
Accidental Sensitive Data Leaks Prevention via Formal Verification

Madalina G. Ciobanu1, Fausto Fasano1, Fabio Martinelli2, Francesco Mercaldo1,2

and Antonella Santone1

1Department of Biosciences and Territory, University of Molise, Pesche (IS), Italy
2Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy

{fabio.martinelli, francesco.mercaldo}@iit.cnr.it

Keywords: Android, Security, Model Checking, Formal Methods, Privacy.

Abstract: Our mobile devices, if compared to their desktop counterpart, store a lot of sensitive and private information.
Considering how easily permissions to sensitive and critical resources in the mobile environment are released,
for example in Android, sometimes the developer unwittingly causes the leakage of sensitive information,
endangering the privacy of users. Starting from these considerations, in this paper we propose a method aimed
to automatically localise the code where there is the possibility of information leak. In a nutshell, we discuss
a method aimed to check whether a sensitive information is processed in a way that violates specific rules.
We employ code instrumentation to annotate sensitive data exploiting model checking technique. To show the
effectiveness of the proposed method a case study is presented.

1 INTRODUCTION

Mobile applications are widely used in different sec-
tors with billions of smartphone owners using mobile
apps daily. The evolution of mobile software requires
more attention, appropriate skills, and a better com-
prehension for the development, maintenance, and en-
gineering of applications phases.

Nowadays, mobile apps need to seamlessly inter-
act with back-end servers, which can be accomplished
with numerous alterations and adjustments during the
development phase (Harleen K. Flora, 2014). Smart-
phones, more than desktop and laptop computers,
have lots of sensors that could increment usability but,
there again, increment the overall complexity of the
apps. With such sensors, indeed, it is possible to find
position, rumor level, light, usage angle, movement
and so on. Many of such sensors and peripherals pro-
duce sensitive data that must be managed following
specific regulations. The GDPR1 introduces penalties
including important administrative fines 2 that can be
imposed for any infringement of the Regulation, such

1The General Data Protection Regulation (GDPR) (EU)
2016/679 is a regulation in EU law on data protection and
privacy.

2Fines can be up to 20 million euros, or 4% of the
firm’s worldwide annual revenue from the preceding finan-
cial year, whichever amount is higher. https://gdpr.eu/fines

as in case of personal data processing without user
consent or transferring personal data to a non GDPR-
compliant recipient. It is worth noting that such regu-
lation applies to any subject that collects, uses and/or
processes European citizen’s personal data, regardless
of whether the processing takes place in the Union or
not.

To this aim, a growing attention is paid to the
way apps collect, process, and transfer personal data
to back-end servers. Most of this attention concerns
malware detection (Fasano et al., 2019; Martinelli
et al., 2017a; Martinelli et al., 2017b; Ciobanu et al.,
2019a; Ciobanu et al., 2019b). However, even in
case of a trusted app, whose behaviour is legitimate,
the risk of an accidental sensitive data leak remains,
as software developers are in charge of assessing the
Regulation compliance. As an example scenario, a
software house may decide to avoid its app to re-
quest write permission to shared internal storage in
case of sensitive information, as well as to read card
data or to mount local file systems when process-
ing particular information, unless the user is aware of
how the data is being processed. On the other hand,
the same permissions may be legitimate when pro-
cessing other non-sensitive entities or when storing
aggregated data. Since the permission to read/write
from providers/external storage as well as to send data
through the internet is independent of the informa-

Ciobanu, M., Fasano, F., Martinelli, F., Mercaldo, F. and Santone, A.
Accidental Sensitive Data Leaks Prevention via Formal Verification.
DOI: 10.5220/0009380608250834
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 825-834
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

825

tion itself, there is no ready-to-use solution to check
whether an app is accidentally leaking sensitive infor-
mation by unsafely saving it to the device memory of
sending it to the back-end, without the explicit con-
sent of the user. Despite code inspection can be very
effective to identify such situation, several developers
underrate it in favor of testing (Scanniello et al., 2013)
even when the former technique would be more ade-
quate.

In this paper, we propose a method to formally
check whether a sensitive information is processed
in a way that violates specific rules. The proposed
method uses code instrumentation to annotate sen-
sitive data and is based on model checking tech-
nique using temporal logic formulae to check whether
the sensible data processing can break some defined
rules. Moreover, the approach assists the software en-
gineer in the identification of the reason why the rule
is not satisfied, providing relative traces from the sim-
ulation environment.

The rest of the paper proceeds as follows: In Sec-
tion 2 background notions about model checking are
provided and the proposed method to detect sensitive
information leakage in Android environment is pre-
sented. In Section 3 a case study that illustrates the
proposed method applied to the real scenario is pre-
sented. Related work is discussed in Section 4, while
conclusion and future work are discussed in Section 5.

2 PROPOSED METHOD

In this section we briefly introduce background no-
tions about model checking, in the next we describe
the proposed method to detect sensitive data leakage
in Android environment.

2.1 Model Checking and Mu-calculus
Logic

Model checking is a formal method for determining
if a model of a system satisfies a correctness speci-
fication (Clarke et al., 2001; Ceccarelli et al., 2014;
Santone, 2002; Santone, 2011; Barbuti et al., 2005;
Gradara et al., 2005). A model of a system consists of
a Labelled Transition System (LTS). A specification
or property is a logical formula. A model checker
then accepts two inputs, an LTS and a temporal for-
mula, and returns true if the system satisfies the for-
mula and false otherwise.

An LTS comprises some number of states, with
arcs between them labelled by activities of the system.
An LTS is specified by:

• a set S of states;

• a set L of labels or actions;

• a set of transitions T ⊆ S×L×S.

Transitions are given as triples (start, label,end).
With the aim to express proprieties of the system

we consider the modal mu-calculus (Stirling, 1989)
which is one of the most important logics in model
checking.

The syntax of the mu-calculus is the following,
where K ranges over sets of actions (i.e., K ⊆ L) and
Z ranges over variables:

ϕ ::= tt | ff |Z | ϕ∧ϕ | ϕ∨ϕ | [K]ϕ |
〈K〉ϕ | νZ.ϕ | µZ.ϕ

A fixpoint formula may be either µZ.ϕ or νZ.ϕ
where µZ and νZ binds free occurrences of Z in ϕ. An
occurrence of Z is free if it is not within the scope of
a binder µZ (resp. νZ). A formula is closed if it con-
tains no free variables. µZ.ϕ is the least fixpoint of the
recursive equation Z = ϕ, while νZ.ϕ is the greatest
one. From now on we consider only closed formulae.

Scopes of fixpoint variables, free and bound vari-
ables, can be defined in the mu-calculus in analogy
with variables of first order logic.

The satisfaction of a formula ϕ by a state s of a
transition system is defined as follows:

• each state satisfies tt and no state satisfies ff;

• a state satisfies ϕ1 ∨ϕ2 (ϕ1 ∧ϕ2) if it satisfies ϕ1
or (and) ϕ2. [K]ϕ is satisfied by a state which,
for every execution of an action in K, evolves to a
state obeying ϕ. 〈K〉ϕ is satisfied by a state which
can evolve to a state obeying ϕ by performing an
action in K.

For example, 〈a〉ϕ denotes that there is an a-
successor in which ϕ holds, while [a]ϕ denotes that
for all a-successors ϕ holds.

The precise definition of the satisfaction of a
closed formula ϕ by a state s (written s |= ϕ) is given
in Table 1.

We consider the CWB-NC3 (Concurrency Work-
Bench of the New Century) as formal verification en-
vironment. It is one of the most popular environments
for verifying systems. In the CWB-NC the verifi-
cation of temporal logic formulae is based on model
checking (Clarke et al., 2001).

2.2 Information Leakage Detection

In this section, we describe our approach aimed to de-
tect possible sensitive information leakage in Android

3https://www3.cs.stonybrook.edu/∼cwb/

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

826

Table 1: Satisfaction of a closed formula by a state.

p 6|= ff

p |= tt

p |= ϕ∧ψ iff p |= ϕ and p |= ψ

p |= ϕ∨ψ iff p |= ϕ or p |= ψ

p |= [K]R ϕ iff ∀p′.∀α ∈ K.p α−→K∪R p′ implies p′ |= ϕ

p |= 〈K〉R ϕ iff ∃p′.∃α ∈ K.p α−→K∪R p′ and p′ |= ϕ

p |= νZ.ϕ iff p |= νZn.ϕ for all n
p |= µZ.ϕ iff p |= µZn.ϕ for some n

where:

• for each n, νZn.ϕ and µZn.ϕ are defined as:

νZ0.ϕ = tt µZ0.ϕ = ff

νZn+1.ϕ = ϕ[νZn.ϕ/Z] µZn+1.ϕ = ϕ[µZn.ϕ/Z]

where the notation ϕ[ψ/Z] indicates the substitution of ψ for every free occurrence of the variable Z in ϕ.

applications. It is worth noting that the approach is
not limited to the Android platform, but, in this paper,
we will focus on this platform because of its broad
diffusion, the easiness and multiplicity of ways data
can be shared with other applications, and the avail-
ability of numerous source code repositories to assess
the approach.

The proposed method, on one hand uses code in-
strumentation to provide domain expert knowledge
and, on the other hand, models the Android appli-
cation as a labelled transition system (LTS) captur-
ing the behaviour of the app, and evaluating temporal
properties directly on this LTS. Figure 1 shows the
workflow of the proposed method.

The first step of the proposed method is the Code
instrumentation, aiming at providing basics for the
Model checking phase. In particular, two kind of an-
notations can be specified: (i) which data should be
considered sensitive and (ii) where, in the app, the
user is informed about the way her data are stored or
processed. An example of the former instrumented
code is shown in Figure 2. Here, the mData vari-
able stores meta-data of a picture in the device photo
gallery. Amongst the picture meta-data, information
can be found, such as the geolocation, other EXIF
data, user tags, and the picture rating that could be
considered sensitive. As so, in our example, the app
developer decided to annotate the variable, thus in-
forming the verification tool that the aforementioned
variable must be checked against the specified rules.
An example of the latter instrumented code is shown
in Figure 3. In this case, the annotation is used as a

checkpoint to state where the user is informed and de-
termine if she agreed to the sensitive data processing
or not.

The second phase of the method consists in a for-
mal verification of a set of rules. We focus here on a
GDPR-compliance rule stating that personal data pro-
cessing without user consent or transferring personal
data to a non GDPR-compliant recipient is forbidden.

In order to describe mobile applications we
adopted the Milner’s Calculus of Communicating
Systems (CCS) (Milner, 1989) language specification
and express behavioural properties using mu-calculus
branching temporal logic (Stirling, 1989). Simi-
larly to previous works that adopted such method-
ology (Canfora et al., 2018), we developed a tool
aimed to first generate a model in the CCS specifi-
cation starting from the analyzed application source
code where, for each instruction, we define a trans-
formation function to map source code into CCS pro-
cess specifications. Afterwards, we specify the set
of properties we want to guarantee. In particular,
codes described as CCS processes are first mapped
to labelled transition systems and then verified with
a model checker, i.e., the Concurrency Workbench
of New Century (CWB-NC) (Cleaveland and Sims,
1996) verification environment.

In this work, we formulated logic rules to ver-
ify whether the value of a labelled variable (one
of the annotated variable in the previous step of
the approach) is accessed while saving data to the
shared storage or sending data through the Inter-
net without the explicit consent of the user. In

Accidental Sensitive Data Leaks Prevention via Formal Verification

827

Figure 1: The proposed method the detect sensible data leakage.

Figure 2: Code snippet showing sensitive data annotation for APhotoManager. 4

this paper, in order to simplify the rules, we sup-
pose that whenever a variable is accessed before
the use of specific permission invocation (i.e., the
android.permission.INTERNET request or the an-
droid.permission.WRITE EXTERNAL STORAGE re-
quest) there could be a data leakage. Moreover, the
explicit consent of the user has been identified by an-
notating the relative code (see. Figure 3). To pass the
CWB-NC model checker, the execution of the code

must precede in time the access to the variable in the
execution stack.

Whether at least one property is not verified, the
proposed framework will mark the relative variable
by appending a warning code to the corresponding
annotation. Moreover, a Trace Log will be created

4A Photo Manager App available on F-Droid repos-
itory at https://f-droid.org/en/packages/de.k3b.android.
androFotoFinder/

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

828

Figure 3: Code snippet showing user awareness enforcement.

that contains details about the rule that was not ver-
ified and detailed information about the reason why
the compliance is not guaranteed (e.g., the trace that
leads to a sensitive data leakage). In case all the rules
are verified, there is no action to take.

Note that, apart from the code instrumentation,
that is responsibility of the app developer, the rest of
the process is automatic. In particular, the construc-
tion of the LTS is completely automatic. Furthermore,
the model checker tool can be automated to contin-
uously verify, e.g., in the background, the specified
logic formulae on the formal model, and interact with
the development environment when a rule cannot be
verified because of changes to the source code of the
application.

3 THE CASE STUDY

In this section, we present the temporal logic formulae
aimed to assist the developer notifying the users about
possible sensitive data leaks.

As case study, we consider the A Photo Manager
app, an Android application to manage local photos 4.
Below we show three code snippet belonging to the A
Photo Manager app.

In detail, we show three code snippets implement-
ing behaviours that can conduct to leakage of sensi-

tive information. We show the Java code snippets ex-
tracted by exploiting the Bytecode Viewer tool 5.

Figure 4 shows a code snippet related to the
equals method of the GeoLocation belonging to the
com.draw.lang package. This snippet accesses the
current latitude and longitude (as evidenced by rows
9 and 11 in the Figure 4 snippet).

Figure 5 shows a code snippet related to the
getCacheDirectory method of the StorageUtils class
in the com.nostra13.universalimageloader.utils pack-
age. The snippet shown in Figure 5 is checking
whether it is possible to access to the external stor-
age (by invoking the hasExternalStoragePermission
method). It can be of interest to highlight that on the
Android external storage once a file is stored, all the
installed application can read and write the resource
without explicit consent to the user (Canfora et al.,
2018).

The code snippet shown in Figure 6 is related
to the NetworkAvailablityCheck class constructor
belonging to the org.osmdroid.titleprovider.modules
package. This snippet requires the permission
to access to the network exploiting the an-
droid.permission.ACCESS NETWORK STATE
permission: basically this permission allows applica-
tions to access information about networks, for this
reason this request can be considered as a potential

5https://github.com/Konloch/bytecode-viewer

Accidental Sensitive Data Leaks Prevention via Formal Verification

829

Figure 4: Code snippet accessing device latitude and longitude.

Figure 5: Code snippet accessing external storage.

information leak.
Table 2 shows the temporal logic formulae to

detect whether the mobile developer previously in-
formed the user before using a sensitive resources.

The temporal logic formulae are related to the de-
tection of the following behaviours:

• with respect to the ϕ formula, related to the snip-
pet in Figure 4, the formula is satisfied whether
a log is invoked (with the aim to advise the user)
before using the information about the current de-

vice localisation;

• with respect to the χ formula, related to the snip-
pet shown in Figure 5, this formula is true whether
an instance of the log is invoked before asking for
external storage usage;

• with respect to the ψ formula, related to the snip-
pet shown in Figure 6, the ψ temporal logic prop-
erty is satisfied whether a log instance is required
before the device is using information related to
the network state.

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

830

Table 2: Temporal logic formulae for mobile secure programming verification.

ϕ1 = νX .[checkcastcomdrewlangGeoLocatio] ff ∧ [−checkcastcomdrewlangGeoLocation, pushlog] X

ϕ2 = νX .[store] ff ∧ [−store, pushlog] X

ϕ3 = νX .[load] ff ∧ [−load, pushlog] X

ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3

χ1 = νX .[push] ff ∧ [−push, pushlog] X

χ2 = νX .[invokegetCacheDirectory] ff ∧ [−invokegetCacheDirectory, pushlog] X

χ3 = νX .[invokegetExternalStorageState] ff ∧ [−invokegetExternalStorageState, pushlog] X

χ4 = νX .[pushmounted] ff ∧ [−pushmounted, pushlog] X

χ5 = νX .[invokehasExternalStoragePermission] ff ∧ [−invokehasExternalStoragePermission, pushlog] X

χ6 = νX .[invokegetExternalCacheDir] ff ∧ [−invokegetExternalCacheDir, pushlog] X

χ7 = νX .[invokegetCacheDir] ff ∧ [−invokegetCacheDir, pushlog] X

χ = χ1 ∧ χ2 ∧ χ3 ∧ χ4 ∧ χ5 ∧ χ6 ∧ χ7

ψ1 = νX .[invokegetSystemService] ff ∧ [−invokegetSystemService, pushlog] X

ψ2 = νX .[checkcastandroidnetConnectivityManager] ff ∧

[−checkcastandroidnetConnectivityManager, pushlog] X

ψ3 = νX .[invokegetPackageManager] ff ∧ [−invokegetPackageManager, pushlog] X

ψ4 = νX .[pushandroid permissionACCESSNETWORKSTAT E] ff ∧

[−pushandroid permissionACCESSNETWORKSTAT E, pushlog] X

ψ5 = νX .[invokegetPackageName] ff ∧ [−invokegetPackageName, pushlog] X

ψ6 = νX .[invokecheckPermission] ff ∧ [−invokecheckPermission, pushlog] X

ψ = ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 ∧ ψ5 ∧ ψ6

Accidental Sensitive Data Leaks Prevention via Formal Verification

831

Figure 6: Code snippet requiring the network access.

Clearly in the code snippet shown in Figures 4, 5
and 6 these formulae are not satisfied: as a matter of
fact there is no log invocation before the usage of the
sensitive instructions, symptomatic that the user is not
advised.

With the aim to help the developer to understand
the reason why a certain formula is not satisfied, we
show in Figure 7 the trace generated from the CWB-
NC simulation environment. In detail, we are con-
sidering the model generated starting from the code
snippet in Figure 4.

In this case the ϕ formula is not satisfied be-
cause it never happens that before a checkcastcom-
drewlangGeoLocation, a store and a load action there
is a log action: in fact, as shown from Figure 7, the
pushlog action is not present, while the checkcast-
comdrewlangGeoLocation, the store and the load are
present (in Figure 7 are highlighted). The ϕ formula
is satisfied whether a pushlog action is present be-
fore the highlighted actions. In this way the developer
is able to localise the exact point in the source code
where to invoke the log action (i.e., the exact point
where the user should be notified).

4 RELATED WORK

Several studies in current state of the art literature are
mainly focused on mobile malware detection (Chen
et al., 2016; Suarez-Tangil et al., 2017; Duc and
Giang, 2018). These works are mainly exploiting
machine learning techniques by extracting distinc-
tive features from samples under analysis to discrimi-
nate between malicious applications and trusted ones.
Contrarily, in this paper we investigate an automatised
method aimed to detect possible sensitive information

leakage by providing an useful tool for the developer
to inform the user.

Shan et al. in (Shan et al., 2018) investigate about
self-hiding behaviours (SHB), e.g. hiding the app,
hiding app resources, blocking calls, deleting call
records, or blocking and deleting text messages. First
of all the authors provide an in-deep characterization
of SHB, then they present a suite of static analyses
to detect such behaviour. They define a set of detec-
tion rules able to catch SHB. They test their approach
against more than 9,000 Android applications.

Dynamic taint analysis is a method to analyze ex-
ecutable files by tracing information flow (Kim et al.,
2014; Dalton et al., 2010). This approach has been
applied to detect sensitive information leaking of net-
work servers (Li et al., 2014). Differently from us,
besides being focused on network servers attacked by
malwares or hackers, sensitive data tagging is auto-
matic, thus not using the domain expert knowledge.

Taint analysis is also considered by FlowDroid
(Arzt et al., 2014), a tool focused on the Android
application life-cycle and callback methods designed
with the aim to reduce missed leaks and false pos-
itives. Authors provide also an Android-specific
benchmark suite i.e., DROIDBENCH, to evaluate
taint analysis tools focused on Android information
leakage. Also the Leakminer tool (Yang and Yang,
2012) considers taint analysis for detecting sensitive
information exfiltration in Android.

All of the aforementioned approaches are mainly
focused on the identification of data leaking from
the user perspective. In fact, as emerging from the
current state-of-the-art discussion, the following pro-
posal represents the first attempt to provide a tool for
the developer to avoid the (unaware) usage of sensi-
tive resource without notifying the user.

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

832

Figure 7: Trace generated from the simulation environment.

5 CONCLUSION AND FUTURE
WORK

In this paper we propose a method to assess security
related properties of Android applications. This is a
current topic, especially in the context of GDPR reg-
ulation compliance. Indeed, the software developer
may be answerable to provide access to sensitive in-
formation without the explicit user consent as well as
for transferring personal data towards a non GDPR-
compliant recipient. In the Android environment, data
can be transferred through several channels, e.g., via
the network connection or by storing them in shared
memory that can be accessed by other applications.
In these cases, there is the possibility to infringe the
regulation and cause data leakage towards unautho-
rized subjects or non compliant recipients. Despite
this could be considered a malicious behaviour typ-
ical from spyware and other similar malwares, there
could be the possibility that the leakage is merely due
to shallowness or bad programming practices, such as
using an unsafe connection or a shared data store.

To overcome this issue and support the soft-
ware engineer during the development and verifica-
tion phases, we propose a semi-automatic method
based on code instrumentation and model checking
techniques. In our approach, the software engineer
is in charge of identifying the sensitive information
her app processes and the methods she defined to in-
form the user about the sensitive data processing or
transfer. This can be done using Java custom annota-
tions or logging instructions. Once the code is instru-

mented, formal methods are applied to check prede-
fined rules aimed at verifying if there exist execution
threads bringing about sensitive information leaks.

We also presented how the proposed method can
be applied to an existing application to identify possi-
ble information leaks and improve the software secu-
rity by fixing the flaw. The proposed method can be
easily extended to other programming language and
platforms provided that the related translator from the
source to the CCS specification is available.

As future work, we plan to evaluate the method by
applying it to several open source Android applica-
tions to identify possible sensitive information leaks
and understand how much widespread are similar bad
programming practices. Finally, in case we observe a
broad diffusion of unchecked sensitive data leaks, we
intend to develop a tool that automatically fix some of
the most common regulation infringements by inject-
ing configurable snippets directly in the application’s
source code. This would provide the developers with
a tool to significantly improve their application com-
pliance to specific regulations, with a limited effort.

ACKNOWLEDGMENTS

This work has been partially supported by MIUR -
SecureOpenNets and EU SPARTA and CyberSANE
projects, the Formal Methods for IT Security Lab6,

6https://dipbioter.unimol.it/ricerca/laboratori/metodi-
formali-per-la-sicurezza-informatica/

Accidental Sensitive Data Leaks Prevention via Formal Verification

833

and the MOSAIC Research Center7 at the University
of Molise.

REFERENCES

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y., Octeau, D., and McDaniel, P.
(2014). Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android
apps. ACM SIGPLAN Notices, 49(6):259–269.

Barbuti, R., De Francesco, N., Santone, A., and Vaglini, G.
(2005). Reduced models for efficient ccs verification.
Formal Methods in System Design, 26(3):319–350.

Canfora, G., Martinelli, F., Mercaldo, F., Nardone, V., San-
tone, A., and Visaggio, C. A. (2018). Leila: formal
tool for identifying mobile malicious behaviour. IEEE
Transactions on Software Engineering.

Ceccarelli, M., Cerulo, L., and Santone, A. (2014). De
novo reconstruction of gene regulatory networks from
time series data, an approach based on formal meth-
ods. Methods, 69(3):298–305. cited By 10.

Chen, S., Xue, M., Tang, Z., Xu, L., and Zhu, H.
(2016). Stormdroid: A streaminglized machine
learning-based system for detecting android malware.
In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, pages
377–388. ACM.

Ciobanu, M. G., Fasano, F., Martinelli, F., Mercaldo, F.,
and Santone, A. (2019a). A data life cycle modeling
proposal by means of formal methods. In Proceedings
of the 2019 ACM Asia Conference on Computer and
Communications Security, pages 670–672.

Ciobanu, M. G., Fasano, F., Martinelli, F., Mercaldo,
F., and Santone, A. (2019b). Model checking for
data anomaly detection. Procedia Computer Science,
159:1277–1286.

Clarke, E. M., Grumberg, O., and Peled, D. (2001). Model
checking. MIT Press.

Cleaveland, R. and Sims, S. (1996). The ncsu concurrency
workbench. In Alur, R. and Henzinger, T. A., editors,
CAV, volume 1102 of Lecture Notes in Computer Sci-
ence, pages 394–397. Springer.

Dalton, M., Kannan, H., and Kozyrakis, C. (2010). Taint-
ing is not pointless. ACM SIGOPS Operating Systems
Review, 44(2):88–92.

Duc, N. V. and Giang, P. T. (2018). Nadm: Neural network
for android detection malware. In Proceedings of the
Ninth International Symposium on Information and
Communication Technology, pages 449–455. ACM.

Fasano, F., Martinelli, F., Mercaldo, F., and Santone, A.
(2019). Cascade learning for mobile malware fami-
lies detection through quality and android metrics. In
International Joint Conference on Neural Networks,
IJCNN 2019 Budapest, Hungary, July 14-19, 2019,
pages 1–10.

7https://dipbioter.unimol.it/ricerca/laboratori/centro-di-
ricerca-mosaic/

Gradara, S., Santone, A., and Villani, M. L. (2005). Using
heuristic search for finding deadlocks in concurrent
systems. Information and Computation, 202(2):191–
226.

Harleen K. Flora, Xiaofeng Wang, S. C. (2014). Adopting
an agile approach for the development of mobile ap-
plications. Journal of Computer Applications, 94:43–
50.

Kim, J., Kim, T., and Im, E. G. (2014). Survey of dynamic
taint analysis. In 2014 4th IEEE International Confer-
ence on Network Infrastructure and Digital Content,
pages 269–272.

Li, W., Yan, Y., Tu, H., and Xu, J. (2014). A dynamic taint
tracking based method to detect sensitive information
leaking. In The 16th Asia-Pacific Network Operations
and Management Symposium, pages 1–4.

Martinelli, F., Marulli, F., and Mercaldo, F. (2017a). Eval-
uating convolutional neural network for effective mo-
bile malware detection. Procedia computer science,
112:2372–2381.

Martinelli, F., Mercaldo, F., and Saracino, A. (2017b).
Bridemaid: An hybrid tool for accurate detection of
android malware. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications
Security, pages 899–901. ACM.

Milner, R. (1989). Communication and concurrency. PHI
Series in computer science. Prentice Hall.

Santone, A. (2002). Automatic verification of concur-
rent systems using a formula-based compositional ap-
proach. Acta Informatica, 38(8):531–564.

Santone, A. (2011). Clone detection through process alge-
bras and java bytecode. In IWSC, pages 73–74. Cite-
seer.

Scanniello, G., Fasano, F., Lucia, A. D., and Tortora, G.
(2013). Does software error/defect identification mat-
ter in the italian industry? IET Software, 7(2).

Shan, Z., Neamtiu, I., and Samuel, R. (2018). Self-hiding
behavior in android apps: detection and characteriza-
tion. In Proceedings of the 40th International Confer-
ence on Software Engineering, ICSE 2018, Gothen-
burg, Sweden, May 27 - June 03, 2018, pages 728–
739.

Stirling, C. (1989). An introduction to modal and temporal
logics for ccs. In Yonezawa, A. and Ito, T., editors,
Concurrency: Theory, Language, And Architecture,
volume 491 of LNCS, pages 2–20. Springer.

Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Gi-
acinto, G., and Cavallaro, L. (2017). Droidsieve: Fast
and accurate classification of obfuscated android mal-
ware. In Proceedings of the Seventh ACM on Confer-
ence on Data and Application Security and Privacy,
pages 309–320. ACM.

Yang, Z. and Yang, M. (2012). Leakminer: Detect informa-
tion leakage on android with static taint analysis. In
2012 Third World Congress on Software Engineering,
pages 101–104. IEEE.

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

834

