Integrating Model-Driven Development Practices into Agile Process:

Analyzing and Evaluating Software Evolution Aspects

Elton Figueiredo da Silva', Rita Suzana Pitangueira Maciel' and Ana Patricia F. Magalhies>>

IpGcomp Computagdo, UFBA Universidade Federal da Bahia, Salvador, Bahia, Brazil

2Exact and Earth Science Department, UNEB Universidade do Estado da Bahia, Salvador, Bahia, Brazil

Keywords:

Abstract:

3 Post Graduated Program in Computing and Systems, Salvador University, Salvador, Brazil

Agile Methodology, Metamodeling in Agile Methods, Evolution of Software, Evolution of User Stories,
Software Process Model, Model-Driven Development, Metaprocess and Metamodeling, MDD and SCRUM
Integration.

Software use is increasing in different areas of society, and new proposals of development processes have been
presented to support this demand focusing on increase productivity and reduce time to market. In this context,
some software development processes emphasize source code production, such as agile processes, others focus
on modeling, such as Model-Driven Development (MDD). ScrumDDM is a hybrid metaprocess that integrates
MDD practices into the SCRUM method aiming to specify software processes instances which models can be
used in the agile development context. This paper presents a controlled experiment conducted to analyze the
effectiveness of a ScrumDDM instance of its ability to support the agility and the evolutionary aspects of this
software process. The results of the experiment showed that the models used in ScrumDDM gave extra support
for evolution without compromising the development agility by executing a set of model transformations while
preserving project code and documentation updated to support future software maintenance.

1 INTRODUCTION

Over the years, increasing demand for software prod-
ucts has been observed in different areas of our soci-
ety. To support this demand and reduce time to mar-
ket, high productivity in software development be-
comes essential. In this scenario, several software
development approaches are being proposed, such as
agile methods (Beck et al., 2001) and the Model-
Driven Development (MDD) (OMG, 2014).

Agile development aims to fast delivery of prod-
ucts, which adds value to the client business, i.e., the
software is incrementally developed and continuously
delivered. This approach reduces documentation and
considers code as the main artifact of the software de-
velopment process (Tomds, 2009).

However, the possibility of building minimum
software documentation can bring some disadvan-
tages like the difficulty of software evolution and
maintenance, and understanding about the software
aspects by new development team members. Inade-
quate documentation of software developed by some
agile methods makes hard the product maintenance,
the changes traceability, and, consequently, proper

da Silva, E., Maciel, R. and MagalhAces, A.

product evolution (Heeager, 2012)

On the other hand, in the MDD approach, mod-
els are central artifacts in the development: models in
high abstraction level are specified and (semi) auto-
matically converted into models in lower abstraction
levels until generating system source code (Brambilla
et al., 2012). MDD favors productivity increase by
automating the development process through the con-
version of abstract models into other models until
generating software code for different platforms. Ad-
ditionally, it provides detailed documentation to assist
maintenance (Brambilla et al., 2012). However, MDD
may not be agile enough to assure fast client software
delivery together with its documentation.

Hybrid processes proposals that integrate different
software development approaches represent alterna-
tives to increase the software life cycle (Alfraihi and
Lano, 2017a).

In this direction, (Sales, 2017) proposes a
metaprocess, named ScrumDDM, that integrates
MDD practice into the SCRUM agile process.
ScrumDDM allows hybrid processes instances to be
specified for model usage during agile development.
Thereby, models can be used for both project docu-

101

Integrating Model-Driven Development Practices into Agile Process: Analyzing and Evaluating Software Evolution Aspects.

DOI: 10.5220/0009392501010110

In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 101-110

ISBN: 978-989-758-423-7

Copyright (© 2020 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

mentation and as input artifacts in code generation for
different platforms. ScrumDDM advances the state
of the art because the hybridization proposal is not
related to a specific domain, and also aspects related
to software evolution were considered, for example,
the documentation produced during software devel-
opment.

As a metaprocess, ScrumDDM must be instanti-
ated to a specific process to be used for the desired
domain. Therefore, processes for two different do-
mains were instantiated: (Braga, 2011) for Service
Oriented Architecture(SOA) and Qualitas (Almeida
et al., 2014) for MDD and TDD (Test Driven Devel-
opment).

This paper presents a controlled experiment that
measures the efficiency, software evolution, and
agility aspects of ScrumDDM through the ArqPro-
jProcess instance (Sales, 2017). The experiment re-
sults show that ScrumDDM is a promising approach
as its process instance could guide developers to cor-
rect source code and proposed models without signif-
icant development time increase.

The rest of the paper is organized as following:
section 2 introduces the concepts necessary for a bet-
ter understanding of the work and section 3 presents
the related works that integrate Agile Process and
MDD. Section 4 presents the proposed ScrumDDM
metaprocess. Section 5 presents the detailing of the
controlled experiment developed. Finally, section 6
presents the conclusion and future work.

2 BACKGROUND

Several approaches deal with software process devel-
opment. In this paper, we emphasize agile processes
and model-driven development (MDD).

2.1 Agile Processes

Agile processes ideas were proposed in the early 2000
base in the agile manifest (Beck et al., 2001). In con-
trast to the software development methodologies at
that time, agile processes promise software develop-
ment faster for enabling better adaptability and flex-
ibility to the new user’s requests, allowing delivery
within the stipulated time by the users.

Agile processes follow the incremental process
model and are characterized by the valuing individ-
uals rather than pre-defined processes and tools, con-
stant running software deliveries instead of compre-
hensive documentation; valuing collaboration with
the client, and fast response to change (Beck et al.,

102

2001). An example of an agile process widely used is
SCRUM (Schwaber and Sutherland, 2016).

The SCRUM differential is its focus on project
management, which allows the integration of agile
processes to other practices. The SCRUM framework
allows:

e to describe software functionality from the user
point of view and then generate software code;

e to specify user stories, describing necessary soft-
ware features. User software requirements are or-
ganized according to their priority in a product
backlog.

e to accommodate requirements changes of product
backlog along the software development (Press-
man and Maxim, 2016).

2.2 Model-Driven Development (MDD)

MDD is an approach that considers models as the
main element in software development (Maciel et al.,
2013). This approach tends to make software de-
velopment easier by elevating the problem abstrac-
tion level by modeling and transforming the soft-
ware requiremts, also documenting the system, stake-
holder’s attention concentrates on the software spec-
ification in detriment of code (Pressman and Maxim,
2016). MDD foments the increases of productivity
by reusing models in the generation of multiplatform
applications contributing to reducing the cost of de-
velopment and also creating software product docu-
mentation.

3 RELATED WORKS

This section presents proposals for the integration
of MDD and SCRUM approaches: (i) agility in the
MDD process; and (ii) MDD practice into agile meth-
ods.

The works proposed by (Ambler, 2006) and (Mel-
lor, 2004) propose the integration of Agile methods
and MDD. Thus, they use MDD as the main process
in addition to agile practices. The goal is to integrate
agile processes to specify models iteratively, i.e., con-
vert them, test, and modify in short, interactive, and
incremental cycles. Models should be as complete as
possible to be run by themselves.

The proposal of (Braga and Leal, 2013) integrates
MDD practices during the agile process life cycle.
Therefore, this proposal presents the Agile MDD con-
cept, and so the practices of MDD as metamodeling,
modeling, and use of transformations are added to
the SCRUM process. Transformations are used to

Integrating Model-Driven Development Practices into Agile Process: Analyzing and Evaluating Software Evolution Aspects

automate tasks in the phases Pregame, Game, and
PostGame of the scrum. Besides these already men-
tioned papers, others propose the integration of MDD
practices to agile processes (Ambler, 2003), (Santos
et al., 2018), (Mellor et al., 2005).

ScrumDDM uses an agile process SCRUM as the
primary approach, adding practices MDD to software
development. So it adopts the second strategy pre-
sented above. Its main difference from the other
works is that ScrumDDM, as metaprocess, can be
used for multiple domains (e.g., SOA, MDD, TDD,
Informations Systems, Web Application) to support
software maintenance and evolution. Neither of these
papers covers software evolution aspects as an objec-
tive to be achieved in their development. Addition-
ally, the metaprocess was evaluated by a controlled
experiment.

4 ScrumDDM METAPROCESS

ScrumDDM is a metaprocess that integrates a set of
practices from MDD to the agile method Scrum. It was
developed trying not to deviate the principles and val-
ues of agile methodology, affording the development
projects in different technologies, documentation, and
making possible that the software development occurs
quickly.

ScrumDDM is specified using the Software Pro-
cess Engineering Metamodel (SPEM) (OMG and
Notation, 2008) and implemented in Eclipse Pro-
cess Framework Composer (EPF, 2014). Software
Processes can be instantiated from ScrumDDM and
adapted to different domains. As recommended
in Scrum, ScrumDDM comprises three phases,
PreGame, Game, and PostGame. The first two phases
integrate Model-Driven Development practices while
the PostGame phase does not hold any activity related
to MDD; it follows the SCRUM standard.

Figure 1 illustrates the life cycle of ScrumDDM
(Sales, 2017). After the software architecture and re-
quirements are defined in PreGame phase, the phase
Game starts to develop a new iteration of the software
(called sprint) according to the requirements previ-
ously defined to it. Each sprint comprehends, besides
activities originated from the agile methods (Planning,
Development, Testing, and Integration Meeting), the
activities related to MDD, e.g. Modeling and Run the
Transformations.

The main goal of the PreGame phase is to collect
the requirements that will be used as input to the ac-
tivities of the Game phase, as well as select / build the
metamodels, models and transformations (Model-to-
model (M2M) / Model-to-text (M2T)), which will be
used in software development.

In the Game phase, models are converted into other
models through the task running and models M2M
transforming. The execution of this phase occurs it-
eratively through the models refinement until attend-
ing the goal defined in the Vision activity or until the
model is converted into code.

In PostGame phase here are not any activities or
tasks related to MDD. It focuses on finalizing the
project and deliver it to the client.

Table 1: Summary of the ScrumDDM: Phases (PreGame,
Game and PostGame), activities (Vision, Sprint, and Clo-
sure), subactivities (Development, Testing, and Integration)

and tasks.

ScrumDDM Metaprocess

PreGame

Game

PostGame

Activities

Vision

I Sprint

Closing

Subactivities

Requirement

Architecture

Development
Test
Integration

Deliverable approval
Project conclusion

Scrum Tasks

Sprint planning meeting
Backlog product creation
Version planning

‘Write users' stories
Decompose users' stories
Write acceptance test
‘Write use case

Update use case

Sprint planning meeting
Daily meeting

Sprint review meeting
Sprint's retrospective

MDD Tasks

Define:
Metamodel
Modecls

Metamodeling
Modeling

M2M transformation
M2T transformation

Artifacts' Set

Domain Metamodels
Proposed models
Users’ stories

Use Cases

Models

UML cxtensio mechanism
Profile

OCL expressions

Work finished

Code

4.1 ArqProjProcess Instance

This section presents the ArqProjProcess (Sales,
2017), an MDD development process for SOA instan-
tiated according to the ScrumDDM and used in our
controlled experiment (Section 5).

ArqProjProcess comprises three phases PreGame,
Game, and PostGame according to our metaprocess
and it integrates into them the following activities:
Specify Trade Model, Analyze Services, Project Ser-
vices, and Development, from the ArqProjProcess
original process (Braga, 2011).

The PreGame phase in Figure 2 of ScrumDDM
instance (Sales, 2017) is initialized in Vision activ-
ity, with the Sprint Planning Meeting task. Its goal is
to build the Product Backlog through the tasks, Cre-
ate, Estimate, and Prioritize Product Backlog. The
user stories and the use cases developed are the input
artifacts for model building, such as the functional-
ity model and the business information model. Even
though you can use the Update and Write Use Case
tasks.

103

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

Game

PreGame

M2M Transformation)

M2T Transformation

ll Closing Tasks

Integration s
ll Sprint Tasks Sprint >| Work finished

Figure 1: ScrumDDM Metaprocess Lifecycle (Adapted from Sales, 2017).

!

< — =" — S
Sprint planning of Vision Requirement

2 Backlog product
ArqgProjProcess

creation

|

® & «— Lg «— Lg
Version planning Estimate Backlog Prioritize Backlog
Product Product

Figure 2: Activity Flow VisaoArqProjProcess (Adapted
from Sales, 2017).

The Game phase in Figure 3 of ScrumDDM instance
(Sales, 2017) starts with the task Planning Meeting. It
comprises subtasks related to software Development,
such as Specify Business Model, Analyze Service and
Design Service(not showed in the figure). After these,
the Daily Meeting task is triggered, and the Sprint
Review Meeting will later be executed. Finally, the
Sprint Retrospective task will be executed.

=~
| e——— .
~ —_— Meeting

Sprint planning meeting Development

|

<

Daily meeting Yes

e «—— E&

Sprint's retrospective Sprint review meeting

Figure 3: Activity Flow Sprint the phase of the Game
(Adapted from Sales, 2017).

The PostGame phase in Figure 4 of ScrumDDM in-

stance (Sales, 2017) aims to deliver the software to
the client. This project and the generated documen-

104

tation must comply with the needs specified by the
client in the Pregame phase and developed during the
Game phase. This phase consists of the Closing ac-
tivity and comprises the tasks Deliverables Approval
and Project Conclusion.

SRS g—
Project
conclusion

o . o

Deliverable
approval

Figure 4: Activity Flow Closing. Activity Flow Closing
(Adapted from Sales, 2017).

In the end of PostGame phase, Stakeholders perform
the assessment according to the requirements devel-
oped and any nonconformities are adjusted before
delivery. Therefore, at this stage, the activities and
project closure are finalized.

5 ScrumDDM EVALUATION

Methods and processes for validation that involve hu-
mans are very challenging, and they should be carried
out in phases. Each phase should be an evolution from
the previous one. So, we used an incremental strategy
to evaluate ScrumDDM metaprocess. Initially, (Sales,
2017) analyzed the hybridization capability between
the agile method SCRUM and the MDD approach.
This paper presents the second study, which analyzes
aspects of the software evolution of ScrumDDM. For
this, three attributes were defined in the controlled ex-
periment: correctness, completeness of code as well
as timing of development. So, we developed a new
release of an existing software adding new user sto-
ries as well as evolving stories from the early releases.
The evaluation was performed as a controlled experi-

Integrating Model-Driven Development Practices into Agile Process: Analyzing and Evaluating Software Evolution Aspects

ment and followed the phases: Scope, Planning, Run-
ning, and Data Interpretation and Analysis (Wohlin
etal., 2012).

5.1 Scope: Goal

The controlled experiment aimed to analyze
ScrumDDM about its capacity to evolve the software
and its development agility while performing this
evolution.

In order to assess the software evolution, we
analyzed the source code generated using the Ar-
gProjProcess process (ScrumDDM) compared to the
source code developed in an ad-hoc way, using a
standard release of Scrum, regarding correctness and
completeness attributes. To analyze the agility of the
evolutions, we used the timing attribute in minutes.

Figure 5 presents the experiment goal defini-
tion according to the template Goal Question Metric
(GQM) (Caldiera and Rombach, 1994). To guide the
experiment, we also defined the following research
questions (RQ):

e RQ1: Do the artifacts generated by ScrumDDM
influence in the amount of user stories correctly
developed compared to the development per-
formed directly in code? This question aims to
investigate if ScrumDDM influenced the number
of user stories correctly developed facing the same
stories developed using only Scrum;

e RQ2: Do the artifacts generated by ScrumDDM
influence the completeness of the user stories
compared to the development performed directly
in code? This question aims to investigate if
ScrumDDM influenced in the amount of the user
stories wholly developed compared to the same
stories developed with Scrum;

e RQ3: Do the artifacts generated by ScrumDDM
influence the time spent in developing the user
stories compared to the development performed
directly in code for the same users stories? This
question aims to investigate if ScrumDDM influ-
enced in the agility of the development when com-
pared to the development performed by Scrum.

The metric used to measure correctness, completeness
and timing works as follows: for correctness, the de-
velopment of the evolution is considered correct if the
number of stories implemented divided by the total
number of stories evolved is equal to 1. For com-
pleteness, the development is considered complete if
all the user stories are implemented. In this case we
considered the completeness value as 1, otherwise it
is 0. The timing is measured in minutes.

5.2 Planning: Context Definition

The controlled experiment was conducted in an aca-
demic environment composed by undergraduate and
graduate students attending courses related to com-
puter science and professionals from the software de-
velopment area. In this experiment, besides knowl-
edge in UML and Java language, it was also required
from the participants, basic expertise in MDD. To
guarantee that the students presented those require-
ments, we selected only those who were/are part of
a scientific initiation project at the MDD area. Once
the participants preselection was made, it was applied
a survey so that this knowledge could be attested.

5.3 Experiment Planning

The design model used in this experiment covered
one factor, the development method, and two treat-
ments, the ScrumDDM approach, and the SCRUM
approach. Thus, the experiment was performed by
two groups, ScrumDDM Group, to develop software
evolution through modeling in ScrumDDM; and Con-
trolled Group, to perform the software evolution using
only Scrum. For both groups a presentation with all
the steps to be followed had been made.

The scenario of a bank conciliation software was
utilized for both groups and proposed changes in the
current user stories and new ones.

5.4 Planning: Variable Selection

In the performed experiment, the independent vari-
able was constituted in the method used to implement
stories and took two levels, the ScrumMMD approach
and the SCRUM approach. The dependent variables
were defined as the user stories correctness, complete-
ness, and development timing.

5.5 Experiment Running

The study was conducted in an academic setting
with undergraduate and graduate students and some
technology professionals selected according to a pre-
defined profile. A group of 25 people answered the
survery which evoluated the profile of the candidates.
Among them, 20 ones were selected and randomly di-
vided in two groups of 10. The others did not have the
minimum knowledge required to perform the study or
were unavailable.

The experiment was performed between October
and December 2018, and lasted, on average, 55 min-
utes of running time to Controlled Group and 38 min-
utes of running time to ScrumDDM Group.

105

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

Analyze the code developed during a Sprint.

for the purpose of evaluate software process maintainability
and agility about Correctness, Completeness and Development
Time attributes of defined user story in a specific Sprint.

from the point of view of the used Methods of development.

in context of students graduating and post-graduating and
professionals from technology area.

Figure 5: Goal of the ScrumDDM metaprocess validation.

5.6 Data Collect

The data collected during the experiment was used as
input for the experiment analysis. We used the scale
in Table 2 to analyze the experiment data containing
the expected results after the experiment conclusion
by each participant.

Table 2: Template evaluation of results obtained after the
conclusion of experiment by each participant.

Template
B C D E F G
& 4 4 4 4 3 10

In Table 2, the columns (A) to (G) represent the
evolved or modified user stories, and the values at-
tributed to these columns represent the number of
changes expected to the development of each user
story in the existing software. For example, based
on the definition of the researcher, for the user story
represented by column D (i.e., Perform bank concil-
iation), the participant should perform 4 (four) evo-
lutions considering implementations in methods and
attributes.

5.7 Data Interpretation and Analysis

The collected data was analyzed considering each at-
tribute (metric), Group (ScrumDDM, Controlled) and
user stories (requirements) according to what is pre-
sented in Table 3: the minimum value observed (Min),
the first quartile (Q1), median, the average, the third
quartile (Q3), the maximum amount observed(max),
the standard deviation (SD) and the coefficient of
variation (CV).

In Table 3, we observed the calculated descriptive
measures based on the collected data, considering the
defined and analyzed attributes of each group.

For correctness attribute, the average descrip-
tive measure of correctly developed stories of each
group points that the development performed by the
ScrumDDM Group (median= average = 86%) had

106

p-valor: 0,014
1.009 =

604

Correctness

00 T T
Controlled ScrumDDM
Group

Figure 6: Comparison between ScrumDDM Group and the
Controlled Group for attribute correctness.

more correctly developed stories than the Controlled
Group (median= 64%; average= 66%), matching the
HP1 hypothesis (average correctness attribute per-
centage to ScrumDDM Group was larger than average
correctness attribute percentage to Group Controlled).
It is noticeable if we analyze the coefficient of varia-
tion (CV), a dispersion measure that covers both av-
erage and standard deviation, we observed that the
stories developed by the ScrumDDM Group (13%)
showed less variation than the ones developed by the
Controlled Group (32%).

This variation can also be seen in the boxplot chart
in Figure 6 because the amplitude of the box for the
Controlled Group was larger than the amplitude of
the Group ScrumDDM. If we compare the median
of the two groups, we observe that the development
performed by the ScrumDDM Group was also supe-
rior to the one performed by the Controlled Group,
confirming a better user stories evolution concision
in the results of the Group ScrumDDM. In the Con-
trolled Group, 75% of the participants got a number
of hits below 86% compared to the hits obtained by
ScrumDDM Group that exceeded this number.

For completeness attribute in Figure 7, the mean
descriptive measure of the stories correctly developed

Integrating Model-Driven Development Practices into Agile Process: Analyzing and Evaluating Software Evolution Aspects

Table 3: Measures for the attributes correctness, completeness and timing about the participant Groups (ScrumDDM and

Controlled).
ATTRIBUTE Graiip . Descriptivcf! Measures Calculated Group

Min Q1 |Median|Average| Q3 | Max sD CV%
Controlled | 0,37 | 48% | 64% 66% |86%|0,94| 21% | 32%

CORRECTNESS
ScrumDDM | 0,69 | 79% | 86% 86% [97%|1,00| 11% | 13%
|C0ntr0||ed 0,00 | 0% 36% 36% |57%|0,86| 32% | 89%

COMPLETENESS
ScrumDDM | 0,29 | 57% | 79% 72% | 86% | 1,00 | 24% | 33%
TIMING (In minutes) |conerolled | 35 | 43 | 52 | 55 | 68 | 87 | 17 |31%

Partial Documentation
U ate ScrumDDM 12 27 42 38 48 64 17 | 45%
TIMING (In minutes) |conerolled | 35 | 43 | 52 | 55 | 68 | 87 | 17 |31%
Full Documentation
U ate ScrumDDM | 20 43 59 59 77 87 21 | 36%
trolled Group.
p-valor= 0,011

1,009

80

Completude

T T
Dirigido SerumDOM

Grupo

Figure 7: Comparison between ScrumDDM Group and the
Controlled Group for the attribute completeness.

of each group points that the development performed
by the ScrumDDM Group (median= 79%, average
= 72%) had more correctly developed stories than
the stories developed by the Controlled Group (me-
dian = average = 36%), matching the HP1 hypoth-
esis (the average percentage of user stories devel-
oped in a complete way to Group ScrumMMD was
larger than average completeness attribute percentage
to Controlled Group). This is confirmed if we analyze
the coefficient of variation (CV), we observe that the
stores developed by ScrumDDM Group (33%) pre-
sented less variation than the ones produced by the
Controlled Group (89%). The results obtained by
ScrumDDM Group may point that these group re-
sults were more uniform than the results obtained by
Controlled Group. Therefore, the lower variability
of the ScrumDDM Group can evidence it presented
more standardized behavior compared to the Con-

The development timing attribute was analyzed
considering two aspects: (i) when partial documen-
tation (Class Diagram) was updated and (ii) when
all the documentation (System Architecture Diagram,
Component Diagram, Sequencing Diagram, Archi-
tecture Diagram, Use Case Diagram) were updated,
besides the documentation that generates the project
source code.

p-valor= 0,042
100
: _]7
S &0
&
]
€
o a———
5 60
o
o
®
bR
: 1L
(-9
by
£
E 20
F .
Controlled ScrumDDM
Group
Figure 8: [Evaluation of fiming attribute, when the

ScrumDDM Group partially updated the documentation.

Concerning only update of (i) documentation par-
tial (Class Diagram) in Figure 8, the central ten-
dency measures (median and average) for timing at-
tribute of the users stories developed by each group
points that the ScrumDDM Group (median= 42 min-
utes; average = 38 minutes) performed the evolution
faster and more agile than the Controlled Group (me-
dian= 52; average= 55 minutes), matching HP2 hy-

107

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

pothesis. The timing taken in software evolution by
ScrumDDM Group was shorter than the timing taken
by the Controlled Group. However, if we analyze
the coefficient of variation (CV) in Figure 8, we see
that ScrumDDM Group development timing (43%)
presents larger variability than the Controlled Group
(31%). ScrumDDM Group presented asymmetry by
the left, fact explained by the shorter timings obtained
by half of the participants from this group that were
more agile than (75%) the participants of the Con-
trolled Group.

p-valor=0,672
100-]

T I
|

0 T T
Controlled ScrumDDM

Timing Full Documentation

Group

Figure 9: Evaluation of attribute timing, when the
ScrumDDM Group has updated all documentation.

Concerning update of (ii) all the documentation (Sys-
tem Architecture Diagram, Component Diagram, Se-
quencing Diagram, Architecture Diagram, Use Case
Diagram), besides the documentation that generates
the project source code in Figure 9, the central ten-
dency measures revealed that Controlled Group (me-
dian= 52; average = 55 minutes) presented shorter
timing to solicited evolutions development than the
development timing used by ScrumDDM Group
(median = average = 59 minutes), matching the
HP1 hypothesis. The development timing taken by
ScrumDDM Group was longer than the development
timing taken by Controlled Group. This group pre-
sented lower variability with a coefficient of variation
equals 31%, while ScrumDDM Group presented a co-
efficient of variation equals 36%. We can see that
even ScrumDDM Group having used more timing and
varied more, it did not mean that this timing increase
(4 min) influenced in the velocity of the metaprocess
usage; we may consider that all project documenta-
tion, not only the source code, was updated.

108

5.8 Hypothesis Analysis

Aiming to verify the existence of a significant differ-
ence in the code developed by the two groups, the hy-
pothesis test was run (Wohlin et al., 2012) through the
Student’s t-test.

The meaningfulness difference between
ScrumDDM and Controlled group was analyzed
trough Student t-test to independent samples. These
statistic method assumptions, the distribution nor-
mality and the homogeneity of variations in both
groups were analyzed, respectively, using Shapiro
Wilk’s test (SW) (Miot, 2017). For the (SW(10)
ScrumDDM Group >0,932; p= 0471; SW(10)
Controlled Group>0.932; p= 0,471) and the average
differences whose p-value in the test was less than or
equal to 0,05 were considered statistically significant.

For correctness attribute, t-Student test, the differ-
ences observed (0,200) (what means that ScrumDDM
Group obtained 20% more hits in face of Group Con-
trolled) are statistically significant (t(18)= -2,72; p-
value= 0,014; d= 0,54). The attribute correctness ef-
fect dimension to ScrumDDM Group is high (d=0,54)
and according to IC a 95%] -0,35; -0,05[, the partici-
pants of ScrumDDM Group got a hit average between
0,05 (5%) and 0,35 (35%) more comparing to Con-
trolled Group participants.

For completeness attribute, ScrumDDM Group
obtained on average 72% (standard deviation: 24%)in
the amount of completely evolved stories, while Con-
trolled Group got on average 36% (standard devi-
ation: 32%).According to t-Student test the differ-
ences observed (0,360)(what means that ScrumDDM
Group obtained 36% of completeness compared to
Controlled Group) are statistically significant t(18)=
-2,83; p-value= 0,011; d=0,55. The effect/confidence
difference of completeness attribute to ScrumDDM
Group is high (d=0,55) and according to IC at 95%]
-0,62; -0,09[. This dimension means that ScrumDDM
Group developed on average between (9%) and (62%)
more stories completely developed than the partici-
pants of the Controlled Group.

For timing attribute, when updated/evolved part
of documentation, the ScrumDDM Group obtained an
average of 38 minutes (standard deviation: 17 min-
utes) while participants of Controlled Group run the
evolution utilizing, on average, 55 minutes (standard
deviation: 17 minutes). According to t-Student test
the observed differences between both groups of av-
erage timings shows that this difference is statistically
significant (t(18)= -2,18; p-value= 0,042; d=0,45).
The timing attribute dimension effect to ScrumDDM
Group is high (d=0,45) and according to IC at a 95%]
-30,2; -0,6[, the ScrumDDM Group participants, to

Integrating Model-Driven Development Practices into Agile Process: Analyzing and Evaluating Software Evolution Aspects

part of the documentation, took on average is between
0,6 and 30,2 minutes less than participants of Con-
trolled Group.

For timing attribute, when updated/evolved all
documentation, ScrumDDM Group took on average
59 minutes (standard deviation: 21 minutes), while
participants of the Controlled Group took 55 minutes
on average (standard deviation: 17 minutes). Ac-
cording to t-Student test, the differences observed
(4 minutes) between both groups for average timing
are not statistically significant t(18)= 0,43; p-value=
0,672 d= 0,10). The timing attribute dimension ef-
fect to ScrumDDM Group is low (d=0,10) and ac-
cording to IC at 95%] -14,3; 21,7[in minutes, the tim-
ing differences variation among the participants were
not enough to highlight any difference between the
groups.

5.9 Threats to Validity

To minimize possible threats about Internal validity a
survey was applied for identify the level of knowledge
of the participants about UML, and Java (Eclipse).
The participants only had known about the experi-
ment goal in the end of the development. In addi-
tion, the researcher accompanied both groups, and in-
teraction between participants was not allowed. To
minimize possible threats about External validity 20
(twenty) people were selected and randomly divided
in two group (10 people each). The inability to ex-
periment in the industry was minimized by select-
ing technology area professionals in both groups. To
minimize possible threats about Construction valid-
ity several documents and transformations were made
available to the participants.

6 CONCLUSION AND FUTURE
WORKS

Combining MDD practices with agile development
process aim to keep software development cycle time
short and increase productivity and quality. By hav-
ing short iterations, developers managed to build the
system incrementally and early software verification,
which contribute to saving time. Generating code
and other artifacts from models (semi) automatically
helped to speed up development process by reducing
efforts in developing code. Requirements changes can
be easily reflected in code since it is generated from
model transformations (Alfraihi and Lano, 2017b).
Additionally, integrate these aspects into a process
metamodel helps software process reuse, customiza-
tion, and domain independence

In the controlled experiment developed in this pa-
per, the metaprocess ScrumDDM was analyzed about
its capacity of evolving software and to maintain
the agile methodology quickness characteristic while
developing.Pre-existing software code already devel-
oped within a ScrumDDM instance, named ArqPro-
jProcess was used as a base. A new version of the
software was developed covering new user stories or
user stories modifications.

The experiment performed pointed the capacity
of evolving software and maintain the agility from
the presented data. The group that used ScrumDDM
metaprocess, for example, enacted the process more
completely and produced the sofwtare artifacts more
correctly than the Controlled group. Besides that,
the evolutions occurred quickly, indicatong that the
metaprocess maintained the agile methodology as-
pect. The usage of the metaprocess made possible to
update the documentation artifacts and the software
product source code. Additonally, by the end of the
experiment running, it was shown that the metapro-
cess provided the software evolution, generating a
correct code and with a more significant number of
completely developed stories.

We intend to perform other studies with students
and professionals from technology in the area, aim-
ing to amplify the usage possibility of ScrumDDM.
It would be interesting to test it for different domains
and purposes. Besides that, even having technology
area professionals as participants of the experiment,
it would be relevant that ScrumDDM was evaluated
in an industry scenario, the inclusion of a metamod-
eling engineer in the development process, aiming to
build the MDD elements before developing the soft-
ware, optimizing the work. Thus, we identify for fu-
ture work:

e Instance ScrumDDM to other purposes and do-
mains, different from the ones that were men-
tioned in this paper, like SOA and MDD, to
make the evaluation/analysis of more aspects of
instanced process possible.

e Reanalyze ScrumDDM in a real scenario, outside
the academic environment.

e Analyze other software quality aspects. Besides
the code and documentation generation aspects, it
might be important to seek the software develop-
ment process quality.

REFERENCES

Alfraihi, H. and Lano, K. (2017a). The integration of
agile development and model driven development.

109

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

In Proceedings of the 5th International Conference
on Model-Driven Engineering and Software Devel-
opment, pages 451-458. SCITEPRESS-Science and
Technology Publications, Lda.

Alfraihi, H. and Lano, K. (2017b). Practical aspects of the
integration of agile development and model-driven de-
velopment: An exploratory study. In MODELS (Satel-
lite Events), pages 399—-404.

Almeida, C. C. d. J. et al. (2014). Qualitas: uma modelo de
processo de desenvolvimento de software orientado a
modelos.

Ambler, S. W. (2003). Agile model-driven development is
good enough. IEEE Software, 20(5):71-73.

Ambler, S. W. (2006). Agile model-driven development
(amdd). page 13.

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cun-
ningham, W., Fowler, M., Grenning, J., Hunt, A., Jef-
fries, R., Kern, J., et al. (2001). Manifesto para desen-
volvimento agil de software. AGILE manifesto.

Braga, A.d. A. and Leal, R. d. S. (2013). Estudo sistemético
em dependabilidade e métodos dgeis: uma andlise de
falhas e defeitos.

Braga, V. (2011). Um Processo para Projeto Arquitetural de
Software Dirigido a Modelos e Orientado a Servigos.
PhD thesis, Dissertacdo, Universidade Federal de Per-
nambuco, Brasil.

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
driven software engineering in practice. Synthesis
Lectures on Software Engineering, 1(1):1-182.

Caldiera, V. R. B.-G. and Rombach, H. D. (1994). Goal
question metric paradigm. Encyclopedia of software
engineering, 1:528-532.

EPF, E. F. (2014). Eclipse process framework composer.
Eclipse Foundation.

Heeager, L. T. (2012). Introducing agile practices in a
documentation-driven software development practice:
a case study. Journal of Information Technology Case
and Application Research, 14(1):3-24.

Maciel, R. S. P,, Gomes, R. A., Magalhaes, A. P., Silva,
B. C., and Queiroz, J. P. B. (2013). Supporting model-
driven development using a process-centered software
engineering environment. Automated Software Engi-
neering, 20(3):427-461.

Mellor, S. (2004). Agile mda, a white paper.

Mellor, S. J., Scott, K., Uhl, A., and Weise, D. (2005).
Mda destilada: Principios de arquitetura orientada por
modelos. Ciéncia Moderna Ltda.

Miot, H. A. (2017). Assessing the normality of data
in clinical and experimental trials. Jornal Vascular
Brasileiro, 16(2):88-91.

OMG (2014). Model object management group model-
driven architecture.

OMG, S. and Notation, O. (2008). Software & systems
process engineering meta-model specification. OMG
Std., Rev, 2:18-71.

Pressman, R. and Maxim, B. (2016). Engenharia de
Software-8* Edi¢do. McGraw Hill, Brasil.

Sales, P. M. (2017). Integrando préticas do desenvolvimento
dirigido a modelos ao scrum, dissertagdo de mestrado.
pages 1-162.

110

Santos, N., Pereira, J., Ferreira, N., and Machado, R. J.
(2018). Modeling in agile software development:
Decomposing use cases towards logical architecture
design. In International Conference on Product-
Focused Software Process Improvement, pages 396—
408. Springer.

Schwaber, K. and Sutherland, J. (2016). The scrum guide.
pdf document.

Tomads, M. R. (2009). Métodos dgeis: caracteristicas, pon-
tos fortes e fracos e possibilidades de aplicagdo.
Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
software engineering. Springer Science & Business

Media.

