison and 
aggregation), s 

1.0E-08 1.0E-06 4.27E-07 

KS – coefficient 
correspondent to serialization 
effect on the transmitted data 
volume during shuffle 
execution 

0.5 1.5 0.81 

RH - HDFS file system data 
read intensity (MBps) 

20.0 50.0 44.1 

WL - LFS local file system 
data write intensity (MBps) 

50.0 200 61.4 

N1 – network switch data 
transmission intensity (MBps) 

100 500 186 

 

A model vs. experiment scatter plot in Fig. 10 (50 
points) shows all modeling and experimental query 
and their stages execution time from the two subsets. 

 
Figure 10: Query and stage modeling execution time (x) vs. 
experimental measurements (y). 

The logarithmic scale is used for both axes: x1=lg 
x, y1=lg y. The regression dependency between y and 
x is expressed as y=0.99x+4.0x+4. For the 
logarithmic scale, it will be y1=lg(10x1+4). For a large 
enough x1, we get y1=x1 and hence y=x. For x1- 
y1 lg 4 (horizontal asymptote in Fig. 10). The 
coefficient of determination for the experimental data 
approximation of the regression is close to 1 

(R2=0.966), which shows a very high modelling 
accuracy for large modelling time values (y=x in this 
case). Fig. 10 demonstrates that for the values over 10 
seconds the modelling accuracy is good (the dots are 
close to the y=x line). The relative modelling error 
(=100ꞏ|TExperiment-TModeling|÷TExperiment) for points to 
right of x=10 (31 point) has the following 
distribution: 35% points have error 10% , 19% 
points have 10%<20%, 23% points - 20% 
<30%, 13% points - 30%<40% -, and 10% 
points - >40 %.  

Fig. 10 shows that model parameters calibration 
allows building a good prognostic cost model for 
query execution time estimation for large databases 
even with non-precise cardinality values of 
intermediate tables (cardinality values are estimated 
on probability, Pi in formula (4)). Further, we provide 
a theoretical justification for this finding. 

5 MODEL ADEQUACY 
THEORETICAL EVALUATION 
FOR LARGE DATABASES 

Let us represent the random time of the i-th query 
execution: 

 

𝑡௜ ൌ ∑ ∑ 𝜉ijk
หோೕห
௞ୀଵ

௃೔
௝ୀଵ ,                     (8) 

 

here Ji is a number of tables taking part in the i-th 
query execution, |Rj| is j-th table number of records, 
ijk ≥0 is random time of k-th record processing from 
j-th table during execution of the i-th query. 

Let us further for simplicity assume that the 
database is synthetic. Then we can derive from the 
synthetic dataset’s characteristics 1-3 (see Paragraph 
III) that the probability distribution function (PDF) of 
a random variable ijk does not depend on к, and the 
number of records in tables is proportional to SF 
factor (even for the intermediate tables produced by 
joins). The number of records resulting from some m 
and n table joins for the j-th table will be equal to: 

 

SF|ோ೘భ|⋅ௌி|ோ೙భ|

௠௔௫ሺௌி⋅ூሺோ೘భ,௔ሻ,ௌி⋅ூሺோ೙భ,௔ሻሻ
ൌ 𝑆𝐹 ⋅ ห𝑅௝ଵห,       (9) 

 

here |Rz1| is the records number in table z given SF=1, 
z∈(m,n,j), I(Rz1,a) – join attribute a cardinality 
(unique values count) Rz1 table, z∈(m,n). 

Formula (8) can be expressed in the following 
way: 

 

𝑡௜ ൌ ∑ ∑ 𝜉ij
ௌிหோೕభห
௞ୀଵ

௃೔
௝ୀଵ ,                (10) 
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Based on characteristic 2 of the synthetic databases 
let us consider independence of the random variables 
ij. These variables are limited on both sides so that 
the conditions of the Lyapunov theorem are satisfied 
(Zukerman, 2019). Given numerous additives in (10), 
the ti PDF will be close to the normal distribution. The 
mathematical expectation and variance of query 
execution time can be derived from (10) in the 
following form: 

 

𝐸ሺ𝑡௜ሻ ൌ 𝑆𝐹 ∑ |𝑅௝ଵ|𝐸ሺ𝜉ijሻ
௃೔
௝ୀଵ ൌ 𝑆𝐹𝐸ଵሺ𝑡௜ሻ,      (11) 

𝑉𝑎𝑟ሺ𝑡௜ሻ ൌ 𝑆𝐹 ∑ |𝑅௝ଵ|𝑉𝑎𝑟ሺ𝜉ijሻ
௃೔
௝ୀଵ ൌ 𝐹𝑉𝑎𝑟ଵሺ𝑡௜ሻ, (12) 

 

here E1(ti) and Var1(ti) are mathematical expectation 
and variance of query execution time for SF=1. 

The confidence interval for an arbitrary query 
execution time t can be calculated with the following 
formula: 

 

|𝑡 െ 𝐸ሺ𝑡ሻ| ൑  𝑘ඥ𝑉𝑎𝑟ሺ𝑡ሻ,              (13) 
 

here  is the confidence level (13), k -  quantile: 
0.95 quantile = 1.645, 0.99 quantile = 2.326, 0.999 
quantile = 3.090. 

From (11), (12), (13) we derive: 
 

𝐸ሺ𝑡ሻሺ1 െ
௞ඥ௏௔௥భሺ௧ሻ

ாభሺ௧ሻ√ௌி
ሻ ൑ 𝑡 ൑  𝐸ሺ𝑡ሻሺ1 ൅

௞ඥ௏௔௥భሺ௧ሻ

ாభሺ௧ሻ√ௌி
ሻ,     

 (14) 
 

An arbitrary query set is used for model 
calibration so that the regression formula obtained 
with the Least Squares Method (LSM) is: 
E(t)=y=x+c1, here х is modelling value, c1 is some 
constant. If time t has Normal Distribution then LSM 
and MLE (maximum likelihood estimation) give the 
same result (Seber el al., 2012).  

From (14) we derive: 
 

𝑥ሺ1 ൅
௖భ

௫
ሻሺ1 െ

௖మ

√ௌி
ሻ ൑ 𝑡 ൑  𝑥ሺ1 ൅

௖భ

௫
ሻሺ1 ൅

௖మ

√ௌி
ሻ,  (15) 

 

here 𝑐ଶ ൌ 𝑚𝑎𝑥௧ ሺ𝑘ඥ𝑉𝑎𝑟ଵሺ𝑡ሻ 𝐸ଵሺ𝑡ሻሻൗ . 
 

Provided SF and x are large we derive from (15) 
that query execution time t corresponds well with the 
modelling value x. This confirms the distribution of 
the “experiment vs. model” points in Fig. 10. 

Real datasets have many correlations and uneven 
data distribution. The developed model though 
should not lose its adequacy with the real data. Query 
execution time (8) has Normal Distribution even if ijk 
random variables correlate in case the maximum 
correlation coefficient tends to 0 as the distance 
between elements increases (Seber et al., 2012). We 
can relax the uniform distribution requirement for 

data and use SF ൌ 𝑚𝑖𝑛௜ ∑ |𝑅௝|௃೔
௝ୀଵ , which is 

determined by the data stored in a database.  
The overall point distribution in Fig. 10 

corresponds to the results described in (Leis et al., 
2015) for query execution in the real database (please, 
see, the left column in Fig. 8 in (Leis et al., 2015)). 
Please note that these diagrams were plotted for non-
calibrated cost models. 

6 CONCLUSION 

We developed a mathematical model for Spark 
processes based on the sub-models of connected 
parallel processes (Fig. 9). The model can help to 
predict SQL query execution time based on its 
schema. Fig. 2 and Fig. 4 provide schema 
construction examples, and Table 1 shows how to do 
it for other queries. 

Based on the experimental results (overall 50 
points) the model parameters were calibrated and its 
adequacy evaluated. The coefficient of determination 
for linear regression approximation is R2=0.966, 
which shows good model accuracy for high 
modelling time values. It was shown that for 
modelling time over 10 seconds the points are 
concentrated close to the y=x line (Fig. 10). 77% of 
these points have relative modelling error <30%. 
This is satisfactory for predicting query execution 
time in a distributed parallel system which requires 
time estimation, e.g. for a DaaS environment, or 
performs comparison and selection of query 
implementation option, i.e. for query optimization. 
The model gives an acceptable accuracy even with 
non-precise intermediate table cardinalities. This is 
important since unlike with relational databases 
calculation of the precise cardinality in a distributed 
environment requires complete table analysis. 
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