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Abstract: This paper presents theoretical basis of a language system whose program is described as algebraic expres-
sions and implemented as abstract state machine. The behaviors of the described expressions may be captured
(with their models) as causing sequences for state transitions, where composition and alternation for state tran-
sitions are mechanized in algebraic structure. Monitoring facilities to the language system may be described
with state concepts, as well. With respect to intuitionistic logic and logical program containing negatives,
Heyting algebra expressions are taken rather than already established nonmonotonic reasoning programs with
negations, where 3-valued domain may be of use for the undefined to be allowable such that positives and
negatives may be consistently evaluated, instead of rigid 2-valued settlements. We may have a standard form
of Heyting algebra expressions in accordance to logical and AI programming, where the expressions are con-
strained with states. The states may be regarded as environmental conditions or objects as in object-oriented
programming. As regards 3-valued models of given expressions, monotonic mapping cannot be in general as-
sociated with, but some ways are presented to approximate fixed points of a mapping for the given expression.
Then the formal description of programs may be given with reference to state transitions, which is thought of
as proposing a language system structure.

1 INTRODUCTION

As resources, programming languages are very sig-
nificant in complex information systems. Whether
they are viewed from abstract or concretized points,
they must also involve communication functions not
only with other programming environments but also
with human to the network. In this paper, we have a
consistent theory for programming method of a lan-
guage system based on abstract state machine, which
program implementation is made with and its alge-
braic basis is specialized to, possibly for application
to complex information systems. The abstract notion
of states is assumed, from resource environments of
programmable and communicative capabilities. The
backgrounds of this paper are common to those which
the paper on modal mu-calculus extension (S. Ya-
masaki, 2020) refers to, such that this paper may aim
at the programming language system primarily based
on abstract state machine.

As backgrounds of operational ways to capture
programs with, we have seen on abstract state ma-
chine structures and actions that: (i) by composed
actions as programs in dynamic logic, acting and
sensing failures, and actions to generate and execute
plans are discussed as advanced works (Spalazzi and

Traverso, 2000). (ii) the action is formulated as a
key role in strategic reasoning of abstract state ma-
chine, applicable to AI systems. (iii) actions are also
captured in logical systems, as in the papers (Gior-
dano et al., 2000; Hanks and McDermott, 1987). (iv)
the procedural action is expressed by denotational ap-
proach in the book (Mosses, 1992), while the pro-
cedural method is essentially operational, that is, for
programs to be implementable. (v) the actions may be
reviewed, with functional programs (Bertolissi et al.,
2006). (vi) algebraic systems of abstract state ma-
chine are discussed, in the literature (Droste et al.,
2009; Reps et al., 2005). (vii) regarding structure
of streams possibly caused by abstract state machine,
there is the note (Rutten, 2001).

As programming systems applied to communica-
tions, we pay attention to the frameworks:
(a) AI developments are presented on the basis of log-

ics with knowledge (Reiter, 2001). Based on be-
liefs and intentions, modal operations are used to
represent mental states (Dragoni et al., 1985).

(b) Regarding communication technology, argumen-
tation is sometimes popular, in terms of non-
classical negation, and abstract attack and defense
are regarded as elements of the argumentation
concepts rather than communications by algebraic
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processes. From model theoretic views, the argu-
mentation may be expressed by means of 3-valued
logic to the semantics for defeasible reasonings
to implement argumentation (Governatori et al.,
2004).

(c) Mobile ambients (Cardelli and Gordon, 2000;
Merro and Nardelli, 2005) have been studied from
the views to make communication environments
clearly described, as well as process algebras
(Hennessy and Milner, 1985; Kucera and Esparza,
2003; Park, 1970).

(d) The modal mu-calculus, related to abstract state
machine, contains a fixed point notation by which
actions and communications are satisfied with
given conditions. The modal logic with fixed
point operator is refined in the paper (Venema,
2006). The papers (Dam and Gurov, 2002; Kozen,
1983) are classical enough to formulate the proof
systems with fixed points and their approxima-
tions.
With reference to such works, this paper deals

with theoretical basis of:
(1) a language system based on algebraic expressions

whose models may cause state transitions, for a
programing system with state constraint designs
to implement and to describe complex AI facili-
ties and reasonings compactly, and

(2) Heyting algebra expressions, to be able to involve
a treatment of negation (for expressiveness as a
program), different from the one of default nega-
tion often used in AI researches.
For the construction of complex information sys-

tems by means of programming in this language sys-
tem, some monitoring functions are to be facilitated,
where the descriptions of functions may be made with
abstract states constraining programming. Communi-
cation and behavior facilities are involved in abstract
monitoring. In this paper, communicative and behav-
ioral means are regarded as abstract functions. As
well as functional aspects from descriptions on ab-
stract state machine, algebraic expressions as designs
(programs) contain logical aspects.

Compared with default or defeasible logic in AI
programming,
(i) defeasibility is beforehand assumed in the given

rules, to be more complex, but

(ii) the plain program consisting of rules by Heyt-
ing algebra expressions is simpler without treating
ambiguity of rules containing default negation.
The paper is organized as follows. Section 2 is

concerned with Heyting algebra expressions, and with
the standardization of expressions, closely related to

logical programming with default negation and to
state constraint programming. Section 3 discusses
the 3-valued models of algebraic expressions. Section
4 presents a language system with monitor facilities,
whose program can be interpreted in terms of models
for Heyting algebra expressions and by structures for
the implementation aspects as well as for monitoring.
Concluding remarks and references to related topics
on knowledge are mentioned in Section 5.

2 UNIVERSAL EXPRESSIONS
FOR LOGICAL DESIGNS

Regarding operations, processing, or program imple-
mentation, we need logical descriptions of designs
for functions with reference to complex systems and
their dynamic workings. Logical programming has
been studied for universal tools of design, where first-
order predicate calculus is primary. If an infinite set
of proposition letters is allowable, the propositional
logic may simulate the first-order calculus with Her-
brad base. Heyting algebra may be a basis for propo-
sitional logic to be as universal as the first-order cal-
culus, where Heyting algebra is more flexible than
Boolean algebra. In thses senses, we here examine
Heyting algebra for expressions concerning descrip-
tions of design ideas. Because of the treatment for
negatives of Heyting algebra expressions, some theo-
retical basis is motivated to be made clear, for us to
formulate a language system containing algebraic ex-
pressions as programs of a language.

2.1 Algebraic Expressions

Heyting algebra (HA) (A,
∨
,
∧
,⊥,>) equipped with

the partial order v and an implication⇒ is assumed
as follows:

(i) ⊥ and > are the least and the greatest elements
of the algebra (set) A, respectively, with respect
to the partial order v.

(ii) the join
∨

and meet
∧

are defined for any two
elements of A.

(iii) as regards the implication⇒,

c v (a⇒ b) iff a
∧

c v b.

The element a⇒⊥ is denoted as “not a” for a ∈ A,
where not ⊥ = > and not > = ⊥.

The expression F (over the underlined set A of
the algebra), which is here paid attention to, is of the
form: ∧

j∈ω (l j
1
∧
. . .

∧
l j
n j ⇒ l j)
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where l j
i denotes a or a⇒⊥ for a ∈ A. The expres-

sion F is regarded as modelling some programing.

Related Programming:

A “logic program” with respect to its Herbrand
base may be regarded as containing the predicate pr
(with or without “∼” as a procedure) preceded by the
conjunction of:

pr1, . . . , prm (as a procedural body)

for pr1, . . . , prm (predicates or their negations).

Example 1. Assume the following propositional for-
mula F :

(bird
∧∼abnormal⇒ f ly)

∧
(⇒ bird)

∧
( f ly⇒∼abnormal)

∧
( f ly⇒∼observed)

∧
(∼ f ly⇒ observed),

where, for the propositions bird, abnormal, f ly,
observed,

(a)
∧

(meet) is used as and,

(b) ∼ (default negation) is assigned in place of not,

(c) ⇒ is used for logical implication, and

(d) the parentheses are used to have priorities of (log-
ical) connectives.

Then it might be expected that (a) with the assertion
of bird and by default negation of abnormal, f ly may
be implied, and (b) the bird is not observed as default,
however, it may not be, because of the part (of some
ambiguity with other parts), f ly⇒∼abnormal, such
that neither f ly nor default negation of abnormal can
be implied so that it may be unknown for bird not to
be observed.

This example presents a common view on logic
programs with answer set programming (Osorio et al.,
2004) or on defeasible logic (Governatori et al.,
2004), where the negation may be taken as default
with the procedure of “negation as failure”, which
means that the procedural proof failure of a proposi-
tion may infer its negation (Kowalski and Toni, 1996).

In a language system of this paper, it is a strict
negation that the algebraic expression models, rather
than default negation, even in considerations on 3-
valued model of expressions, with reference to the im-
plication of the algebra. The 3-valued model of ex-
pressions contains more complexity than the 2-valued
model, however, theoretical interests are involved
for representation simplicity and algebraic treatments,
which motivate us to take it for design of language
system, as well as for solutions to the theories. We
then make summaries of the theories, assuming in

Heyting algebra that (a) the implication is based on
Heyting algebra, and (b) the evaluation of not a (with
respect to the value of a for a ∈ A) follows the rule:

a not a
1 0

1/2 0
0 1

As is well known, we note some algebraic proper-
ties on the HA with parentheses of operation-priority
representation, for the next subsection:

((a⇒ b)
∧
(b⇒ c))v (a⇒ c),

av not (not a),
not (a

∨
b) = not a

∧
not b.

2.2 Transformation of Expressions

In an Heyting algebra (A,
∨
,
∧
,⊥,>), any expression

Ex1 derives some expression Ex2 of the form (referred
to in Section 2.1 and as in standard form):∧

j∈ω(l
j
1
∧
. . .

∧
l j
n j ⇒ y j),

where l j
i and l j are an expression a or not a (denoting

av⊥), for a ∈ A, such that

Ex2 v Ex1.

By the method which is as below shown with
proof, we may have such a standardization to trans-
form a given expression Ex1 to Ex2. If there is some
model of Ex2 in 3-valued domain, then it may be also
the model of Ex1. In this sense, the expression Ex2 is
worthwhile being obtained, as a standard form.

Transformation of Expressions:

In what follows, the cases (of what the given ex-
pression exp1 is) are presented such that transforma-
tions may be available, where X , Y , and Z stand for
some (sub)expressions. There is a relation: exp2 v
exp1, between a replacing expression exp2 and a re-
placed one exp1 in each transformation of the items
(1) – (8).

(I) For the right side of the primary operation ⇒,
the items (1) – (4) are applied:

(1) X ⇒ (Y ⇒ Z) to be replaced by: X ⇒ (Y
∧

Z).

(2) X ⇒ (Y
∨

Z) to be replaced by: X ⇒ Y or X ⇒
Z.

(3) X ⇒ (Y
∧

Z) to be replaced by:

(X ⇒ Y )
∧
(X ⇒ Z).

(4) X ⇒ not Y to be replaced by:

(Y ⇒ y)
∧
(X ⇒ not y)
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for an arbitrarily and newly chosen element y
∈ A (or variable y over A).

(II) For the left side of the primary operation⇒, the
items (5) – (8) are applied.

(5) (X ⇒ Y )⇒ Z to be replaced by:

(X ⇒ Y )
∧
(>⇒ Z)

for the top element >.

(6) (X
∨

Y )⇒ Z to be replaced by:

not (not X
∧

not Y )⇒ Z.

(7) (X
∧

Y )⇒ Z to be replaced by:

((x
∧

y)⇒ Z)
∧
(X ⇒ x)

∧
(Y ⇒ y)

for arbitrarily and newly chosen x, y ∈ A.

(8) not X ⇒ Y to be replaced by:

(x⇒ X)
∧
(not x⇒ Y )

for an arbitrarily chosen x ∈ A.

Proposition 1. Given an expression Ex1, an expres-
sion Ex2 of standard form is derived by the Transfor-
mation of Expressions such that Ex2 v Ex1.

Proof. By the recursive applications of (I) (contain-
ing the items (1) – (4)), reducing the right side of
the implication ⇒ to the simple form (which is rep-
resented as a or not a for a ∈ A), we may have an
expression exp of the form∧

j(X j⇒ x j),

where each XJ is a (sub)expression and each x j is a or
not a (for a ∈ A). By the recursive applications of (II)
(containing the items (5) – (8) with the (I) case from
the item (5) or (8)) to each X j ⇒ x j of exp, reducing
the left side of the implication ⇒, we may have an
expression Ex2 of standard form. This comes from
the reason for structure of expression form, why the
application of (I) case from the item (5) or (8) is avail-
able in (II) case, for the (sub)form not to be the simple
but to be of less length.

The model of the expression F of standard form is
discussed in the next section.

3 3-VALUED MODEL OF
EXPRESSIONS

We have known applicable fixed point as model of the
expression F , over the 3-valued domain {0,1/2,1}.

With the set A for an expression F of standard form
(where p⇒⊥ is denoted by not p), a mapping

ΨF : 2A×2A→ 2A×2A,
ΨF(I1,J1) = (I2,J2),

has been noted with order of componentwise subset
inclusion:

I2 contains p such that p is obtained by:
∃(p1

∧
. . .∧ pi

∧
not pi+1

∧
. . .not p j⇒ p) in F.

∀pk ∈ I1 (1≤ k ≤ i),∀pk′ ∈ J1 (i+1≤ k′ ≤ j),

J2 contains q such that q is obtained by:
∀(q1

∧
. . .

∧
qi,not qi+1, . . . ,not q j⇒ q) in F.
∃qk (1≤ k ≤ i). qk ∈ J1, or
∃qk′ (i+1≤ k′ ≤ j). qk′ 6∈ J1, or

∃(q1
∧
. . .

∧
qi,not qi+1, . . . ,not q j⇒ not q) in F.
∀qk (1≤ k ≤ i). qk 6∈ J1, and
∀qk′ (i+1≤ k′ ≤ j). qk′ ∈ J1.

If ΨF(I,J) ⊆c (I,J) (with the componentwise set in-
clusion ⊆c) and I ∩ J = /0, then (I,J) can be a model
of F . Since the mapping ΨF is not monotonic, the
method by (pre-)fixpoint of ΨF is not always avail-
able as a modelling of the given expression F .

Because of the negation interpretation, some
approximations cannot be taken, even with mono-
tonic mappings (the least fixed points of which are
worthwhile referring to), extended from those already
established by A. van Gelder et al. (1991) and by M.
Fitting (1985).

In what follows, we suppose the set A (for HA
expressions) and the expression F of standard form.

We now have a procedure with respect to con-
struction of some model (I,J), where ΨF(I,J) ⊆c
(I,J), and an adjusting (as another procedure) to be
sound to the constructed model. Making use of “nega-
tion as failure” rule with its variants, we take the no-
tations as follows:

(1) With a given expression F of standard form,
query of the sequence “X?” is assumed, where X =
y1; . . . ;yn (n≥ 0) with yi being a or not a for a∈A and
with the concatenation operation “;” (which is treated
as

∧
), where in case of “n = 0”, X is null (the empty

query). A sequence query may be denoted as y;X?
(with y being b or not b for b ∈ A, and with X a se-
quence query), or Y ;X? with Y and X queries.
(2) The notations

[X? succ], [X? f ail], and [X? no f ail]

stand for the returns of the Procedure to say that
(i) the query X? is a success, (ii) the query X? is
a failure, and (iii) the query X? is not a failure,
respectively.
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Procedure (for Model of an Expression):

The routines are inductively defined with queries
to be a success, a failure, and not a failure.

(1) [null? suc].

(2) [x;X? suc], if x = a (for a ∈ A) and there is
Y ⇒ x in F such that [Y ;X? suc].

(3) (a) [x;X? suc], if [a? f ail] for x = not a, and
[X? suc].
(b) [x;X? suc], if [a? f ail] for x = not a
where there is Y ⇒ x in F with [Y ? no f ail],
and [X? suc].

(4) [x;X? f ail], if there is no part with x = a ∈ A
being the right side of “⇒” in F , or [X? f ail].

(5) (a) [x;X? f ail], if x = a (a ∈ A) such that
[Y ? f ail] for any Y (where Y ⇒ x in F), or
[X? f ail].
(b) [x;X? f ail], if x = a such that [Y ? no f ail]
for some Y where Y ⇒ not a in F , or [X? f ail].

(6) [x;X? f ail], if x = not a such that [a? no f ail],
or [X? f ail].

Example 2. Assume the algebraic expression in cor-
respondence with the propositional formula F in Ex-
ample 1. Let the expression be referred to by F , with
the same name of the formula.

(bird
∧

not abnormal⇒ f ly)
∧

(>⇒ bird)
∧

( f ly⇒ not abnormal)
∧

( f ly⇒ not observed)
∧

(not f ly⇒ observed).

Following the Procedure, we can see that:

[bird? suc] and [ f ly? no f ail]−→
[abnormal? f ail], [ f ly? suc], [observed? f ail],or
[bird? suc], and [abnormal? no f ail]−→
[ f ly f ail], [abnormal? suc], [observed? suc].

where “−→” means inferences for the successes and
failures of queries.

Now let the pair (I,J) be defined by:

I = {a ∈ A | [a? suc]},J = {b ∈ A | [b? f ail[}.

The Procedure works to construct a pair (I,J) so
that (a) if [a? suc] then a ∈ I, and (b) if [a? f ail] then
a ∈ J. For such a constructed pair (I,J) of the expres-
sion F over the set A, we would like to see that (I,J)
is just a model in the following sense.

Proposition 2. Assume the pair (I,J) constructed by
the Procedure for a HA expression F of standard form
such that

I = {a ∈ A | [a? suc]},
J = {b ∈ A | [b? f ail[}.

If I∩ J = /0, then the pair (I,J) is a model of F.

Proof. The reason comes from the case examinations
by induction on constructions of the Procedure, for
the effects of the mapping ΨF for ΨF(I,J) ⊆c (I,J):
We show on the case of I ∩ J = /0 that if we let
ΨF(I,J) = (I0,J0) then (I0,J0)⊆c (I,J).
(1) Let a ∈ I0. (i) It follows with respect to the map-
ping of ΨF that there may be some Y ⇒ a in F such
that (i) Y = null, or (ii) with b ∈ I for any b in Y , and
with c ∈ J for any not c in Y .
In case of (i), [a? suc] and a ∈ I. In case of (ii), by
the Procedure construction, (a) [b? suc] for b ∈ I and
(b) [not c? suc] for c ∈ J, respectively, in Y such that
[a? suc]. Note by the Procedure to simulate the map-
ping ΨF that [not c? suc] comes from [c? f ail] for
c ∈ J, or from ∃Z. (Z ⇒ not c and [Z? no f ail]) for
c ∈ J. Thus a ∈ I. Finally, if a ∈ I0 then a ∈ I.
(2) Let a ∈ J0. Both the cases (i) and (ii) (as below)
comes from that (I0,J0) can be obtained with the ap-
plication of ΨF to (I,J), and derives that a ∈ J:
(i) If there is no part Y ⇒ a in F so that the mapping
ΨF may assume a ∈ J0. It follows by the Procedure
that [a? f ail]. That is, a ∈ J.
(ii) (a) If ∀Y. (Y ⇒ a entails that there is some b in Y
such that b ∈ J, or some not c in Y such that c 6∈ J),
then a ∈ J0. By the Procedure, [b? f ail] (b ∈ J) and
[c? no f ail] (c 6∈ J) causes [a? f ail]. Thus a ∈ J. (b)
If ∃Y . (Y ⇒ not a in Y , where any b 6∈ J or any not c
for c ∈ J in Y ), then a ∈ J0. By the Procedure, if b 6∈ J
then [b? no f ail], and if c∈ J then [c? f ail]. It follows
that: [Y ? no f ail] such that [a? f ail]. Thus a ∈ J.

The procedure contains rules regarded as variants
of negation as failure:

(i) [not a? suc], if [a? f ail].

(ii) [not a? f ail], if [a? no f ail].

To make the procedure free from the rule
[a? no f ail] or [Y ? no f ail] (for a query sequence Y ),
we may make the procedure adjusted into a simpler
version with assumption that [a? no f ail] is reasoned
by [a? suc]. Therefore classical “negation as failure”
may be adopted:

(a) a query not a? is a success, if [a? f ail], and
(b) a query not a? is a failure, if [a? suc].
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4 LANGUAGE SYSTEM

In this section, we have a formal aspect of a language
for its program to be realized as abstract state
machine and as a semiring to explain an algebraic
structure for implementation of the program. The
state constraint system may contain query processing
in database, algebraic expression of strategies, and
program implementation assigned to states (likely
reflecting environments, situations and designing
concepts as classes).

States s1 s2
Processing queriy1 query2

Strategy expression1 expression2
Implementation program1 program2

Having an outlook on the state constraint system,
queries, algebraic expressions, and programs are re-
garded as synonymous for database, strategic plans
and designs, which are constrained at states, that is,
are compiled to the states. The formal description of
such a state constrained framework as a language sys-
tem is now given theoretically.

As regards the state constraint system, the expres-
sions for design may be considered as resources at
states, where the design idea based on some allow-
able assumptions for inferences related to implemen-
tations like query processing, strategic reasoning and
program execution. In this sense, not only technical
views but also social views may be contained in the
concepts of state constraints. Therefore the state con-
straint language system should be studied for compact
manners free from complex design methods.

4.1 State Constraint Language

The expression as in Example 1 may be separated into
two expressions with states (for constraints), where
the default negation is replaced by the negation not in
Heyting algebra.

Example 3. We now have the next forms from the
expression in Example 2, by separating F into 2 parts
constrained by 2 states, respectively:

s1 :
(bird

∧
not abnormal⇒ f ly)

∧
(>⇒ bird)∧

( f ly⇒ not abnormal)B s2

s2 :
( f ly⇒ not observed)

∧
(not f ly⇒ observed)B s2

(i) At the state s1, there may be 2 models:

({bird, f ly},{abnormal}),
({bird,abnormal},{ f ly}),

possibly causing the state transition to s2.

(ii) At the state s2, 2 models as follows may be taken:

({observed},{ f ly}),({ f ly},{observed}),

causing the state transition to s2.

There are 2 cases: (a) If bird is not abnormal at
state s1, then f ly is assigned to 1 so that the bird may
f ly, and the state s1 transfers to the state s2. After
the state transition from s1 to s2, the bird may be
“not” observed, that is, “not observed”, at the state
s2, where it remains at the state s2 (that is, the state
transition from s2 to s2 may be assumed).
(b) If bird is abnormal at state s1, then f ly is
assigned to 0 so that bird may not f ly, from where
the transition to s2 occurs. At state s2, bird may be
observed with not f ly, where the state s2 transits to
itself.

As in Example 3, we may have a sequence of a
program.

s1 : body1;s2 : body2 : . . . ;sn : bodyn (n≥ 0).

Each bodyi (of such a program part “si : bodyi”)
may contain algebraic expressions with states (to be
transited to). That is,∧

i (a
i
1
∧
. . .

∧
ai

ni

∧
not bi

1
∧
. . .

∧
not bi

mi
⇒ yi)

(to a state s j)

for yi = c or not c with c ∈ A.
Such analysis motivates a language, whose pro-

gram is, in Backus-Naur Form, inductively repre-
sented.

prog ::= nullprog | prog; s : body
body ::= nullbody | body; exp B s
exp ::=> | exp

∧
( f orm)

f orm ::= le f t⇒ a | le f t⇒ not a
le f t ::=> | le f t

∧
a | le f t

∧
not a

where the parentheses are used to denote the scope
such that:

(i) s is a state variable.

(ii) a is a variable over the domain (set) of the given
algebra, possibly denoting the greatest element
> and the least element ⊥.

(iii) the symbol
∧

means a “meet” in the underlined
lattice (algebra), and the symbol B stands for “a
transition to”.

(iv) nullprog and nullbody denote the empty se-
quences for the definitions of a program prog
and a body body (constrained by a state), re-
spectively, where the semicolon “;” denotes an
operation of concatenation.
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Conditional Statements:

Whether it is in the manner of functional or pro-
cedural programming, the program contains the con-
ditional statement:

if C1 then A1
else if C2 then A2
. . .
. . .
else if Cn then An

where C1, . . . , Cn are conditions, and A1, . . . , An are
some functions (commands). It can be represented by
the HA expression:

(c1⇒ a1)
∧
. . .

∧
(not c1

∧
. . .

∧
not cn−1

∧
cn⇒ an)

where ci and ai are algebraic elements in accordance
with conditions Ci and function implementations Ai
(successful, undefined or failed), respectively, for
1≤ i≤ n.

Monitoring to Programming:

For the construction of complex systems, monitor-
ing is to be facilitated to the language constrained by
states, as in the paper on modal mu-calculus extension
(S. Yamasaki, 2020).
(a) Conditioning Including Awareness – With a func-

tion condi, conditioning is regarded as a mapping
of each state to a set of logical formulas, where
logical formulas represent conditions. It involves
awareness to (programming and network) envi-
ronments, condi : S→ 2Φ, where S is the set of set
variables in this language, and Φ stands for the set
of logical formulas.

(b) Communication – With a relation commu, com-
munications between states (that is, state con-
strained programs) may be described. It may fol-
low the process algebra (Milner, 1999) as estab-
lished principle. By the set S of states, the relation
is just as commu⊆ S×S.

(c) Behavioral Aspects– The behavioral aspects of
programming with interaction to the human side,
a function of each state to a set of behaviours is
required: behav : S → 2B, where S is the set of
states, and B is a set of behaviours.

4.2 Structure for State Transition

Concerning algebraic aspects of behaviours for the
program of this form, regular language properties
may be abstracted, rather than context-free language
properties as in the paper (Paulo and Jose, 2017). A
star semiring structure is given by the method (S. Ya-
masaki, in COMPLEXIS 2017).

Given an expression F (which is “exp” of
“expB s” over the set A) at some state to “body” in a
program, we may have a pair (I,J) ∈ 2A×2A, which
can be a 3-valued model of exp.

With Heyting Algebra (HA) expressions to a con-
straint state, models of expressions can be considered
with state transitions.

HA expression 3-valued model, selected
exp (as a program) (I,J) (a pair)

Example 4. Given a program of Example 3, if we take
models:

({bird, f ly},{abnormal}) at state s1, and
({ f ly},{observed}) at state s2,

then a sequence, constructed by a concatenation of
bird (at state s1) with f ly (at state s2),

may be taken with consistency to both negations of
abnormal (at state s1) and observed (at state s2).

With the domain A, we can have denumerable ex-
pressions F1, F2, . . . , the models of which may be:

(I1,J1), (I2,J2), . . . ∈ 2A×2A.

On such pairs causing state transitions based on
the program description (of body at some state), we
consider the operations of (a) the composition of
models, and (b) the alternation to models.

As regards sequences causing state transitions, we
know formality of automata, having a quintuple

A = 〈S,Σ,δ,s0,S f 〉,
as a machinery, where:

(i) S is a finite set of states.

(ii) Σ is an alphabet.

(iii) δ : S×Σ→ S is a mapping.

(iv) s0 ∈ S is the initial state.

(v) S f ⊆ S is a final subset.

The mapping δ is extended to the one δ̂ : S×Σ?→
S for the set Σ? of finite sequences concatenated from
the symbols of Σ such that:{

δ̂(s,nulllΣ?) = s, with the null sequence nullΣ? ,
δ̂(s,uσ) = δ(δ̂(s,u),σ) for u ∈ Σ? and σ ∈ Σ.

We then have the set of sequences

LA = {w ∈ Σ∗ | δ̂(s0,w) ∈ S f }

as accepted by the machinery A . In this case, we
regard Σ as {(I,J) | (I,J) is a model of some exp}.
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5 CONCLUSION

The primary result of this paper is a formal system
formulation to a programming language, where the
program (constrained by states) is algebraic expres-
sions, applicable to analysis, and expected to design
of complex AI. The language may contain state con-
straint programming and monitoring facilities. The
implementations (accompanying state transitions) are
globally captured with star semiring structure. The
system realizes abstract state machine with:

(a) Compact and formal description of state con-
straint programs,

(b) Model theories of algebraic expressions as pro-
grams, and

(c) State transitions to represent processing se-
quences (associated with models).

From the views of AI and software technologies
to complex systems with human, this idea based on
abstract state machine may allow human computer in-
teraction (HCI) to determine state transitions. The in-
teraction can be involved in the program containing
some expressions at states to the language system of
this paper with some algebraic elements.

As a logical framework, this paper gives a theoret-
ical basis with compact description, but its practical
aspects or applications are to be examined for further
studies. A complex AI to be interactive with cogni-
tive facilities should be examined. As a software tech-
nology, semantics for implementation of programs of
this language system is to be made clearer even in 3-
valued logic, with respect to object-oriented program-
ming (where the object class may be regarded as a
state). Compared with sophisticated works on logi-
cal frameworks in logic and computation possibly for
AI, there are concepts and ideas on knowledge. “Dis-
tributed knowledge” is discussed (Naumov and Tao,
2019), with quantified variables of quantifies ranging
over the set of agents. Concerning applications of
the second-order predicates to knowledge, the paper
(Kooi, 2016) contains the concept of knowing. Dis-
tributive knowledge processing is of more complexity
even for the state constrained programs.
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