
An Experimental Analysis of Tools for Ontology Evolution Management

Jéssica S. Santos a, Viviane T. Silva, Leonardo G. Azevedo, Elton F. S. Soares
and Raphael M. Thiago

IBM Research, Pasteur Ave, 146, Rio de Janeiro, Brazil

Keywords: Ontology Evolution, Ontology Engineering, Change Management, Change Detection, Complex Changes.

Abstract: The use of ontology is widely spread among software engineering groups as a way to represent, structure,
share and reuse knowledge. As projects progress, the ontological understanding of the domain may change,
evolve. New domain concepts may emerge and existing ones may disappear or be updated, causing changes
in the ontology. Taking this into account, the management of the ontology evolution/life cycle should be
addressed by the ones that adopt them as a way of representing knowledge. This paper provides an analysis of
tools related to ontology evolution management focusing on the ones able to identify elementary and complex
changes (by grouping elementary changes) that help on externalizing the intention of the user. The main
contribution of this analysis is to present the state of the art of tools related to ontology evolution by identifying
their strengths and limitations. The results are particularly useful to ontology designers who need to choose a
tool to help them to inspect, understand and manage ontology evolution. Besides, we point out several research
issues to be addressed in different kinds of research initiatives.

1 INTRODUCTION

In Computer Science, ontologies are defined as “ex-
plicit specifications of conceptualizations” (Gruber,
1993) or, similarly, as “formal specifications of a
shared conceptualization” (Borst and Borst, 1997).
Basically, they aim at providing a unified understand-
ing of the world, formally representing the descrip-
tion of the concepts that exist in a given domain of
interest, their relationships and relationships between
instances that belong to such concepts.

Ontology usage presents several advantages, as
for example: (i) interoperability – ontologies enable
different systems or persons to communicate and in-
teroperate by using a shared vocabulary of concepts
(Maedche and Staab, 2001) that can be machine-
processable (Fensel, 2001) (semantic exchange); (ii)
reuse – when adopting ontologies, one can import
and extend existing concepts, reusing knowledge
(Uschold and Gruninger, 1996); and (iii) reasoning
– the formally structured nature of ontologies allows
logical reasoning and inference mechanisms to be ex-
ploited (Wang et al., 2004). Those advantages make
ontologies a popular topic among the knowledge en-
gineering community, which can adopt them in order
to build/describe the structure of their knowledge base

a https://orcid.org/0000-0001-5082-4583

(Studer et al., 1998) and to construct Semantic Web
based applications (Berners-Lee et al., 2001).

During the life cycle of an ontology, changes in its
structure can be needed. This can occur, for example,
when experts achieve a deeper understanding of the
domain, when there are changes in the domain mod-
elled by the ontology, when new requirements arise in
the applications that the ontologies support (Zablith
et al., 2015), or even when design errors are detected
in earlier ontology versions (Hartung et al., 2012).
Therefore, ontology-based applications are also sub-
jected to a continual change (Abcckcr and Stojanovic,
2005).

In addition to elementary changes1, there are oth-
ers called composite or complex changes that group
a set of elementary changes to provide more mean-
ingful semantics. A merge operation is an example
of complex change where a list of existing concepts
{x1, ..,xn} are merged into one concept xz that ac-
cumulates all attributes/relationships of the involved
concepts. This change can be decomposed in several
isolated changes without meaning: the creation of a
new concept xz, several move operations involving at-
tributes/relations (from classes {x1, ..,xn} to xz), and

1Elementary changes are the ones that cannot be decom-
posed in simpler changes (e.g.: additions or deletions of
concepts).

Santos, J., Silva, V., Azevedo, L., Soares, E. and Thiago, R.
An Experimental Analysis of Tools for Ontology Evolution Management.
DOI: 10.5220/0009395601110121
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 111-121
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

111



the sequence of deletions of classes {x1, ..,xn}. The
renaming is another example of complex change that
can be decomposed into a sequence of changes with-
out meaning: the deletion of a concept and the ad-
dition of a new one. However, these actions, when
seen in isolation, provide the wrong semantics to the
change (more examples of complex changes are pre-
sented in Table 2, marked by an asterisk (*)).

This research concerns with the ontology evolu-
tion management, the process that deals with support-
ing changes on the ontology, identifying and tracking
them, and managing the propagation of changes to
related artifacts (documentation, instances, code and
dependent ontologies) (Stojanovic, 2004). This pro-
cess is very challenging since when an ontology is
modified, (i) ontology instances need to be changed to
preserve consistency; (ii) dependent ontologies must
be revised and immediately synchronized with the
modified ontology; (iii) application code has to ac-
commodate the changes on the ontology; and (iv) re-
lated documentations must be updated in order to doc-
ument the evolution.

Inconsistencies between an ontology and its ar-
tifacts may cause severe problems, such as: (i) loss
of application instances, i.e., loss of knowledge gen-
erated by users when using the application; (ii) ap-
plications may behave unexpectedly; (iii) errors be-
ing propagated to other applications whose ontolo-
gies depend on the evolved one; and (iv) difficulty to
maintain the system since the documentation is not
up-to-date, i.e., does not document the evolution. In
this way, managing ontology evolution becomes more
complex as the ontology grows in size (Klein and
Fensel, 2001)(Stojanovic et al., 2002).

Some tools have been proposed in the literature to
support or facilitate the ontology evolution manage-
ment. In this research, we present an overview of ex-
isting tools and concentrate our experimental analysis
on the ones that support features related to the detec-
tion/inspection of changes in a given ontology over
time (diff tools2). One of the main features investi-
gated in this research is the set of kinds of changes
that can be captured and the level of explainability
returned to the user as a conceptual interpretation
of the meaning of a list of elementary changes (the
so called complex change detection). We created a
case study using the well known Pizza Ontology tu-
torial (Section 4), simulating several kinds of elemen-
tary and complex changes. These changes were se-
lected based on our experience in designing ontolo-
gies, the changes presented in the tutorial, and com-
plex changes presented by (Stojanovic, 2004), (Sto-
janovic et al., 2002) and (Klein, 2004).

2Tools able to track or detect ontology changes.

The rest of this paper is organized as follows. Sec-
tion 2 presents related work. Section 3 presents an
overview of tools related to ontology evolution. Sec-
tion 4 details the evaluation criteria and the case study
adopted to evaluate the tools. Section 5 presents a
comparison between the tools and a discussion con-
sidering the supported features and the criteria estab-
lished in Section 4. Lastly, Section 6 points out our
conclusions and open issues identified.

2 RELATED WORK

The topic “ontology evolution” is the subject
of several lines of research in the literature.
Gonçalves (Gonçalves, 2014) argues that strategies
for computing differences between ontologies can be
classified as syntactic or semantic. Although his re-
search is not focused on tools developed to cope with
the ontology evolution management, some tools such
as ontology editors that track changes are mentioned.
Different from our work, Gonçalves (Gonçalves,
2014) does not explore the detailed list of specific
kinds of changes that can be detected. Our research
in this topic is much broader since we establish a set
of criteria that are relevant to the ontology evolution
problem and in addition to focus on evaluating diff
tools, we present an overview of tools related to other
parts of the ontology evolution process, as the ones
that propose means to propagate changes.

The work presented in (Lambrix et al., 2016) fo-
cuses on the ontology visualization problem and dis-
cusses strategies that can be adopted to facilitate the
visualization of ontology evolution. The authors ar-
gue that visualization tools must be able to represent
the richness of ontologies in a human comprehensive
way and present visualizations with different levels of
granularity. Additionally, it emphasizes that existing
techniques for the visualization of software evolution
could be applied to address ontology evolution visu-
alization. The strategy used to present differences be-
tween ontologies is only one of the features that we
use to categorize tools in the present study.

The work in (Stojanovic, 2004) presents a brief
discussion about ontology designing tools comparing
them according to their ability to evolve an ontology.
Different ontology editors were compared according
to dimensions that include: functionality – the kinds
of changes the ontology editor allows the user to ap-
ply on an ontology (e.g., add, delete, copy concept);
refinement – the ability to make recommendations to
improve the ontology; reversibility – the ability to
undo changes; usability – the ability to edit ontolo-
gies easily. In contrast, we do not concentrate our

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

112



research in ontology editors neither in their ability to
implement changes, but in tools that detect changes
between ontology versions (what may be done inde-
pendently of a specific ontology editor).

3 ONTOLOGY EVOLUTION
MANAGEMENT TOOLS

This section presents the tools that provide features
for ontology evolution management. We present
the most popular tools (based on citation num-
bers), namely, PromptDiff (Noy et al., 2002) and
WebProtégé (Tudorache et al., 2013) and the ones that
were designed to cope with specific features that are
needed to understand ontology evolution (see Section
4 for more detail), namely, complex change detec-
tion (CODEX (Hartung et al., 2012) and KAON (Sto-
janovic et al., 2002)), change explanation (OWL Diff
(Redmond and Noy, 2011)) and visualization (OntoD-
iffGraph (Lara et al., 2017)). In addition to diff tools,
we also search for tools related to change propagation,
however only one tool was found (OIM tool (Davi-
dovsky et al., 2011)). A brief overview of these tools
and their features will be presented as follows.

3.1 PromptDiff

The PromptDiff (Noy et al., 2002) is a tool that adopts
a set of heuristic matchers for finding structural differ-
ences between two versions of an ontology. PromptD-
iff compares ontologies as follows (Noy et al., 2002):

• A matching between elements of the two ontolo-
gies is performed considering the elements’ iden-
tifier (IRI) and type;

• When there is a matching between a class of the
ontology original version and a class of the on-
tology new version and both classes have a single
unmatched subclass, these subclasses are consid-
ered the same element (an entity renaming is iden-
tified);

• Unmatched siblings whose prefixes or suffixes
changed in the same way in the new version of
the ontology are considered the same (an entity
renaming is identified);

• If there is a matching between a class of the origi-
nal version of the ontology and a class of the new
version of the ontology and both classes have a
single unmatched slot3 whose range is the same,
they are considered the same element (an entity
renaming is identified);

3Slots describe properties of classes or instances.

• If there is a matching between a slot of the on-
tology original version and a slot of the ontology
new version and these slots have inverse slots that
are unmatched, the unmatched inverse slots are
considered the same elements (a slot renaming is
identified);

• It can identify classes that were splitted or merged
based on analysis of their instances;

In addition to the limited support for complex detec-
tion, another drawback of this tool is that it still uses
an API for accessing OWL ontologies that is not able
to support OWL 24 ontologies. Additionally, Prompt-
Diff is only available as a plugin for Protégé5 old ver-
sions (3.x and earlier series) and its source code is not
available.

3.2 OWL Diff

The OWL Diff6 (Redmond and Noy, 2011) is a tool
that is able to compare different versions of the same
ontology. It is available as a standalone applica-
tion, and as a plugin for the Protégé (version 4.2 and
higher). OWL Diff was inspired by PromptDiff and
was developed to support OWL 2. The OWL Diff re-
ceives as input two OWL files and display the changes
identified in a text log. Before identifying ontology
structural changes, the following alignment strategies
are considered (Redmond and Noy, 2011):

• Align by the same IRI and type;

• Align by rendering, i.e. concepts that have the
same rendering (rdfs:label annotation property)
are matched even if their IRI has changed;

• Align entities that differ only by their namespace;

• Siblings of a matched class are aligned when they
have very similar rendering (it is interpreted as a
refactoring to correct a typo or misspelling). It can
also detect cases when all classes changed from
plural to singular;

• Entities with the same parent and child are
aligned;

• Alignment between alone unmatched classes
when all the remainder classes are matched.

The support provided by this tool to complex detec-
tion is very limited since it only covers entity rename
and subclass changes. Additionally, the heuristics
presented are very simple and their alignments can
point out wrong matches, as in the case of alignment
of alone unmatched classes.

4https://www.w3.org/TR/owl2-overview/
5An open-source ontology editor
6https://protegewiki.stanford.edu/wiki/Protege4OWL- Diff

An Experimental Analysis of Tools for Ontology Evolution Management

113



3.3 OntoDiffGraph

The OntoDiffGraph7(Lara et al., 2017) is a tool that
was developed to exhibit differences between on-
tologies in a graphical manner, by using graphs.
The graph notation adopted is based on the VOWL
(Lohmann et al., 2016) – a notation that maps each
ontology element to a graphical element – but ex-
tends it in order to highlight differences. In sum-
mary, the graph notation is as follows. Classes are
represented as blue circles, object properties are rep-
resented as blue rectangles, data properties are repre-
sented as green rectangles, annotation properties are
represented as yellow rectangles, data types are repre-
sented as yellow rectangles with black borders and el-
ement characteristics (functional, inverse functional,
transitive, symmetric, asymmetric, reflexive and ir-
reflexive) are represented as white rectangles. The
differences identified are displayed in different col-
ors, according to the kind of change, by changing the
color of the borders/edges of the elements. Additions,
deletions and updates are displayed in blue, red and
green colors, respectively. An example is illustrated
in Figure 1. The strategy adopted to detect changes is
based on the analysis of the IRI, which is the unique
identifier of each element of the ontology. In this way,
an addition is detected when there is a new IRI in the
new version. Similarly, removals are detected when
IRIs of the original version do not appear anymore
in the new version. Updates are identified when the
content of an existing element has changed in the new
version of the ontology. This tool is not able to de-
tect complex changes and the graphical approach to
present the detected changes is not enough when the
list of changes is too large.

Figure 1: OntoDiffGraph Visualization.

7http://www4.di.uminho.pt/ gepl/OntoDiffGraph/

3.4 CODEX

The CODEX (Hartung et al., 2012) is a tool that was
designed to find differences between life science on-
tologies. It supports as input ontologies described in
the OBO 8 format, a representation language com-
monly used to describe life science ontologies. A
limited support to OWL ontologies is also presented.
First of all, the algorithm tries to find a matching be-
tween the elements of the different versions of the
ontology. After that, it tries to identify elementary
changes such as additions and deletions of concepts,
relationships or attributes. Finally, a rule-based strat-
egy is applied over the detected changes in order to
find some kinds of complex changes, providing a
compact result. The main algorithm to compute dif-
ferences used by CODEX is called COntoDiff and is
detailed in (Hartung et al., 2010). The CODEX mech-
anism to detect complex changes is able to detect: the
addition or deletion of entire subgraphs, the addition
or deletion of leaf concepts, the move of concepts,
the split (tries to find a map between one concept of
the old version and more than one concept of the new
version) or merge of concepts (tries to find a map be-
tween two or more concepts of the old version and
one concept of the new version), or even specific op-
erations of life science ontologies (set the status of an
active concept to be obsolete or the status of an obso-
lete concept to be active). Such an approach does not
consider changes involving instances of the ontology
since, according to the authors, life science ontologies
typically do not have instances. The main drawback
of this approach is that it cannot detect some kinds
of simple changes (as the ones involving properties)
due to its limited support to OWL. Additionally, the
support to detect merge/split of concepts is also lim-
ited since it can detect such operations only in specific
cases.

3.5 WebProtégé

The WebProtégé (Tudorache et al., 2013) is an ap-
plication to support collaborative ontology manage-
ment. This tool is available online and provides func-
tionalities for editing, tracking changes and merging
ontologies. Given the current version of the ontol-
ogy loaded in WebProtégé V1 and a version V2 rep-
resenting a set of changes externally applied to V1,
one can merge V1 and V2 using WebProtégé in order
to apply those changes described in V2 to V1. Con-
cepts that are in V1 but are not in V2 are interpreted
as concepts removed. Since this tool records a change

8http://www.cs.man.ac.uk/h̃orrocks/obo/

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

114



history, the author of each change made inside the ap-
plication is recorded. Before merging ontology ver-
sions, the changes detected between the versions are
informed to the user and a confirmation dialog is ex-
hibited. Additionally, it presents a functionality to re-
vert/undo changes. The change history is presented in
a text log and there is an option to filter changes ac-
cording a given entity, facilitating change inspection.
As a drawback, complex change detection is not well
supported, covering few cases such as the detection
of subclass changes. In addition, ontology elements
cannot be renamed by using this tool, and renaming
actions performed outside this editor are not detected
too.

3.6 KAON

KAON (Stojanovic et al., 2002) is a framework that
was developed to partially support the ontology evo-
lution management. KAON does not support RDF
but it adopts a proprietary ontology language that ex-
tends RDFS changing the semantics of domain, range
and cardinality presented in the RDFS and OWL. This
is because they are interpreted as constraints in the
KAON language, and not as inference rules/axioms
like in the OWL, RDFS. KAON provides some func-
tionalities that allows the user to control and cus-
tomize the process of ontology evolution, by setting
some evolution strategies. When the ontology is mod-
ified, changes that will be propagated according to the
predefined evolution strategies are also exhibited to
the user. Examples of evolution strategies are as fol-
lows (Gabel et al., 2004):

• When a concept is deleted, the user can choose
to delete orphaned concepts, reconnect them to
the ontology root, or reconnect them to supercon-
cepts;

• When a property is deleted, the user can choose
to delete orphaned properties, reconnect them to
superproperties, or leave them as they are;

• When concept’s parent is removed, the user can
choose to do not propagate properties or to add all
inherit properties to the child concept.

Although the goal of this tool is to help the user
while she is changing the ontology by indicating some
changes propagation in the same ontology, it also
records the changes made and, therefore, was also
analyzed. Therefore, KAON provides a support to
the implementation of changes in a given ontology.
Among the limitations identified, we can cite that
KAON uses a specific ontology language and does
not present strategies for change detection or change

propagation to other artifacts, relying on the fact that
ontologies are only designed inside KAON.

3.7 OIM

The work in (Davidovsky et al., 2011) proposes a
method for semi-automated updating ontology in-
stances (ABox) accordingly to the TBox new version,
process that the authors call ontology instance migra-
tion. The transformation rules needed to transfer in-
stances of a given version to another one, are as fol-
lows: (i) concept addition – nothing happens to in-
stances; (ii) concept rename – instances of the old
name become instances of the new name; (iii) ob-
ject property deletion – instances of the given rela-
tionship are discarded; (iv) object property addition
– nothing happens to instances and is not possible to
migrate instances automatically because the values of
the respective object properties must be added to the
instances but we do know the exact set of individu-
als that have to be related; (v) object property rename
– instances of the relationship old name become the
instances of the new name; (vi) object property car-
dinality change – some instances of the old name be-
come the instances of the new name but is not pos-
sible to migrate instances automatically because we
do not know the instances that should be related to
the individual having the property whose cardinality
changed; (vii) object property range change – noth-
ing happens to instances. Similarly to cardinality
change, instances cannot be automatically migrated;
(viii) datatype property deletion – all instances of the
relationship are discarded; (ix) datatype property ad-
dition – nothing happens to instances; (x) datatype
property rename – all instances of the datatype prop-
erty old name become instances of the datatype prop-
erty new name; (xi) datatype property type change –
all instances of the relationship old name are trans-
formed to instances of the relationship new name hav-
ing a different data type. The transformation rules of
such an approach only exploits a small set of changes.
Additionally, heuristics for change detection were not
presented by the authors. It is important to note that
OIM is the only tool analyzed that propagate changes
to ontology instances. To the best of our knowledge
no other tool is able to do such task neither is able to
propagate ontology changes to code.

4 EVALUATION

This section presents the criteria used to evaluate
the tools that provide features for ontology evolu-
tion management. Additionally, we describe the case

An Experimental Analysis of Tools for Ontology Evolution Management

115



study used in the evaluation process.

4.1 Evaluation Criteria

The evaluation criteria were selected based on their
importance to provide support to several parts of the
process of ontology evolution, whose steps include
the detection of ontology structural changes, the inter-
pretation of their meaning, the analysis of their side-
effects, and the propagation of changes to related ar-
tifacts. Since only one tool related to propagation of
changes to ontology changes was found in the litera-
ture, we chose not evaluate this topic. The criteria are
detailed as follows:

1. Change Detection: The elementary changes the
tool is able to detect (listed in Table 1) and the
way it is done. We identified two different ways in
the analyzed tools: (i) store the ontology change
history when the user uses the tool, providing the
traceability between ontology versions; and, (ii)
provide a mechanism to identify differences be-
tween two ontologies (e.g., original ontology and
its new version).

2. Complex Change Detection: Ability to identify
complex changes, i.e., to consider a composition
of elementary changes as a unique change, e.g.,
identify a concept renaming from a deletion and
addition of concepts.

3. Change Inspection: How the detected changes
are presented to the user. There are two main pos-
sibilities: (i) a list containing the changes is re-
turned to the user as a log in text format; and, (ii)
the list of changes is exhibited to the user graphi-
cally, e.g., as a diagram.

4. Extensibility: Whether the tool can be extended,
i.e., if it is provided as a plugin or even it its source
code is available to be used.

The predefined criteria (1 – 4) are very relevant for the
ones that adopt ontologies as a way of representing
knowledge for the reasons explained as follows.

The existence of a list reflecting the modifications
that an ontology underwent during its evolution – Cri-
teria 1 and 2 – allows those that are not the authors
of the changes to follow and understand how the on-
tology has evolved over time (Hartung et al., 2010),
(Noy and Klein, 2003). Furthermore, the detailed
information about ontology evolution is essential to
investigate the real impact of the changes on related
artifacts, and the manual detection of differences be-
tween ontology versions is a time-consuming task that
can be very challenging for large ontologies (Kremen
et al., 2011). The mapping between ontology versions
is also very important for the ontology’s migration.

It consists in finding changes to transform an ontol-
ogy V1 in an ontology V2 (Hartung et al., 2010). In
this context, we categorize strategies for highlighting
differences between versions as change history or de-
tecting differences strategies. Note that, the need for
specific tools for storing ontology change history oc-
curs due to the fact that functionalities provided by
traditional versioning systems (used to track source
code changes like Git9) are not enough to track ontol-
ogy changes. This is because they are based on text
comparison (checking if two files have the same char-
acters in the same order) and equivalent ontologies –
ontologies that have the same axioms – can have dif-
ferent text representations, requiring a structural com-
parison (Noy et al., 2002).

The importance of detecting complex changes
– Criterion 2 – instead of simply list elementary
changes, occurs due to the fact that complex changes
have a conceptual meaning and detecting them can
help one to understand the user intention behind the
performance of a list of elementary changes. Those
changes represent composite/coarse-grained actions
which can involve the combination of elementary
changes such as a change in the concept hierar-
chy (Stojanovic, 2004). The ontology designer does
not need to know, for example, the list of elemen-
tary changes indicating that a given concept A was de-
tached from concept B and attached to concept C. He
only needs to know that the hierarchy of concepts has
changed. The explainability of a list of elementary
changes (after an automatic interpretation) would be
helpful to the ontology designers, leading to a proper
propagation of changes and adjustments, making the
evolution process faster, and facilitating the under-
standing of the ontology evolution. In some cases, to
analyze each change of a list is not enough to capture
the change semantics, as is the case of the rename ac-
tion, explained as follows. A rename action changing
the identifier of an element from A to B erroneously
detected as the action of removing A and adding B can
cause undesirable side-effects that would reflect in an
erroneous evolution. This is because, when a class is
removed, its instances also would be removed, what
would lead to an instance loss for the renamed class B
in the ontology newest version.

Criterion 3 was defined since a proper presenta-
tion of the set of detected changes can facilitate hu-
man comprehension (Lambrix et al., 2016).

Finally, Criterion 4 was defined since a partial fea-
ture support of a tool (or new feature needs) could
be solved by extending the tool instead of building a
new tool from scratch. We evaluated this criterion by
checking tools documentation.

9https://git-scm.com/

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

116



4.2 Case Study

In order to evaluate the Criteria 1, 2, and 3 we simu-
late the ontology evolution process by applying a list
of changes to a given ontology. We take as base a well
known use case published in the literature, the Pizza
Ontology10 described in Protégé’s tutorial11, which
describes in step-by-step exercises what the reader
must do to create the Pizza Ontology. In summary,
the Pizza Ontology describes the concepts of pizza,
the country of origin of the pizza, toppings that can
be added to the pizza, and so on. The first version
of the ontology V1 is an OWL file with no concepts.
The next versions of the ontology are built by apply-
ing the changes described in the exercises (1 – 60)
presented in the Pizza tutorial. Therefore, the ontol-
ogy version 20, for instance, is the one containing all
changes made from exercise 1 to 20 and so on. Table
1 summarizes the complete list of changes considered
in this research.

Some of the tutorial’s exercises are not mentioned
in Table 1 because they do not require the ontology
to be changed (e.g., “Exercise 30: Use the reasoner
to automatically compute the subclasses of CheesyP-
izza”). The column Protégé Tutorial Exercise maps
each kind of change to the exercise that implements it.
Protégé’s tutorial does not cover all possible changes.
However, some changes can be derived from pre-
existing ones by using a simple method: inverting
the version order (e.g., if the second version of the
ontology is created by adding a class to its first ver-
sion, the delete operation can be simulated taking the
second ontology version as the original one and the
first ontology version as the evolved ontology). Those
cases are indicated with (-) in the column Protégé Tu-
torial exercise. Some kinds of changes were manu-
ally elaborated and included in our analysis and are
represented with (x) in the column Protégé Tutorial
exercise. The terms object properties and data prop-
erties refer to relationships between two individuals
and relationships between individuals and data val-
ues, respectively. The term restriction refers to the
class of individuals that contains a given property re-
striction (e.g., class of individuals that only have veg-
etable toppings). The term abstraction refers to the
inclusion or deletion of a class between parent/child
classes. The property characteristics can describe ob-
ject properties as being functional, inverse, transitive,
reflexive, etc. Similarly, a data property can be char-
acterized as functional. More information about prop-
erty characteristics can be found in the Pizza tutorial.

10https://protege.stanford.edu/ontologies/pizza/pizza.owl
11http://mowl-power.cs.man.ac.uk/protegeowltutorial/res-

ources/ProtegeOWLTutorial P4 v1 3.pdf

Complex changes are signalled by an asterisk (*). The
list of complex changes was built based on the combi-
nation of complex changes discussed in different ap-
proaches (Stojanovic, 2004), (Stojanovic et al., 2002)
and (Klein, 2004).

5 COMPARATIVE ANALYSIS

In this section we present the result of the exper-
imental analysis of different tools. In such analy-
sis we evaluated the level of functionalities that each
tool supports based on the criteria presented in Sec-
tion 4. Among the tools surveyed, WebProtégé and
KAON adopt the approach of ontology change his-
tory. Therefore, they do not need to discover what
changes occurred in the ontology during its evolu-
tion because it is explicitly stored. Change history
approaches have also the differential of keeping the
exact order in which the sequence of changes were
performed on the ontology, what it is not possible to
know in approaches that detect differences without
saving the trace. An advantage of using WebProtégé
is that it also stores the author of each change per-
formed inside it, i.e., changes that were not incorpo-
rated by merging an external file. This factor is ex-
tremely important when the ontologies are managed
collaboratively. The ability to revert changes also
is another point in favour for both WebProtégé and
KAON. A disadvantage of the KAON is that the man-
agement of the ontology is coupled with it, i.e., the
user will be able to inspect the detailed sequence of
changes when the ontology is only edited using this
tool. In contrast to change history approaches, tools
that do not track changes but can detect differences
between ontologies have the advantage that the on-
tologies to be compared can be edited using differ-
ent ontology editors. This feature is specially desir-
able when the ontology designer reuses ontologies de-
veloped by independent organizations (Zablith et al.,
2015).

Among the tools surveyed, the OntoDiffGraph
was the only one designed to address the ontology
evolution visualization problem, exhibiting the on-
tology as a graph, where different kinds of changes
are displayed using different colors. Although this
functionality can facilitate the visualization for the
ontology engineer when the number of changes is
not so numerous, for our case study it was diffi-
cult to visualize the ontology evolution since multiple
changes occurred between versions. In order to deal
with this problems, future tools for ontology evolution
management could present means to collapse/expand
parts of the ontology when adopting a graphical visu-

An Experimental Analysis of Tools for Ontology Evolution Management

117



Table 1: Ontology changes.
Kind of Change Protégé Tutorial Exercise

1. Class

1.1. Include Class 7, 21, 22, 28, 31, 41, 43, 44
1.2. Delete Class -
1.3. Change IRI* x

1.4. Annotation

1.4.1. Include Label x
1.4.2. Delete Label -
1.4.3. Change Label from A to B x
1.4.4. Include Comment 18
1.4.5. Delete Comment -
1.4.6. Change Comment x

1.5. Description

1.5.1. Equivalent To
1.5.1.1. Include 60
1.5.1.2. Delete -
1.5.1.3. Change x

1.5.2. SubClass Of
1.5.2.1. Include 6, 7, 18, 21, 22, 28, 31, 41, 43, 44
1.5.2.2. Delete -
1.5.2.3. Change* x

1.5.3. Instances
1.5.3.1. Include 47, 58
1.5.3.2. Delete -
1.5.3.3. Change x

1.5.4. Disjoint With
1.5.4.1. Include 5, 6, 23, 52
1.5.4.2. Delete -
1.5.4.3. Change* 26, 27

1.6. Convert to Defined* 29, 32, 41, 43, 54
1.7. Convert to Primitive* -

2. Object
Property

2.1. Include property 8, 10
2.2. Delete property -
2.3. Change IRI* x

2.4. Annotation
2.4.1. Include Label x
2.4.2. Delete Label -
2.4.3. Change Label from A to B x

2.5. Domain
2.5.1. Include Domain 14, 15
2.5.2. Delete Domain -
2.5.3. Change Domain from A to B* x

2.6. Range
2.6.1. Include Range 13, 15
2.6.2. Delete Range -
2.6.3. Change Range from A to B* x

2.7. Characteristics
2.7.1. Include 11, 12
2.7.2. Delete -
2.7.3. Change x

2.8. Description 2.8.1. Inverse Property 10
2.8.2. Disjoint Property x
2.8.3. SubProperty Of* 9

3. Data
Property

3.1. Include property 46
3.2. Delete property -
3.3. Change IRI* x

3.4. Annotation

3.4.1. Include Label x
3.4.2. Delete Label -
3.4.3. Change Label from A to B x
3.4.4. Include comment x
3.4.5. Delete comment -
3.4.6. Change comment from A to B x

3.5. Domain
3.5.1. Include Domain 47, 48
3.5.2. Delete Domain -
3.5.3. Change Domain from A to B* x

3.6. Range
3.6.1. Include Range 47, 48
3.6.2. Delete Range -
3.6.3. Change Range from A to B* x

3.7. Characteristics
3.7.1. Include 51
3.7.2. Delete -
3.7.3. Change x

4. Restric-
tions

4.1. Quantifier 4.1.1. existential restrictions (some) 16, 17, 19, 20, 21, 22, 28, 36, 37, 40, 41, 48, 49
4.1.2. universal restrictions (only) 31, 34, 35

4.2. Cardinality* 43, 45
4.3. hasValue 59

5. Others*

(changes
involving
more than
one class
or property)

5.1. SubTree
5.1.1. Include SubTree 7, 18
5.1.2. Delete SubTree -
5.1.3. Move SubTree x

5.2. Abstraction 5.2.1. Include x
5.2.2. Delete -

5.3. Siblings
5.3.1. Include 4, 6, 22
5.3.2. Delete -
5.3.3. Move x
5.3.4. Make all siblings disjoint 6, 7

5.4. Merge Classes x
5.5. Split Class x

* Complex Change.
x Kinds of changes that are not in the Protégé tutorial and were manually included.
- Kinds of changes that are not in the Protégé tutorial but can be derived from the existing ones.

alization.
In general, the support to complex detection is

very limited. Only two approaches, namely, OWL
Diff and PromptDiff address the entity renaming

problem by presenting some simple heuristics that try
to find renaming operations based on, for example,
the analysis of the labels associated with the entities
or based on the analysis on the parent and child of

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

118



the elements to be compared. Although WebProtégé
stores the change history, it cannot detect IRIs renam-
ing when ontologies are merged (loaded from an ex-
ternal file, compared and combined). We noticed that
although subclass changes can be already well de-
tected by some approaches such as CODEX, OWL
Diff and PromptDiff, other complex changes such
as splits and merges of concepts are not satisfactory
identified since the approaches that deal with them
rely on instance analysis and in many times instances
of the ontology new version are not available. Fur-
thermore, complex changes such as the conversion of
a class to primitive or defined, changes involving sib-
lings classes or changes creating/deleting abstractions
are not addressed by any of the tools. In addition,
domain/range changes are not properly interpreted by
the tools (e.g.: they do not inform to the user that the
range of a property has been enlarged when it is asso-
ciated with a broader class). Although CODEX was
designed to identify some cases of complex changes,
it was not able to detect many cases of simple changes
because it does not support all OWL constructs.

In the ontology evolution problem we want to
identify differences between an old and a new ver-
sion and, after that, automatically propagate changes
to ontology instances based on the changes that were
detected. A problem identified in relation to this is-
sue is the lack of approaches supporting the automatic
propagation of ontology structural changes to ontol-
ogy instances (when it is possible), only the OIM tool
proposes some rules to propagate changes to ontol-
ogy instances. However, the rules considered by such
an approach do not contemplate the complete list of
changes presented in this paper. We also do not agree
with some instance migration rules presented by the
authors, such as the case in which the type of a data
property changes. We argue that this case cannot be
automatically solved since some conversions between
types are not possible to be performed. KAON was
the only tool that proposes a set of strategies that de-
termine patterns for updating ontology elements when
a change occurs.

Table 2 presents the changes that cannot be de-
tected by the tools or that can be partially detected.
All changes considered by OIM tool are described in
section 3.7 by the transformation rules and are related
to the following changes listed in Table 1: 1.1, 1.3,
2.1, 2.2, 2.3, 2.6.3, 3.1, 3.2, 3.3, and 3.6.3. Table 3
summarizes the characteristics of the surveyed tools.
KAON and OIM tools are not mentioned in Table 2
because they do not propose own mechanisms to de-
tect differences between ontology versions. The OIM
tool is not mentioned in Table 3 because it does not
support any of the criteria listed in the table. On the

Table 2: Change Detection Problems.

Change
No Support

or
Limited Support (*)

Class

1.3. Change IRI

OWL Diff*
OntoDiffGraph

PromptDiff*
WebProtégé

CODEX
1.5.1. Equivalent To CODEX
1.5.3. Instances CODEX
1.5.2.3. Change SubClassOf OntoDiffGraph
1.5.4. Disjoint With CODEX

1.5.4.3. Change Disjoint With OntoDiffGraph,
WebProtégé

1.6. Convert to Defined

OWL Diff
OntoDiffGraph

PromptDiff
WebProtégé

CODEX

1.7. Convert to Primitive

OWL Diff
OntoDiffGraph

PromptDiff
WebProtégé

CODEX

Object Property 2.3. Change IRI

OWL Diff*
OntoDiffGraph

PromptDiff
WebProtégé

Data Property 3.3. Change IRI
OntoDiffGraph,

PromptDiff,
WebProtégé

Restrictions 4.2. Cardinality CODEX
4.3. hasValue CODEX

Others
(changes
involving
more than
one class

or property)

5.1. SubTree

OWL Diff
OntoDiffGraph

PromptDiff*
WebProtégé

5.2. Abstraction

OWL Diff
OntoDiffGraph

PromptDiff
WebProtégé

5.3. Siblings
OWL Diff

OntoDiffGraph
WebProtégé

5.4. Merge Classes

OWL Diff
OntoDiffGraph

PromptDiff*
WebProtégé

5.5. Split Class

OWL Diff
OntoDiffGraph

PromptDiff*
WebProtégé

CODEX
* Limited support to detect this change.

Table 3: Tools characteristics.
Change

Detection
Complex
Changes

Change
Inspection

Extensi-
bility

Tracking
changes

Detecting
differences

Text
log

Graphic.
visualiz.

OWL Diff X X* X X
OntoDiff-
Graph X X X

PromptDiff X X* X
WebProtégé X X X X
KAON X X
CODEX X X* X

* Functionality partially supported.

other hand, it is the only tool that has proposed au-
tomatic rules for automatic ontology instance migra-
tion, which is a factor that can be useful to the ontol-
ogy evolution management.

An Experimental Analysis of Tools for Ontology Evolution Management

119



6 CONCLUSIONS

In this paper we compared and evaluated different
tools that present features related to the process of
management of ontology evolution. We established
a set of criteria to analyze the tools and employed a
case study based on the Pizza Ontology to simulate
the ontology evolution process. We applied different
relevant kinds of changes in Pizza Ontology and ana-
lyzed how the tools deal with them.

By exploiting the features of existing diff tools we
have concluded that none of the surveyed tools com-
pletely supports ontology evolution needs. A set of
limitations have been identified, as follows:

1. Change Detection: The majority of tools are able
to identify and return to the user/ontology de-
signer a list containing the sequences of several
elementary changes that occurred during the on-
tology life cycle. However, they deal with a dif-
ferent set of changes, and some of them (e.g.:
CODEX) are not able to detect the complete list
of elementary changes evaluated in this research
(Table 2). In addition, most of tools analyzed
(namely, OWLDiff, OntoDiffGraph, PromptDiff,
WebProtégé and Codex) provide a mechanism to
identify differences between two ontologies in-
stead of tracking user changes.

2. Complex Change Detection: Although many
diff tools have been found in the literature, they do
not can deal with complex change detection prop-
erly since the identification of complex changes
is still highly limited and partially addressed, as
discussed in Section 5.

3. Change Inspection: Even tools designed to cope
with visualization issues cannot present extensive
list of changes in a comprehensive way.

4. Extensibility: Some tools tackle specific prob-
lems, but are not extensible (KAON, OntoDiff-
Graph, CODEX, PromptDiff) since they are not
provided as plugins and their source code is not
freely available.

In addition, we also notice that tools that propagate
changes to impacted queries, dependent ontologies
or source code have not been found. Only one tool
(namely, OIM tool) proposes limited heuristics re-
lated to changes in instances.

The open problems found in the literature high-
light the need for future work in the following direc-
tions:
• Improvement of existing techniques for complex

change detection by performing, for instance, a
deeper structural analysis of relationships and at-
tributes of the ontology elements. This entails the

improvement of change presentation since com-
plex change detection includes grouping and in-
terpret related changes that can be exhibited to the
user in a compact way;

• Creation of a broader set of transformation
rules to migrate instances considering the list of
changes presented in this paper;

• Development of tools to propagate changes to
other related artifacts (and not only ontology in-
stances), such as documentation, related code and
queries;

• Development of extensible tools that address both
the difference detection task and the propagation
of changes to related artifacts;

• The integration of existing approaches can also be
investigated aiming at building a tool that covers
different tasks of ontology evolution management
or ontology life cycle.

Our lines for further research include: (i) to extend
this work by conducting experiments with ontologies
used in real world scenarios and conducting a study
about other evaluation criteria that would be relevant
for ontology evolution; (ii) to create a unified list (tax-
onomy) of complex changes found in the literature,
and relating them by hierarchical relationships when
it is possible. In addition, in that sense we want to
analyze the kinds of complex changes that can be for-
malized and the ones that depend on human interpre-
tation; and (iii) development of a tool focused on de-
tecting complex changes, returning to the user high
level messages about the ontology evolution instead
of a long list of simple/elementary changes.

ACKNOWLEDGEMENT

This project was executed under the Brazilian Na-
tional Petroleum Agency (ANP) R&D incentive reg-
ulatory framework.

REFERENCES
Abcckcr, A. and Stojanovic, L. (2005). Ontology evolution:

Medline case study. In Wirtschaftsinformatik 2005,
pages 1291–1308. Springer.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific american, 284(5):34–43.

Borst, W. N. and Borst, W. (1997). Construction of engi-
neering ontologies for knowledge sharing and reuse.

Davidovsky, M., Ermolayev, V., and Tolok, V. (2011). In-
stance migration between ontologies having structural
differences. International Journal on Artificial Intel-
ligence Tools, 20(06):1127–1156.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

120



Fensel, D. (2001). Ontologies: Dynamic networks of for-
mally represented meaning. Vrije University: Amster-
dam.

Gabel, T., Sure, Y., and Voelker, J. (2004). D3. 1.1. a:
Kaon–ontology management infrastructure. SEKT in-
formal deliverable.

Gonçalves, J. R. (2014). Impact analysis in descrip-
tion logic ontologies. PhD thesis, The University of
Manchester (United Kingdom).

Gruber, T. R. (1993). A translation approach to portable
ontology specifications. Knowledge acquisition,
5(2):199–220.

Hartung, M., Groß, A., and Rahm, E. (2010). Rule-based
generation of diff evolution mappings between ontol-
ogy versions. arXiv preprint arXiv:1010.0122.

Hartung, M., Gross, A., and Rahm, E. (2012). Codex: ex-
ploration of semantic changes between ontology ver-
sions. Bioinformatics, 28(6):895–896.

Klein, M. C. and Fensel, D. (2001). Ontology versioning
on the semantic web. In SWWS, pages 75–91.

Klein, M. C. A. (2004). Change management for distributed
ontologies. PhD thesis, Vrije Universiteit Amsterdam.

Kremen, P., Smid, M., and Kouba, Z. (2011). Owldiff:
A practical tool for comparison and merge of owl
ontologies. In 2011 22nd International Workshop
on Database and Expert Systems Applications, pages
229–233. IEEE.

Lambrix, P., Dragisic, Z., Ivanova, V., and Anslow, C.
(2016). Visualization for ontology evolution. In
2nd International Workshop on Visualization and In-
teraction for Ontologies and Linked Data, Kobe,
Japan, October 17, 2016, pages 54–67. Rheinisch-
Westfaelische Technische Hochschule Aachen Uni-
versity.

Lara, A., Henriques, P. R., and Gançarski, A. L. (2017).
Visualization of ontology evolution using ontodiff-
graph. In 6th Symposium on Languages, Applications
and Technologies (SLATE 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Lohmann, S., Negru, S., Haag, F., and Ertl, T. (2016).
Visualizing ontologies with vowl. Semantic Web,
7(4):399–419.

Maedche, A. and Staab, S. (2001). Ontology learning for
the semantic web. IEEE Intelligent systems, 16(2):72–
79.

Noy, N. F. and Klein, M. (2003). Tracking complex changes
during ontology evolution. ISWC-2003 Poster Pro-
ceedings, Sanibel Island, Florida.

Noy, N. F., Musen, M. A., et al. (2002). PromptDiff:
A fixed-point algorithm for comparing ontology ver-
sions. AAAI/IAAI, 2002:744–750.

Redmond, T. and Noy, N. (2011). Computing the changes
between ontologies. In Joint Workshop on Knowledge
Evolution and Ontology Dynamics, pages 1–14.

Stojanovic, L. (2004). Methods and tools for ontology evo-
lution.

Stojanovic, L., Maedche, A., Motik, B., and Stojanovic,
N. (2002). User-driven ontology evolution manage-
ment. In International Conference on Knowledge En-
gineering and Knowledge Management, pages 285–
300. Springer.

Studer, R., Benjamins, V. R., Fensel, D., et al. (1998).
Knowledge engineering: principles and methods.
Data and knowledge engineering, 25(1):161–198.

Tudorache, T., Nyulas, C., Noy, N. F., and Musen, M. A.
(2013). Webprotégé: A collaborative ontology editor
and knowledge acquisition tool for the web. Semantic
web, 4(1):89–99.

Uschold, M. and Gruninger, M. (1996). Ontologies: Princi-
ples, methods and applications. The knowledge engi-
neering review, 11(2):93–136.

Wang, X., Zhang, D., Gu, T., Pung, H. K., et al. (2004).
Ontology based context modeling and reasoning us-
ing owl. In Percom workshops, volume 18, page 22.
Citeseer.

Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondy-
lakis, H., Motta, E., Plexousakis, D., and Sabou, M.
(2015). Ontology evolution: a process-centric survey.
The knowledge engineering review, 30(1):45–75.

An Experimental Analysis of Tools for Ontology Evolution Management

121


