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Abstract: Conformance Checking is a problem to detect and describe the differences between a given process model 
representing the expected behaviour of a business process and an event log recording its actual execution by 
the Process-aware Information System (PAIS). However, such existing conformance checking techniques are 
offline and mainly applied for the completely executed process instances, which cannot provide the real-time 
conformance-oriented process monitoring for an on-going process instance. Therefore, in this paper, we 
propose three approaches for online conformance prediction by constructing a classification model 
automatically based on the historical event log and the existing reference process model. By utilizing 
Recurrent Neural Networks, these approaches can capture the features that have a decisive effect on the 
conformance for an executed case to build a prediction model and then use this model to predict the 
conformance of a running case. The experimental results on two real datasets show that our approaches 
outperform the state-of-the-art ones in terms of prediction accuracy and time performance. 

1 INTRODUCTION 

The executed process in reality often deviates from 
the original process model that is used to set the 
expected behaviour and configure the Process-aware 
Information System (PAIS) (Aalst, 2009) due to the 
variant and dynamic environment. These PAISs 
record detailed business process execution trails and 
these records can be extracted into an event log 
consisting of sequences of events that occurred in an 
execution of a process (called process instance, case, 
or trace). Conformance checking is such a technique 
to detect whether all executions of a process recorded 
in event log is consistent with the desired behaviour 
of a reference process model and utilizes a metric to 
measure the extent of consistency. This means that 
the compliance of an execution of process can only be 
determined when it is already completed. In other 
words, this technique is offline and delayed to 
determine whether an execution of a process is in line 
with its process model. However, the originators of 
process tend to know if the process deviates when it 
is running instead of a few days later or even longer 
(Burattin and Carmona, 2017). The reason is that such 

analysis after the execution of process, in some 
contexts, is too late. For example, in terms of a 
patient-treatment process, the conformance detection 
is too late to make sense with considering the case 
where an execution of the process is the treatment of 
a patient during her/his life and the model is the given 
clinical guidelines to follow for a disease (Burattin et 
al., 2018; Zelst et al., 2019). Therefore, it is necessary 
to detect the deviation of a running process instance 
(i.e. an on-going process instance or an on-going case) 
without delay so as to take actions in advance. In this 
paper, for the purpose of process improvement, we 
focus on the problem of online predicting 
conformance of a running process instance in real-
time.  

Up to now, only a few approaches for online 
conformance checking have been proposed. Almost 
all of them focus on the completed event stream 
occurred in on-line stage as well as the reference 
process model and then study their relation from 
some perspectives such as the behavioural patterns, 
prefix alignment and so on (Burattin et al., 2018; Zelst 
et al., 2019). However, whether or not an on-going 
process instance is in line with the desired 
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behavioural of a reference process model should be 
determined not only by the event stream, but also by 
a set of attributes involved in these occurred events. 
Similarly, the predictive (business) process 
monitoring (PPM) techniques that aim at making 
predictions about the future state of an on-going 
process instance has been paid much more attention 
in recent years such as the prediction of remaining 
execution time (Tax et al., 2017), the next activity to 
be executed (Mehdiyev et al., 2017), and the final 
outcome (Maggi et al., 2014; Teinemaa et al., 2019).  

Inspired by PPM techniques, in this paper, we 
propose an approach to predict the conformance of an 
on-going case based on deep learning. This approach 
involves two stages, one is offline stage where we 
research on the relation between the historical 
completed process instances (cases) in event log and 
their conformance computed by applying an 
alignment-based method and then construct a 
classification model, and the other is online stage 
where we make prediction for a running case by using 
this model. In this case, we explore some 
corresponding variants of Recurrent Neural Networks 
(RNN) for constructing an effective and efficient 
classification model. The reason is that each case 
(trace) in event log is a sequence of events with 
ordered and these RNN variants are proved to have a 
distinct advantage in sequential data prediction tasks 
such as semantic relation classification (Tang et al., 
2015; Zhang et al., 2018), text classification (Liu et 
al., 2016) and so on. In summary, the major 
contributions of this paper are as follows. 
 We introduce the calculation of trace fitness for 

measuring the conformance and take into 
consideration the relationship between the 
historical completed process instances with 
recorded various attributes and their 
conformances. 

 We propose RNN-based approaches called Base-
RNN, LSTM RNN and GRU RNN for 
constructing a classification based on the event 
log and the reference process model. 

 We conduct a series of experiments and compare 
with other approaches to verify the effectiveness 
and efficiency of our approaches. 
The rest of paper is structured as follows. After 

discussing the related work in Section 2, Section 3 
introduces some basic definitions and describes the 
problem we try to resolve. Then Section 4 presents 
the solutions in detail. Afterwards, Section 5 
demonstrates the effectiveness and efficiency of our 
approach based on the experiments. Finally, Section 
6 concludes the paper and discusses the future work.  

 

2 RELATED WORK 

In terms of a business process, once given a reference 
process model and the corresponding executed event 
log, researchers addressing conformance checking 
need to adopt or design an algorithm to compare 
them. Based on the proposal from (Aalst et al., 2012), 
the related researches are mainly focused on two 
general approaches that are log replay algorithms and 
trace alignment algorithms. Log replay is to replay 
every trace, event by event, against the reference 
process model and then use distinct computing 
techniques to determine a conformance metric, such 
as the token-based log replay proposed in (Rozinat 
and Aalst, 2008). As for trace alignment, both the 
input event log and the process model are transformed 
into event structures firstly and then they are aligned 
as far as possible by moving elements in them such as 
A* algorithm (Adriansyah et al., 2011), cost function 
algorithm (Leoni, M. and Marrella, A., 2017),  
heuristic algorithm (Song et al., 2017).  

Besides, no matter which approach is used for 
conformance checking, the metric of conformance 
should be determined first. There are four quality 
metrics can be used such as fitness, simplicity, 
precision, and generalization (Aalst et al., 2012). 
Among them, the most similar to the conformance is 
fitness metric, which represents the ratio of traces in 
an event log that can be replayed successfully against 
the reference process model. Hence, it is often used 
such as the token-based fitness (Rozinat and Aalst, 
2008) and the cost-based fitness (Adriansyah et al., 
2011; Aalst et al., 2012). 

The most related to our work are some proposals 
about online conformance checking. For example, 
Burattin implemented an algorithm that can 
dynamically quantify the deviation behavior 
(Burattin, 2017) and then proposed a framework for 
online conformance checking by converting a Petri 
net into a transition system in (Burattin and Carmona, 
2017). Then they presented another generic 
framework to determine the corresponding 
conformance by representing the underlying process 
as behavioural patterns and checking whether the 
expected behavioural patterns are either observed or 
violated (Burattin et al., 2018). Besides, Zelst et al. 
proposed an online, event stream-based conformance 
checking technique based on the use of prefix-
alignments (Zelst et al., 2019). Different from them, 
the proposed framework in this paper aims at 
predicting the conformance online based on the 
historical event log and a reference model in terms of 
an underlying process.  
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3 PRELIMINARIES AND 
PROBLEM STATEMENT 

3.1 Definitions 

In terms of a business process, the conformance of an 
on-going case can be predicted based on an event log 
and a reference process model. The event log records 
a set of executed process instances (cases), and each 
case consists of some event records where each one 
of them has some attributes. These attributes can be 
divided into event attributes and case attributes based 
on the attribute value is owned by an event or shared 
by a case. In addition, a reference process model can 
be represented as a Petri net regardless of the 
modelling language (i.e., Petri nets, UML, BPMN, 
EPCs, etc.). In this paper, we use basic transition 
system to represent a reference process model with 
ignoring the difference of modelling languages.  

Definition 3.1 (Process Model). A process model 
represented as ܯ ൌ ሺܵ, ܵ௦௧௧, ܵௗ, ,ெܣ ܶሻ  is a 
transition system over a set of activities ܣெ  with 
states ܵ , start state ܵ௦௧௧ ⊆ ܵ , end state ܵௗ ⊆ ܵ , 
and transitions ܶ ⊆ ܵ ൈ ெܣ ൈ ܵ.  

According to the transition rules in ܶ , the 
transition system can start from a start state in ܵ௦௧௧ 
and moves from one state to another. For instance, 
ሺ ଵܵ, ܽ, ܵଶሻ ∈ ܶ indicates that the transition system can 
move from state ଵܵ  to state ܵଶ  while producing an 
event labelled ܽ. Keep repeating this operation until 
an end state in ܵௗ can be reached. 

Definition 3.2 (Executable Behaviour). All 
executable traces (i.e. executable behaviour) 
described in process model ܯ can be represented as 
࣮ሺܯሻ ⊆ ெܣ

∗ , in which all possible traces start with a 
state in ܵ௦௧௧ and end with a state in ܵௗ. 

For example, given a process model ܯ ൌ
ሺሼݏଵ, ,ଶݏ ,ଷݏ ,ସሽݏ ሼݏଵሽ, ሼݏସሽ, ሼܽଵ, ܽଶ, ܽଷ, ܽସ, ܽହሽ, ሼሺݏଵ, ܽଵ,  ,ଶሻݏ
ሺݏଶ, ܽଶ, ,ଷሻݏ ሺݏଶ, ܽଷ, ,ଷሻݏ ሺݏଷ, ܽସ, ,ଶሻݏ ሺݏଷ, ܽହ, ସሻሽሻݏ , we 
get corresponding executable behaviour (traces) 
࣮ሺܯሻ ൌ ሼܽଵܽଷܽହ, ܽଵܽଶܽହ, ܽଵܽଷܽସܽହ, ܽଵܽଶܽସܽହ,… ሽ.  

Definition 3.3 (Event, Event log). An event, 
defined as a tuple ݁ ൌ ሺܽ, ܿ, ,௦௧௧ݐ ,ௗݐ ݀ଵ, … , ݀ሻ, 
is related to an activity ܽ in ܣ (all activities occurred 
in event log), in which ܿ is the case id which the event 
occurred in, ݐ௦௧௧ is the start timestamp,  ݐௗ is the 
end timestamp, and ݀ଵ, … , ݀ ( ∀݅߳ሾ1,݉ሿ, ݀߳ࣞ ) 
indicates a set of additional attributes. All executed 
events are recorded as event log ܮ. 

Definition 3.4 (Trace, Prefix Trace). A trace, 
denoted as ߪ ൌ൏ ݁ଵ, ݁ଶ, … , ݁|ఙ| , is a sequence of 
events that occurred in a process instance (case) 
orderly where ∀݅, ݆߳ሾ1, ,ሿ|ߪ| ݁. ,ܣ߳ܽ ݁. ,ܣ߳ܽ ݁. ܿ ൌ

݁. ܿ. Given a trace ߪ, a prefix trace is a first part of ߪ 
with specific length  ݈ሺ݈  ሻ|ߪ| , which can be 
described as ߪ ൌ൏ ݁ଵ, ݁ଶ, … , ݁   representing the 
first ݈ executed events in this process instance.  

Definition 3.5 (Alignment). An alignment 
between process model and trace is defined as a pair 
ሺݔ, ሻݕ ∈ ܣ

ି ൈ ெܣ
ି  where ܣ

ି ൌ ܣ ∪ ሼെሽ indicates a 
set of possible activities in event log as well as the 
placeholder “െ” and	ܣெ

ି ൌ ெܣ ∪ ሼെሽ indicates a set 
of possible activities in process model as well as the 
placeholder “െ”, such that: 
 ሺݔ, ݔ ሻ is a move in trace ifݕ ∈ ݕ  andܣ ൌ െ, 
 ሺݔ, ݔ ሻ is a move in model ifݕ ൌ െ and ݕ ∈  ,ெܣ
 ሺݔ, ݔ ሻ is a move in both ifݕ ∈ ݕ  andܣ ∈  ,ெܣ
 ሺݔ, ݔ ሻ is all illegal move ifݕ ൌ െ and ݕ ൌ െ. 

Let ߪ ∈ ெߪ be a trace of an event log and let ܮ ∈
	࣮ሺܯሻ be a completed execution trace of model, we 
can get an alignment of them that is a sequence ߢ ∈
ሼሺݔ, ݔ|∗ሻݕ ∈ ܣ

ି, ݕ ∈ ெܣ
ି ሽ  where each element is a 

legal move mentioned above. For example, there are 
two examples of alignment. 

 

ଵߢ ൌ
ܽଵ ܽଶ ܽଷ ܽସ ܽହ ܽସ
ܽଵ ܽଶ ܽଷ ܽସ ܽହ ܽସ

 
 

ଶߢ ൌ
ܽଵ ܽଶ ܽଷ ܽସ ܽହ െ
ܽଵ െ ܽଷ ܽସ ܽହ ܽ

 
 

Here, we define a cost function on legal moves to 
measure the alignment: ሻߢሺߜ	 ൌ ∑ ,ݔሺߜ ሻሺ௫,௬ሻ∈ݕ , 
where 

 

,ݔሺߜ ሻݕ ൌ ቐ
0, ݂݅ ݔ ൌ 																						ݕ
1, ݂݅ ݔ ൌ െ			ݎ	ݕ ൌ െ
∞, ݂݅ ݔ ് 																						.ݕ

 (1)

 

Moreover, we define an optimal alignment	ߢ for a 
trace in event log and a reference process model: 
ᇱߢ∀ ∈ ࣥఙಽ,࣮ሺெሻ, ߢሺߜ

ᇱሻ  ሻߢሺߜ  where ࣥఙಽ,࣮ሺெሻ ൌ
ሼߪ∃|ߢெ ∈ ࣮ሺܯሻ, ெሽߪ	݀݊ܽ	ߪ	݂	ݐ݈݊݁݉݊݃݅ܽ	݊ܽ	ݏ݅	ߢ .  
To relate executable traces in the reference model for 
matching full execution sequence, we define a 
mapping of a trace ߪ ∈ ܮ  and the best matching 
executable trace in the model as ߨெሺߪሻ ൌ ሼߢ ∈
ࣥఙಽ,࣮ሺெሻ|∀ߢ

ᇱ ∈ ࣥఙಽ,࣮ሺெሻ, ߢሺߜ
ᇱሻ   ሻሽ and its costߢሺߜ

as ܿݐݏሺߪ,ܯሻ ൌ  .ሻሻߪெሺߨሺߜ
Definition 3.6 (Fitness). A trace in event log with 

good fitness means that it has a best matching full 
executable trace in the model. To normalize the 
fitness as a number between 0 (very poor fitness) and 
1 (prefect fitness), we define as: 

 

ሻܯ,ߪሺݏݏ݁݊ݐ݂݅ ൌ 

1 െ
ሻܯ,ߪሺݐݏܿ

|ߪ|  ݉݅݊ఙಾ∈࣮ሺெሻ ∑ ,ሺെߜ ሻ௬∈ఙಾݕ
 

(2)
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where ܿݐݏሺߪ,ܯሻ divided by the maximum possible 
cost, |ߪ|	  is the length of trace ߪ ,  and 
݉݅݊ఙಾ∈࣮ሺெሻ ∑ ,ሺെߜ ሻ௬∈ఙಾݕ  is the total cost of 
making moves on model only. 

Definition 3.7 (Conformance Labelling). A 
single conformance class label ܻሺߪሻ with domain of 
{0,1} is assigned to trace ߪ in event log for binary 
classification based on the predefined threshold of 
fitness ߦ such that: 

 

ܻሺߪሻ ൌ ቄ0			݂݅	݂݅ݏݏ݁݊ݐሺߪ,ܯሻ ൏ 	ߦ
																						݁ݏ݅ݓݎ݄݁ݐ			1

 (3)
 

where 1 denotes that the conformance of this case is 
consistent with the reference model and 0 is the 
opposite. 

Definition 3.8 (Event Encoding). An event 
encoding is defined as a function ݂: ݁ → Թ  that 
encodes each event ݁  as a vector with specific 
dimensions  based on the all the attributes of this 
event. 

Definition 3.9 (Classification Model). A 
classification model, i.e., a prediction model, defined 
as ܻ: ߪ → ሼ0,1ሽሺߪ߳ܮ, ,ߪ߳݁∀ ݁ → Թሻ  which 
indicates the conformance prediction (class label) of 
a (prefix) trace based on the encoded vectors of events. 

3.2 Problem Definition 

In this paper, the problem to be solved is to predict 
the conformance (class label) of an on-going case. 
The main solution aims at training a classification 
model (i.e., classifier or prediction model) from a 
historical event log. In this log, the conformance 

(class label) of each completed case can be 
determined firstly. On the basis of this classification 
model, we then predict the conformance class label of 
a running case. This problem can be formally 
described as follows. 

Input: an event log ܮ ൌ ሼߪଵ, ,ଶߪ … , ௦ሽߪ  of ݉ 
completed process instances, a reference process 
model ܯ, and a running case to be predicted ߪᇱ ൌ൏
݁ଵ, ݁ଶ, … , ݁|	ఙᇲ| ; 

Middle Operation: calculating the fitness of each 
trace in ܮ , conformance labelling based on the 
threshold of fitness ߦ, training a classification model 
 ;ܥ

Output: the conformance (class label) prediction 
of ߪᇱ. 

As shown in Figure 1, some historical executed 
cases ߪଵ, ,ଶߪ … , ௦ߪ  in event log can be labelled 
conformance class (regular vs. deviant) based on the 
computed fitness and the predefined threshold firstly. 
Then a classification model can be trained from these 
labelled cases by using neural networks. Finally, 
taking a running case ߪᇱ as input of this classifier, the 
conformance (class) prediction of ߪᇱ  can be 
determined based on the executed events occurring in 
 .ᇱߪ

4 RNN-BASED ONLINE 
CONFORMANCE PREDICTION 

To address the conformance prediction problem of a 
running case, we focus on constructing a classification 

2

s

1

 
 

Figure 1: The overall framework of online conformance prediction.
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model to reflect the relation between the executed 
cases in event log and its conformance based on deep 
learning techniques. As mentioned above, each 
completed case (trace) in event log is a sequence of 
events orderly and RNN is proven to be effective in 
the prediction task of sequential data. Compared with 
the general neural networks, RNN has different states 
at different time ݐ (i.e., the ݐ-th input event of a trace) 
and the output of hidden layer at time ݐ െ 1 (i.e., the 
ሺݐ െ 1ሻ-th input event of a trace) can have an effect on 
the hidden layer at time ݐ . However, RNN cannot 
apply the information far away from the current 
moment ݐ to the hidden layer at this moment because 
it lacks memory units. Some variants of RNN, such 
as Long Short-Term Memory (LSTM) RNN and 
Gates Recurrent Unit (GRU) RNN, can improve the 
shortcomings of base-RNN based on the additional 
gate units in their neural cells. By training, these gate 
units can choose not only the useful information to 
memorize but also the useless information to forget 
automatically.  

Therefore, we present RNN-based approaches, 
called Base-RNN, LSTM RNN, and GRU RNN, to 
construct a prediction model for conformance 
prediction online by capturing the features that have 
a decisive effect on the conformance for a case. 
Similarly, we also present the multi-layer RNN-based 
approaches to construct a classification model for 
capturing more decisive features from a case. In this 
section, we will describe how to construct a 
prediction model based on the above approaches. At 
first, a vectorization representation of each event in a 
case is obtained by encoding its attributes in different 
ways according to the types of attribute values. Then, 
these RNN-based approaches are used to extract key 
features from events according to the fact that the 
conformance of a case is determined by the occurred 
events as well as their attributes. Finally, in terms of 
an on-going case, the probability of conformance 

class label is calculated based on the extracted feature 
vectors. As shown in Figure 2, the architectures of 
single RNN-based approaches (i.e., Base-RNN, 
LSTM RNN, and GRU RNN) and multi-layer RNN-
based approaches consist of 4 layers such as Input 
Layer, Encoding Layer, RNN/LSTM/GRU Layer, 
and Output Layer. 

Input Layer. Given an event log ܮ ൌ
ሼߪଵ, ,ଶߪ … ,  cases (traces), the ݅-th trace is ݏ ௦ሽ withߪ
represented as ߪ௧ ൌ൏ ݁௧ଵ, ݁௧ଶ, … , ݁௧  ሺ݊ ൌ ௧|ሻߪ| , 
in which ݁௧ሺ1  ݅  ݊ሻ is the ݅-th event in trace ߪ௧. 
Taking this trace as input of RNN can be viewed as 
training the classification model once. 

Encoding Layer. In order to obtain the input 
vector, all attributes of each event in trace ߪ௧ can be 
encoded based on the type of attribute value. If the 
value type is categorical, the attribute value can be 
encoded with one-hot method. If the type is numerical, 
we can normalize the attribute value according to the 
range of all possible values for this attribute in event 
log. In this way, we can get the vector of each event 
for all traces with p-dimension length, expressed as 
Ԧ௧ൌݔ ሾݔ௧,ଵ, ,௧,ଶݔ … , ௧,ሿሺ1ݔ  ݅  ݊ሻ. 

Feature Extraction Layer (RNN/LSTM/GRU 
Layer) is also called hidden layer. In terms of trace 
 ௧, the input of this layer is a sequence of encodedߪ
event vectors ݔԦ௧ଵ,ݔԦ௧ଶ, …  Ԧ௧. As for each cell in thisݔ,
layer, we can obtain two outputs of ݄௧ሺ1  ݅  ݊ሻ 
and ௧ሺ1  ݅  ݊ሻ  as well as some trainable 
parameters by these equations as follows. 

 

݄௧, ௧ ൌ ܴܰܰሺ݄௧,ିଵ, ,Ԧ௧ሻݔ ݅ ∈ ሾ1, ݊ሿ (4a)
݄௧, ௧ ൌ ,ሺ݄௧,ିଵܯܶܵܮ ,Ԧ௧ሻݔ ݅ ∈ ሾ1, ݊ሿ (4b)

݄௧, ௧ ൌ ,ሺ݄௧,ିଵܷܴܩ ,Ԧ௧ሻݔ ݅ ∈ ሾ1, ݊ሿ (4c)
 

Please note that how to get these outputs has 
significant difference in different neural networks 
that we proposed. And the detailed difference will be 
given below.  

1tx


2tx


3tx


tnx


t̂Y

:t

1tx


2tx


3tx


tnx


t̂Y

:t

(1)
1th (1)

2th (1)
3th (1)

tnh

(2)
1th (2)

2th (2)
3th (2)

tnh

 

Figure 2: The architecture of our approaches: (a) Single-layer Base-RNN/LSTM RNN/GRU RNN (b) Multi-layer Base-
RNN/LSTM RNN/GRU RNN.
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Output Layer. The input of this layer is the 
obtained ௧ ൌ ሾ௧ଵ, ,௧ଶ … ,  ௧ሿ from the last layer. It
can be used to estimate the conformance class (label) 
of trace ߪ௧  by using ܵ݅݃݉݀݅  activation function. 
The final estimated probability ܻ௧ of the conformance 
class (label) with 1 for trace ߪ௧ can be calculated as 
follows: 

 

ܻ௧ ൌ ሺ݀݅݉݃݅ܵ ܹ௧  ܾሻ (5)
 

where ܹ  and ܾ  are the trainable parameters of 
weight matrix and bias in this layer. 

After that, we use a binary cross-entropy loss 
function to measure the loss between the actual 
conformance class ௧ܻ and the estimated probability ܻ௧ 
from neural networks for trace ߪ௧ as follows. 

 

൫ݏݏ݈ ௧ܻ, ܻ௧൯ ൌ 
െሺ ௧ܻ݈݃ ܻ௧  ሺ1 െ ௧ܻሻlog	ሺ1 െ ܻ௧ሻሻ 

(6)
 

Similarly, we obtain the sum of loss for each trace 
in event log ܮ ൌ ሼߪଵ, …,ଶߪ ,  .௦ሽ by the below equationߪ

 

ሻܮሺݏݏܮ ൌ ∑ ൫ݏݏ݈ ܻ, ܻ൯ఙ∈   (7)
 

Here, in order to train the classification model by 
neural networks, some optimized gradient descent 
algorithms such as RMSProp (Root Mean Square 
Prop) and Adam (Adaptive Moment Estimation) can 
be applied to train the above parameters and 
constantly adjust their values until a distinct set of 
parameters are determined with the minimum 
ሻܮሺݏݏܮ . Finally, we can obtain a classification 
model of conformance prediction that is a neural 
network with determined a set of parameters. 

The detailed differences of Feature Extraction 
Layer in our proposed approaches are described as 
follows. 

Base-RNN Approach. We propose an approach 
called Base-RNN to construct a classification model 
by using the original RNN network. As shown in 
Figure 2, the architecture of (Single-layer/Multi-
layer) Base-RNN approach has 4 layers and the 
Feature Extraction Layer is determined as RNN Layer. 
The cell unit in this layer is shown in Figure 3. 

Single-layer Base-RNN is the simplest case of 
Base-RNN approach with the only one hidden layer 
in RNN Layer. As for Equation (4a), the final both 
outputs of RNN Layer are calculated in detail by: 

 

݄௧ ൌ ሺ݄݊ܽݐ ܹൣ݄௧,ିଵ, Ԧ௧൧ݔ  ܾሻ (8a)

௧ ൌ ሺݔܽ݉ݐ݂ݏ ܹ݄௧  ܾሻ (8b)
 

where ݄௧,ିଵ is the output of RNN Layer of the last 
event ݁௧,ିଵ, ݔԦ௧ is the encoded vector of the current 
event ݁௧, and ܹ, ܾ are the trainable parameters of 
weight matrix and bias. As shown in Equation (8a), 

the extracted hidden vector ݄௧,ିଵ from the last event 
݁௧,ିଵ  can have an effect on the current event. 
Meanwhile, based on the current inputted event, the 
new hidden vector ݄௧  can be calculated by using 
 activation function and applied to the feature ݄݊ܽݐ
vector extraction of the next event. Equation (8b) 
shows another output ௧  of this cell by ݔܽ݉ݐ݂ݏ 
activation function, in which ܹ  and ܾ  are another 
set of weight matrix and bias. 

Multi-layer Base-RNN is another complex case 
of our proposed Base-RNN approach, which has 
multiple hidden layers in RNN Layer (as shown in 
Figure 2(b)). Considering an RNN Layer with ݇ 
hidden layers in Figure 4, the new extracted feature 

vectors ݄௧
ሺଵሻ, ݄௧

ሺଶሻ, … , ݄௧
ሺሻ  for each hidden layer and 

the final output ௧ can be calculated by: 
 

݄௧
ሺଵሻ ൌ ሺ݄݊ܽݐ ܹ

ሺଵሻൣ݄௧,ିଵ
ሺଵሻ , Ԧ௧൧ݔ  ܾ

ሺଵሻሻ  (9a)

௧
ሺଵሻ ൌ ሺݔܽ݉ݐ݂ݏ ܹ

ሺଵሻ݄௧
ሺଵሻ  ܾ

ሺଵሻሻ  (9b)

݄௧
ሺଶሻ ൌ ሺ݄݊ܽݐ ܹ

ሺଶሻൣ݄௧,ିଵ
ሺଵሻ , ௧

ሺଵሻ൧  ܾ
ሺଶሻሻ (9c)

௧
ሺଶሻ ൌ ሺݔܽ݉ݐ݂ݏ ܹ

ሺଶሻ݄௧
ሺଶሻ  ܾ

ሺଶሻሻ  (9d)

…… …… 

݄௧
ሺሻ ൌ ሺ݄݊ܽݐ ܹ

ሺሻൣ݄௧,ିଵ
ሺିଵሻ, ௧

ሺିଵሻ൧  ܾ
ሺሻሻ (9e)

௧௧ሺ
ሺሻሻ ൌ ሺݔܽ݉ݐ݂ݏ ܹ

ሺሻ݄௧
ሺሻ  ܾ

ሺሻሻ (9f)
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Figure 3: The structure of general RNN cell. 
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Figure 4: The structure of RNN cell in Multi-layer Base-
RNN. 
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Figure 5: The structure of LSTM cell. 

Long Short-Term Memory (LSTM) RNN 
approach. We propose an approach called LSTM 
RNN to construct a classification model by using 
LSTM network. Compared with Base-RNN 
approach, the difference is that LSTM RNN approach 
utilizes LSTM Layer in Feature Extraction Layer. 
The cell unit in this layer is shown in Figure 5.  

Single-layer LSTM RNN is the simplest case of 
LSTM RNN approach with the only one hidden layer 
in LSTM Layer (as shown in Figure 2(a)). Compared 
with the cell in RNN Layer, the difference is that the 
LSTM cell has three gates to control the context 
information, one is the input gate  ݅݊ݐݑ௧ 
determining how much information can flow into this 
cell, the second is the forget gate ݂ݐ݁݃ݎ௧ 
determining how much information is forgotten, and 
the last is the output gate ݐݑݐݑ௧ determining how 
much information can be outputted from this cell. As 
for Equation (4b), the final both outputs of LSTM 
Layer are calculated in detail by: 

 

௧ݐ݁݃ݎ݂ ൌ ଵሺܨ ܹ ∙ ൣ݄௧,ିଵ, Ԧ௧൧ݔ  ܾሻ (10a)

௧ݐݑ݊݅ ൌ ଵሺܨ ܹ ∙ ൣ݄௧,ିଵ, Ԧ௧൧ݔ  ܹሻ (10b)

݃௧ ൌ ଶሺܨ ܹ ∙ ൣ݄௧,ିଵ, Ԧ௧൧ݔ  ܾሻ (10c)

ܿ௧ ൌ ௧ݐ݁݃ݎ݂ ∗ ܿ௧,ିଵ  ௧ݐݑ݊݅ ∗ ݃௧ (10d)

௧ݐݑݐݑ ൌ ଵሺܨ ܹ ∙ ൣ݄௧,ିଵ, Ԧ௧൧ݔ  ܾሻ (10e)

,௧ ݄௧ ൌ ௧ݐݑݐݑ ∗ ଶሺܿ௧ሻ (10f)ܨ
 

where ܨଵ  denotes ܵ݅݃݉݀݅  activation function, ܨଶ 
denotes ݄݊ܽݐ  activation function, and all of ܹ  as 
well as ܾ  are the trainable parameters. At first, 
Equation (10a) determines the information to forget 
from the inputs of  ݄௧,ିଵ and ݔԦ௧  by the forget gate 
௧ݐ݁݃ݎ݂ . Then, Equations (10a), (10b) and (10c) 
determine the information to be memorized, in which 
ܿ௧  denotes the new updated state, ݂ݐ݁݃ݎ௧ ∗ ܿ௧,ିଵ 
denotes the information to forget from the last cell, 
and ݅݊ݐݑ௧ ∗ ݃௧  denotes the information to put in 
this cell. Finally, we obtain the output to the next layer 
 ௧ and the output to the next cell ݄௧ by the output
gate ݐݑݐݑ௧ as shown in Equation (10f). 

Multi-layer LSTM RNN is another complex 
case of LSTM RNN approach, which has multiple 
hidden layers in LSTM Layer (as shown in Figure 
2(b)). Considering a LSTM Layer with ݇  hidden 
layers in Figure 6, the new extracted feature vectors 

݄௧
ሺଵሻ, ݄௧

ሺଶሻ, … , ݄௧
ሺሻ for each hidden layer and the final 

output ௧ can be calculated by: 
 

௧
ሺଵሻ, ݄௧

ሺଵሻ ൌ ൫݄௧,ିଵܯܶܵܮ
ሺଵሻ , Ԧ௧൯ (11a)ݔ

௧
ሺଶሻ, ݄௧

ሺଶሻ ൌ ሺ݄௧,ିଵܯܶܵܮ
ሺଶሻ , ௧

ሺଵሻሻ (11b)

…… …… 

௧௧൫
ሺሻ൯, ݄௧

ሺሻ ൌ ሺ݄௧,ିଵܯܶܵܮ
ሺሻ , ௧

ሺିଵሻሻ (11c)
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Figure 6: The structure of LSTM cell in Multi-layer LSTM 
RNN. 
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Figure 7: The structure of GRU cell. 

Gates Recurrent Unit (GRU) RNN Approach. 
We propose an approach called GRU RNN to 
construct a classification model by using GRU 
network. Compared with RNN LSTM approach, the 
difference is that GRU RNN approach utilizes GRU 
Layer in Feature Extraction Layer and reduces the 
gating signals to two gates. The cell unit in this layer 
is shown in Figure 7. 

Single-layer GRU RNN is the simplest case of 
GRU RNN approach with the only one hidden layer in 
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GRU Layer (as shown in Figure 2(a)). Compared with 
RNN cell, GRU can make each recurrent cell to 
adaptively capture dependencies of different event 
lengths. Similar to the LSTM cell, GRU cell has two 
gates to control the context information, one is the reset 
gate ݎ௧  that determines how much information from 
the previous cell can be viewed as a part of 
candidate݄௧

ᇱ , and the other is the update gate ݑ௧ 
controlling the degree to which information from the 
previous cell flows into the current cell. The higher the 
value of ݑ௧ is, the more the previous cell information 
is brought in. As for Equation (4c), the final both 
outputs of GRU Layer are calculated in detail by: 

 

௧ݎ ൌ ଵሺܨ ܹ ∙ ൣ݄௧,ିଵ, Ԧ௧൧ݔ  ܾሻ (12a)

݄௧
ᇱ ൌ ଶሺܨ ܹ ∙ ሾݎ௧ ∗ ݄௧,ିଵ, Ԧ௧ሿݔ  ܾሻ (12b)

௧ݑ ൌ ଵሺܨ ௨ܹ ∙ ൣ݄௧,ିଵ, Ԧ௧൧ݔ  ܾ௨ሻ (12c)

,௧ ݄௧ ൌ ሺ1 െ ௧ሻݑ ∗ ݄௧
ᇱ  ௧ݑ ∗ ݄௧,ିଵ (12d)

 

where ܨଵ  denotes ܵ݅݃݉݀݅  activation function, ܨଶ 
denotes ݄݊ܽݐ  activation function, and all of ܹ  as 
well as ܾ  are the trainable parameters. At first, 
Equation (12a) determines the newly generated 
information from the inputs of  ݄௧,ିଵ and ݔԦ௧ by the 
reset gate. On the basis of this, the candidate of the 
current event, i.e. the new memories generated by the 
current event, can be determined by ݄݊ܽݐ activation 
function as shown in Equation (12b). After that, 
Equation (12c) determines the importance of the 
hidden state ݄௧,ିଵ  of the previous event ݁௧,ିଵ  by 
 ,activation function. Finally, based on them ݀݅݉݃݅ܵ
we obtain the output to the next layer ௧  and the 
output to the next cell ݄௧ as shown in Equation (12d). 
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Figure 8: The structure of GRU cell in Multi-layer GRU 
RNN. 

Multi-layer GRU RNN is another complex case 
of GRU RNN approach, which has multiple hidden 

layers in GRU Layer (as shown in Figure 2(b)). 
Considering a GRU Layer with ݇  hidden layers in 
Figure 8, the new extracted feature vectors 

݄௧
ሺଵሻ, ݄௧

ሺଶሻ, … , ݄௧
ሺሻ for each hidden layer and the final 

output ௧ can be calculated by: 
 

௧
ሺଵሻ, ݄௧

ሺଵሻ ൌ ൫݄௧,ିଵܷܴܩ
ሺଵሻ , Ԧ௧൯ (13a)ݔ

௧
ሺଶሻ, ݄௧

ሺଶሻ ൌ ሺ݄௧,ିଵܷܴܩ
ሺଶሻ , ௧

ሺଵሻሻ (13b)

…… ……  

௧௧൫
ሺሻ൯, ݄௧

ሺሻ ൌ ሺ݄௧,ିଵܷܴܩ
ሺሻ , ௧

ሺିଵሻሻ (13c)

5 EXPERIMENTS AND RESULTS 

5.1 Experimental Settings 

In this section, we evaluate the effectiveness and 
efficiency of our proposed RNN-based approaches 
(i.e., Base-RNN, LSTM RNN and GRU RNN) by 
comparing with the following approaches because 
that a recent empirical research on 165 datasets has 
shown that RF (Random Forest) and gradient boosted 
trees (XGBoost) often have a good performance than 
other classification algorithms (Olson et al., 2018). 

RF-based Approaches. Inspired by (De Leoni et 
al., 2016), we select the method of single bucket to 
make trace bucketing for building a classifier. In other 
words, all prefix traces are involved in the same 
bucket and only a single classifier is trained on the 
whole prefix log. Afterwards, we utilize two different 
methods to encoding the events of prefix traces in the 
bucket for training a classifier. One is the last state 
method where only the last state (i.e. the last event of 
the prefix trace) information is considered, the other 
is the aggregation method where all events are 
considered from the beginning of the case while 
neglecting the order of these events. Here, we 
compare two methods of RF_single_laststate and 
RF_single_agg with our proposed RNN-based 
approaches. 

XGBoost-based Approaches. Similarly, inspired 
by (Senderovich et al., 2017), we compare two 
methods of XGBoost_single_laststate and 
XGBoost_single_agg with our proposed RNN-based 
approaches. 

We apply the above seven approaches to two real 
datasets and then use prediction accuracy and time 
performance for comparison. These approaches are 
implemented in Python and all experiments run using 
the scikit-learn library on the server with 2 x 12 
Inter(R) Xeon(R) Gold 5118 CPU @2.30GHz 256GB 
memory and three NVIDIA Tesla V100 GPUs. 
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5.1.1 Datasets 

Our experimental datasets are from two event logs of 
Traffic Fines and BPIC2012 in terms of two different 
processes, which are all from the public 4TU Centre 
for Research Data (https://researchdata.4tu.nl/ 
home/). The detailed information are as follows. 

Traffic Fines. The log comes from a police 
station in Italy, which mainly contains the sending of 
tickets and payment activities, as well as some 
information related to individual cases. This log 
contains 150,370 traces, 11 distinct event classes, and 
a total of 561,470 events. 

BPIC2012. This log was originated from the 
Business Process Intelligence Challenge in 2012, 
which records the execution history of a loan 
application process in a Dutch financial institution. It 
contains 13,087 traces, 36 distinct event classes, and 
a total of 262,201 events. 

Based on these two datasets, we obtain the 
corresponding reference model expressed as Petri net 
by ProM (http://www.promtools.org) inspired by 
(García-Bañuelos, 2017). Then we calculate the 
fitness of each case based on Equation (2) and 
determine the conformance class label of them by the 
given threshold of fitness. Here, we set the fitness 
threshold as 0.8. Afterwards, in terms of these 
labelled event logs, the histograms for positive and 
negative classes are shown in Figure 9. We can find 
that the samples in these logs are imbalanced, 
especially Traffic Fines log. 

 

 
(a) (b) 

Figure 9: Case length histograms for positive and negative 
classes in event logs: (a) Traffic Fines and (b) BPIC2012. 

5.1.2 Evaluation Metrics 

A good online prediction for an on-going case should 
be accurate in early stage because such prediction 
makes sense only in real time. In this paper, we 
choose accuracy and execution time to evaluate our 
proposed approaches. 

Accuracy. We choose AUC (the area under the 
ROC curve) to measure the accuracy of prediction in 
this paper because other indicators need a predefined 
threshold of probability for (positive vs. negative) 

classes and the value of threshold greatly affects the 
calculation of accuracy. Moreover, in terms of AUC, 
the ROC curve is able to remain constant even when 
the sample distribution is not uniform. 

Execution Time. To evaluate the efficiency of 
online conformance prediction, we select two time 
metrics, one is offline time that related to the total time 
required to train a classification model, and the other 
is online time that related to the average time required 
to predict the conformance class (label) of an on-
going case. 

5.1.3 Parameter Settings 

In terms of the above labelled event logs, they are 
divided into 80% training set (cases) and 20% test set 
(cases) based on the temporal order respectively so as 
to simulate the real scenario of conformance 
prediction. Meanwhile, to better compare these 
approaches, we optimize each one by further dividing 
the training set into 80% training data and 20% 
validation data randomly. That is, the cases in training 
set are divided into two parts, the classification model 
is trained with training data, and the performance is 
evaluated with the remaining validation data so as to 
find a set of optimized hyper-parameters. Here, these 
parameters are optimized by using random search 
method and their distributions as well as value ranges 
in different approaches are shown in Table 1 inspired 
by (Teinemaa et al., 2019). Moreover, the number of 
epochs for our proposed RNN-based approaches is 
fixed to 50. Based on Table 1, we choose 16 
combinations of parameters for each approach and 
then choose one with the highest AUC in validation 
data. At last, we compare the AUC and execution 
time for these determined classification models with 
a set of hyper-parameters. 

5.2 Experimental Results 

In order to evaluate the effectiveness and efficiency of 
the above approaches, we apply them to the training set 
of each event log. In online conformance prediction, to 
simulate the on-going cases, we first extract all prefix 
traces with different length from each completed trace 
in test set of each event log. And then we calculate the 
AUC of each length of prefix traces separately as well 
as the overall AUC for each dataset under different 
approaches. Similarly, we calculate the offline training 
time and online predicting time for each dataset under 
different approaches. Table 2 shows the optimized 
hyper-parameters for each dataset under different 
approaches.
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Table 1: The hyper-parameters and distributions used in optimization via random search method. 

Approach Parameters Distribution Value

RF-based 
the number of estimators (n_estimators) Random-integer ݔ ∈ ሾ150,1000ሿ

the number of max features (max_features) Log-uniform ݔ ∈ ሾ0.01,0.9ሿ

XGBoost-based 

the number of estimators (n_estimators) Random-integer ݔ ∈ ሾ150,1000ሿ
the initial learning rate (lr) Uniform ݔ ∈ ሾ0.01,0.07ሿ

the ratio of subsampling (subsample) Uniform ݔ ∈ ሾ0.5,1ሿ
the number of max depth (max_depth) Random-integer ݔ ∈ ሾ3,9ሿ

the ratio of sampled columns (colsample) Uniform ݔ ∈ ሾ0.5,1ሿ
the minimum sum of weight in a child (min_child) Random-integer ݔ ∈ ሾ1,3ሿ

RNN-based 

the number of hidden layers (n_layer) Categorical ݔ ∈ ሼ1,2,3ሽ
the number of units in hidden layer (n_hidden) Log-uniform ݔ ∈ ሾ10,150ሿ

the initial learning rate (lr) Log-uniform ݔ ∈ ሾ0.000001,0.0001ሿ
batch size (batch) Categorical ݔ ∈ ሼ8,16,32,64ሽ

dropout Uniform ݔ ∈ ሾ0,0.3ሿ
optimizer Categorical ݔ ∈ ሼݎݏ݉ݎ, ܽ݀ܽ݉ሽ

Table 2: The optimized hyper-parameters for different approaches. 

Dataset Approach Parameter 

Traffic Fines 

 n_estimators max_features 
RF_single_agg 975 0.256 
RF_single_laststate 984 0.369 
 n_estimators lr subsample max_depth colsample min_child 
XGBoost_single_agg 306 0.0258 0.957 8 0.531 1 
XGBoost_single_laststate 404 0.0436 0.503 8 0.737 1 
 n_layer lr n_hidden batch dropout optimizer 
Base-RNN 2 8.27e-05 88 16 0.0655 adam 
LSTM RNN 3 7.30e-05 128 32 0.1432 adam 
GRU RNN 3 5.65e-05 142 32 0.0777 adam 

BPIC2012 

 n_estimators max_features 
RF_single_agg 994 0.185 
RF_single_laststate 912 0.072 
 n_estimators lr subsample max_depth colsample min_child 
XGBoost_single_agg 258 0.0628 0.807 3 0.5975 2 
XGBoost_single_laststate 642 0.0297 0.711 4 0.7317 1 
 n_layer lr  n_hidden batch dropout optimizer 
Base-RNN 3 4.26e-05 130 8 0.2497 rmsprop 
LSTM RNN 1 4.46e-05 139 32 0.2162 adam 
GRU RNN 2 9.20e-05 85 64 0.1573 rmsprop 

Table 3: The comparison of overall AUC of different 
approaches. 

Approach 
Dataset 

Mean 
Traffic Fines BPIC2012 

RF_single_agg 0.849 0.768 0.809 
RF_single_agg_1 0.842 0.767 0.805 
XGBoost_single_agg 0.842 0.784 0.813 
XGBoost_single_agg_1 0.850 0.785 0.818 
RF_single_laststate 0.848 0.697 0.773 
RF_single_laststate_1 0.846 0.698 0.772 
XGBoost_single_laststate 0.836 0.713 0.775 
XGBoost_single_laststate_1 0.843 0.707 0.775 
Base_RNN 0.854 0.786 0.820 
Base_RNN_1 0.856 0.789 0.823 
LSTM RNN 0.853 0.793 0.823 

LSTM RNN_1 0.856 0.793 0.825 
GRU RNN 0.854 0.803 0.829 
GRN RNN_1 0.856 0.803 0.830 

 
Accuracy Comparison. To compare the 

accuracy, Table 3 shows the overall AUC, i.e., the 
AUC for all prefix traces (to be predicted) in each 

dataset, and the mean overall AUC for different 
approaches. Here, we add the additional 7 approaches 
suffixed with “_1”, by adding class weight for sample 
imbalanced. At first, in this table, we can find that 
GRU RNN can achieve the best performance with the 
highest overall AUC on these two event logs whether 
or not it adds the weighted class. In terms of the 
average overall AUC on two event logs, the best one 
is also GRU RNN, followed by LSTM RNN, and then 
Base-RNN. And we also find that all the approaches 
of RF-based and XGBoost-based are also worse than 
the RNN-based approaches. Moreover, the overall 
AUC of the RNN-based approaches added class 
weight (i.e., suffixed with “_1”) has improved 
especially in Traffic Fines log while this dataset is 
very unbalanced. This finding indicates that the added 
class weight in RNN-based approaches can make 
sense for class imbalanced evet log. 
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(a)  (b)  

Figure 10: The comparison of AUC of conformance prediction for different lengths of prefix traces in Traffic Fines: (a) 
different approaches and (b) different approaches with added class weight. 

(a)  (b)  

Figure 11: The comparison of AUC of conformance prediction for different lengths of prefix traces in BPIC2012: (a) different 
approaches and (b) different approaches with added class weight. 

Besides, for further comparison, Figures 10 and 
11 present the AUC of test samples (i.e., prefix traces, 
on-going cases) with different length for two datasets. 
In these subfigures, each point represents all the 
prefix traces with a specific length and the AUC of 
these prediction for them. For instance, a prefix 
length of 5 indicates all the running cases with length 
of 5 indicates all the running cases with only 5 events 
executed. As Figures 10 and 11 shown, the variation 
trend of AUC with the increased prefix length is 
similar in subfigures (a) and (b). However, the trends 
of AUC under different approaches in Figure 10 
change dramatically with the prefix length increases. 

This phenomenon may be due to the occurrence 
of the coming events that interferes the conformance 
of an on-going case. Moreover, in Figure 11, we can 
find that the AUCs of most approaches keep 
increasing normally as the prefix length increases, but 
RF_single_laststate and XGBoost_single_laststate 
approaches start to decrease and fluctuate when the 
prefix length reaches a specific value about 20. Hence, 
we can infer that these two approaches are sensitive 
to the occurrence of a key activity in business process 
that has a decisive effect on the conformance. 

Table 4: The comparison of time performance of different 
approaches. 

Approach 
Traffic Fines BPIC2012 

off- 
(s) 

on- 
(ms) 

off- 
(s) 

on- 
(ms)

RF_single_agg 117 21 27 9 
RF_single_agg_1 115 47 34 11 
XGBoost 116 16 60 5 
XGBoost_single_agg_1 115 13 27 5 
RF_single_laststate 115 18 27 3 
RF_single_laststate_1 116 14 47 3 
XGBoost_single_laststate 114 20 27 4 
XGBoost_single_laststate_1 115 19 27 4 
Base-RNN 1,687 5 1,126 2 
Base-RNN_1 1,621 4 1,116 2 
LSTM RNN 4,914 2 352 2 

LSTM RNN_1 5,293 2 340 2 
GRU RNN 1,608 2 790 2 
GRN RNN_1 1,806 2 816 2 

 
Time Performance Comparison. Table 4 

shows offline time (off-) in seconds for training a 
classification model under different approaches and 
online time (on-) in milliseconds for predicting the 
conformance of all prefix traces in test set in each 
dataset. In this table, we can find that the offline total 
time of RF-based and XGBoost-based approaches is 
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much less than that of RNN-based approaches while 
the online average time of RF-based and XGBoost-
based approaches is more than 20 times as much as 
that of RNN-based approaches. As we known, in 
practical applications, the online prediction time is 
much more important than the offline model 
construction time. In particular, the online average 
time of RNN-based approaches is about 2ms, which 
is negligible. Moreover, in terms of these RNN-based 
approaches, GRU RNN has the best performance, 
followed by Based-RNN and then LSTM RNN.  

6 CONCLUSIONS AND FUTURE 
WORK 

We proposed three RNN-based approaches called 
Base-RNN, LSTM RNN and GRU RNN, for online 
conformance prediction in this paper. These 
approaches can automatically capture more 
contextual features even far from the prediction point 
by using RNN, LSTM and GRU networks. As 
evaluated on two real datasets from different business 
processes, our proposed RNN-based approaches have 
the better performance in both effectiveness and 
efficiency than existing traditional machine learning 
methods in real-time prediction applications. In the 
future, we plan to continue the work presented on this 
paper by considering more contextual information to 
construct a conformance prediction model and by 
conducting experiments on more real-life datasets. 
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