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Abstract: Pathological images are easily accessible data type with potential as prognostic biomarkers. Here we extend 
Cox-nnet, a neural network based prognosis method previously used for transcriptomics data, to predict 
patient survival using hepatocellular carcinoma (HCC) pathological images. Cox-nnet based imaging 
predictions are more robust and accurate than Cox proportional hazards model. Moreover, using a novel two-
stage Cox-nnet complex model, we are able to combine histopathology image and transcriptomics RNA-Seq 
data to make impressively accurate prognosis predictions, with C-index close to 0.90 and log-ranked p-value 
of 4e-21 in the testing dataset. This work provides a new, biologically relevant and relatively interpretable 
solution to the challenge of integrating multi-modal and multiple types of data, particularly for survival 
prediction. 

1 INTRODUCTION 

Previously, we developed a neural network model 
called Cox-nnet to predict patient survival, using 
transcriptomics data (T. Ching, et al., 2018). Cox-
nnet is an alternative to the conventional methods, 
such as Cox proportional hazards (Cox-PH) methods 
with LASSO or ridge penalization. We demonstrated 
that Cox-nnet is more optimized for survival 
prediction from high throughput gene expression 
data, with comparable or better performance than 
other conventional methods, including Cox-PH, 
Random Survival Forests (H. Ishwaran and M. Lu, 
2019) and CoxbBoost (R. D. Bin and R. De Bin, 
2016). Moreover, Cox-nnet reveals much richer 
biological information, at both the pathway and gene 
levels, through analysing the survival related 
“surrogate features” represented in the hidden layer 
nodes in Cox-nnet.  

One of the questions remaining unexplored, is 
whether other data types that previously have been 

shown prognostic values are also good input features 
to be exploited by Cox-nnet. One of such data types 
is pathological image data, eg. H&E staining data. 
These images are much more easily accessible and 
cheaper to obtain, compared to RNA-Seq 
transcriptomics data.  

Therefore in this study, we extend Cox-nnet to 
take up pathological image features extracted from 
imaging processing tool CellProfiler (C. McQuin, et 
al., 2018), and compare the predictive performance of 
Cox-nnet relative to Cox proportional hazards, the 
second best method in the original study. Moreover, 
we also propose a new kind of 2-stage complex Cox-
nnet model as the proof-of-concept. The 2-stage Cox-
nnet model combines the hidden node features from 
the 1st-stage of Cox-nnet models in parallel, where 
each Cox-nnet model is optimized to fit either image 
or RNA-Seq based data, and then use these combined 
features as the input nodes to train a 2nd-stage Cox-
nnet model. We applied the models on TCGA 
hepatocellular carcinoma (HCC), which we had 
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previously processed data and accumulated 
experience (K. Chaudhary et al., 2018; K. Chaudhary 
et al., n.d.). In summary, our work here not only 
extends the previous Cox-nnet model to process 
pathological imaging data, but also creatively 
addresses the multi-modal data integration challenges 
for patient survival prediction.  

2 METHODS 

2.1 Datasets 

The histopathology images and their associated 
clinical information are downloaded from The Cancer 
Genome Atlas (TCGA). A total of 384 liver tumor 
images are collected. Among them 322 samples are 
clearly identified with tumor regions by pathology 
inspection. Among these samples, 290 have gene 
expression RNA-Seq data, and thus are selected for 
pathology-gene expression integrated prognosis 
prediction. The gene expression RNA-Seq dataset is 
also downloaded from TCGA, each feature was then 
normalized into RPKM using the function 
ProcessRNASeqData by TCGA-Assembler.  

2.2 Tumor Image Processing 

For each image, the tumor regions are labelled by 
pathologists at University of Michigan. The tumor 
regions are then extracted using Aperio software 
ImageScope (C. Marinaccio and D. Ribatti, 2015). To 
reduce computational complexities, each extracted 
tumor region is divided into non-overlapping 1000 by 
1000 pixel tiles. The density of each tile is computed 
as the summation of red, green and blue values, and 
10 tiles with the highest density are selected for 
further feature extraction similar to others (K.-H. Yu, 
2016). To ensure that the quantitative features are 
measured under the same scale, the red, green and 
blue value are rescaled for each images. Image #128 
with the standard background color (patient barcode: 
TCGA-DD-A73D) is selected as the reference image 
for the others to be compared with. The means of red, 
green and blue values of the reference image are 
computed and the rest of the images are normalized 
by the scaling factors of the its means of red, green, 
blue values relative to those of the reference image. 

2.3 Feature Extraction from Image Set 

CellProfiler is used for feature extraction 
(Kamentsky, L. et al., 2011). Images are first 

preprocessed by 'UnmixColors' module to H&E 
stains for further analysis. 'IdentifyPrimaryObject' 
module is used to detect unrelated tissue folds and 
then removed by 'MaskImage' module to increase the 
accuracy for detection of tumour cells. Nuclei of 
tumour cells are then identified by 
'IdentifyPrimaryObject' module again with para-
meters set by Otsu algorithm. The identified nuclei 
objects are utilised by 'IdentifySecondaryObject' 
module to detect the cell body objects and cytoplasm 
objects which surround the nuclei. Related biological 
features are computed from the detected objects, by a 
series of feature extraction modules, including 
'MeasureGranularity', 'MeasureObjectSizeShape', 
'MeasureObjectIntensity', 
'MeasureObjectIntensityDistribution', 
'MeasureTexture', 'MeaureImageAreaOccupied', 
'MeasureCorrelation', 'MeasureImageIntensity' and 
'MeasureObjectNeighbors'. To aggregate the features 
from the primary and secondary objects, the related 
summary statistics (mean, median, standard deviation 
and quartiles) are then calculated to summarize data 
from object level to image level, yielding 2429 
features in total. Each patient is represented by 10 
images, and the median of each feature is selected to 
represent the patient's image biological feature.  

2.4 Survival Prediction Models 

Cox-nnet: The Cox-nnet model is implemented in the 
Python package named Cox-nnet (T. Ching, et al., 
2018). Current implementation of Cox-nnet is a fully 
connected, two-layer neural network model, with a 
hidden layer and an output layer for cox regression. 
The drop-out method is used to avoid overfitting. We 
used hold-out method by randomly splitting the 
dataset to 80% training set and 20% testing set. We 
used grid search and 5-fold cross-validation to 
optimise the hyper-parameters for the deep learning 
model on the selected training set. The model is then 
trained under the optimised hyperparameter setting 
using the training set and further evaluated on the 
remaining testing set, the procedure is repeated 5 
times to assess the average performance. More details 
about Cox-nnet is described earlier in Ching et al (T. 
Ching, et al., 2018). 

Cox Proportional Hazards Model: Since the 
number of features produced by CellProfiler exceed 
the sample size, an elastic net Cox proportional 
hazard model is built to select features and compute 
the prognosis index (PI) (S. Huang, et al., 2014). 
Function cv.glmnet in the Glmnet R package is used 
to performs cross-validation to select the tuning 
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parameter lambda. The parameter alpha that 
controls the trade-off between quadratic penalty and 
linear penalty is selected using grid search. Same 
hold-out setting is employed by training the model 
using 80% randomly selected data and evaluated on 
the remaining 20% testing set. The procedure is 
repeated 5 times to calculate the mean accuracy of 
the model.  

2.5 Model Evaluation 

Similar to the previous studies (T. Ching, et al., 2018; 
K. Chaudhary, et al., 2018; K. Chaudhary, et al., n.d.), 
we also use concordant index (C-index) and log-
ranked p-value as the metrics to evaluate model 
accuracy. C-index signifies the fraction of all pairs of 
individuals whose predicted survival times are 
correctly ordered and is based on Harrell C statistics. 
Conventionally, a C-index around 0.70 indicates a 
good model, whereas a score around 0.50 means 
randomness. As both Cox-nnet and Cox-PH model 
quantify the patient's prognosis by log hazard ratios, 
we use the predicted median hazard ratios to stratify 
patients into two risk groups (high vs. low survival 
risk groups). We also compute the log-rank p-value to 
test if two Kaplan-Meier survival curves produced by 
the dichotomised patients are significantly different.  

2.6 Feature Evaluation 

The input feature importance score is calculated by 
drop-out. The values of a variable are set to its mean 
and the log likelihood of the model is recalculated. 
The difference between the original log likelihood 
and the new log likelihood is considered as feature 
importance (Bengio Y, et al., 2013). We select 100 
features with the highest feature scores from Cox-
nnet for association analysis between pathology 
image and gene expression features. We regress each 
selected image feature (y) over all the gene expres-
sion features (x) using LASSO penalization, and then 
use the R-square statistic as the correlation metric. 

2.7 Data Integration 

We construct 1st-stage Cox-nnet models using the 
image data and gene expression data of HCC, 
respectively. For each model, grid search is used on the 
training set to optimize the hyper-parameters under 5-
fold cross-validation. Then we extract and combine the 
nodes of the hidden layer from each Cox-nnet model 
as the new input features for the 2nd-stage model. This 
new Cox-nnet model is constructed and evaluated with 
the same parameter-optimization strategies.  

3 RESULTS 

3.1 Overview of Cox-nnet Model on 
Pathological Image Data 

In this study, we tested if pathological images can be 
used to predict cancer patient survival. As described 
in the Methods, pathological images of 322 TCGA 
HCC patients are individually annotated with tumor 
contents by pathologists, before being subject a series 
of processing steps. The tumor regions of these 
images then undergo segmentation, and the top 10 
tiles (as described in section 2.2) out of 1000 by 1000 
tiles are used to represent each patient. These tiles are 
next normalized for RGB coloring against a common 
reference sample, and 2429 image features of 
different categories are extracted by CellProfiler. 
Summary statistics (mean, median, standard 
deviation and quartiles) are calculated for each image 
features, and the median values of them over 10 tiles 
are used as the input imaging features for survival 
prediction.  

We applied these imaging features on Cox-nnet, a 
neuron-network based prognosis prediction method 
previously developed by our group. The architecture 
of Cox-nnet is shown in Figure 1. Briefly, Cox-nnet 
is composed of the input layer, one fully connected 
hidden layer and an output “proportional hazards” 
layer. We use 5-fold cross-validation (CV) to find the 
optimal regularization parameters. Based on the 
results on RNA-Seq transcriptomics previously, we 
use dropout as the regularization method. 
Additionally, to evaluate the results on pathology 
image data, we compare Cox-nnet with Cox-PH 
model, the previously 2nd-best prognosis model on   
RNA-Seq data. 

 

Figure 1: The architectures of Cox-nnet model: The sketch 
of Cox-nnet model for prognosis prediction, based on a 
single data type. 
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3.2 Comparison of Prognosis 
Prediction between Cox-nnet and 
Cox-PH over Pathology Imaging 
Data 

We use two accuracy metrics to evaluate the 
performance of models in comparison: C-index and 
log-rank P-values.  C-index measures the fraction of all 
pairs of individuals whose predicted survival times are 
correctly ordered by the model. The higher C-index, 
the more accurate the prognosis model is. On the other 
hand, log-rank p-value tests if the two Kaplan-Meier 
survival curves based on the survival risk-stratification 
are significantly different (log-rank p-value <0.05). In 
this study, we stratify the patients by the median score 
of predicted prognosis index (PI) from the model. As 
shown in Figure 2, the C-index values from the Cox-
PH model are much more variable (less stable), 
compared to those from Cox-nnet. Moreover, the 
median C-index score from Cox-nnet is higher (around 
0.75) than Cox-PH (less than 0.70). 

 

Figure 2: Comparison of prognosis prediction with different 
models and data types. 

Additionally, the discrimination power of Cox-nnet 
on patient Kaplan-Meier survival difference (Figure 
3 C and D) is much better than Cox-PH model 
(Figure 3 A and B), using median PI based survival 
risk stratification. In the training dataset, Cox-nnet 
achieves a log-rank P-value of 1e-13, compared to 3e-
5 for Cox-PH; in the testing dataset, Cox-nnet 
achieves a log-rank P-value of 1e-6, whereas Cox-PH 
gives a result of 0.01.  

We next investigated the top 100 image features 
according to Cox-nnet ranking (Figure 4). 
Interestingly, the most frequent features are those 
involved in textures of the image, accounting for 43% 
of raw input features. Intensity and Area/Shape 
parameters make up the 2nd and 3rd highest categories, 

 

Figure 3: Comparison of Kaplan-Meier survival curves 
resulting from Cox-PH and Cox-nnet models, based on 
pathological images. 

with 21% and 15% features. Density, on the other 
hand, is less important (6%). It is also worthy to note 
that among 49 selected features from the 
conventional Cox-PH model, 63% (31) are also 
found in the top 100 features found by Cox-nnet.  

 
Figure 4: Categories of the top 100 most important image 
features in Cox-nnet. 

3.3 Prognosis Prediction by Combining 
Histopathology Imaging and Gene 
Expression RNA-Seq Data 

Multi-modal and multi-type data integration is 
challenging, particularly so for survival prediction.  
We next ask if we can utilize Cox-nnet workframe 
for such purpose, exemplified by pathology imaging 
and gene expression RNA-Seq based survival 
prediction. 

A

C D 

B 
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Towards this, we propose a two-stage Cox-nnet 
complex model, inspired by other two-stage models 
in genomics fields (T. Schulz-Streeck, et al., 2013; 
R. Wei, et al., 2016; F. R. Pinu, et al., 2019). The 
two-stage Cox-nnet model is depicted in Figure 5 
below.  

 

Figure 5: The architectures of 2-stage Cox-nnet complex 
model for prognosis prediction, which integrates multiple 
data types (eg. pathology image and gene expression). 

For the first stage, we construct two Cox-nnet 
models in parallel, using the image data and gene 
expression data of HCC, respectively. For each 
model, we optimize the hyper-parameters using grid 
search under 5-fold cross-validation. Then we 
extract and combine the nodes of the hidden layer 
from each Cox-nnet model as the new input features 
for the second-stage Cox-nnet model. We construct 
and evaluate the second-stage Cox-nnet model with 
the same parameter-optimisation strategy as in the 
first-stage. 

As shown in Figure 6, the resulting two-stage 
Cox-nnet model yields impressive performance, 
judged by the C-index values on both training set and 
testing set, both of which are close to 0.90. In fact, 
from our experience over the years, none of the 
prognosis models based on one omic data type had 
yielded a predictive C-index score nearly as high. 
This outstanding performance of the two-stage Cox-
nnet model is also confirmed by the log-rank P-values 
in the Kaplan-Meier survival curves (Figure 6). In the 
training dataset, Cox-nnet achieves a log-rank P-
value of 6e-17; in the testing dataset, Cox-nnet has an 
even higher log-rank P-value of 4e-21. The fact that 
the testing dataset obtains a better log-rank p-value 
than the training dataset, indicates that the over-fitting 
is less of a concern. Note: the C-index values in 
Figure 6 are different from those in Figure 2, since 
the objective in these plots is to differentiate the 
stratified risk groups post the cox-nnet model, rather 
than fitting the survival data directly. 

 

 

 

Figure 6: Kaplan-Meier survival curves resulting from the 
2-stage Cox-nnet model, combining pathological images 
and gene expression RNA-Seq data from same HCC 
patients. A. training set. B. testing set.  

We also investigate the correlations between the 
top imaging features with those RNA-Seq gene 
expression features. For this we regress each selected 
image feature (y) over all the gene expression features 
(x) using LASSO penalization. Interestingly, among 
the top 20 imaging features, none but one feature 
(StDev_Nuclei_AreaShape_MajorAxisLength) has a 
decent correlation value (R-square=0.30) with gene 
expression features. This result shows that imaging 
features extracted using CellProfiler have mostly 
orthogonal (or non-overlapping) predictive 
information to the RNA-Seq gene expression 
features. This also supports the observed significant 
increase in C-index (Figure 2) and log-ranked p-
values (Figure 6), after adding RNA-Seq features to 
imaging features. 

4 CONCLUSIONS 

Driven by the objective to build a uniform workframe 
to integrate multi-modal and multi-type data to 
predict patient survival, we extend Cox-nnet model, a 

A
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neural-network based survival prediction method, on 
pathology imaging data and beyond. Using TCGA 
HCC pathology images as the example, we 
demonstrate that Cox-nnet is more robust and 
accurate at predicting testing dataset, relative to Cox-
PH, the standard method for survival prediction 
(which was also the second-best method in the 
original RNA-Seq transcriptomic study (T. Ching, et 
al., 2018)). Moreover, we propose a new two-stage 
complex Cox-nnet model to integrate imaging and 
RNA-Seq transcriptomic data, and show case its 
outstanding predictive accuracy on testing dataset (C-
index almost as high as 0.90). The two-stage Cox-
nnet model combines the transformed, hidden node 
features from the first-stage of Cox-nnet models for 
imaging or RNA-Seq based data respectively and use 
these combined features as the inputs to train a 
second-stage Cox-nnet model.  

Rather than using convolutional neural network 
(CNN) models that are more complex, we utilized a 
less complex but perhaps more biologically relevant 
approach, where we extract imaging features using 
the tool CellProfiler. These features are then fed in a 
relatively simple, two-layer neural network model, 
and still achieve credible predictive performance. 
Such success argues that in biological domain, it is 
possible to use relatively simple neural network 
models with have prior biological relevance (such as 
in the input features). In summary, our work here not 
only extends the previous Cox-nnet model to process 
pathological imaging data, but also creatively 
addresses the multi-modal data integration challenges 
for patient survival prediction.  
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