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Abstract: Edge clusters consisting of small and affordable single-board devices are used in a range of different applica-
tions such as microcontrollers regulating an industrial process or controllers monitoring and managing traffic
roadside. We call this wider context of computational infrastructure between the sensor and Internet-of-Things
world and centralised cloud data centres the edge or edge computing. Despite the growing hardware capabil-
ities of edge devices, resources are often still limited and need to be used intelligently. This can achieved
by providing a self-adaptive scaling component in these clusters that is capable of scaling individual parts of
the application running in the cluster. We propose an auto-scalable container-based cluster architecture for
lightweight edge devices. A serverless architecture is at the core of the management solution. Our auto-scaler
as the key component of this architecture is based on fuzzy logic in order to address challenges arising from an
uncertain environment. In this context, it is crucial to evaluate the capabilities and limitations of the application
in a real-world context. Our results show that the proposed platform architecture, the implemented application
and the scaling functionality meet the set requirements and offer a basis for lightweight edge computing.

1 INTRODUCTION

Edge Computing is defined as a concept where most
processing tasks are computed directly on hardware
nodes at the edge of a network and are not send to cen-
tral, but remote processing hubs. The management of
these systems often covers different concepts for scal-
ing parts of the system dynamically in order to deal
with changing requirements in a constrained environ-
ment. This is achieved by various means: Proposed
solutions range from simple algorithms that define
scale values based on set thresholds (Xi et al., 2004)
to systems leveraging the power of neural networks
(Lama and Zhou, 2010). Based on past research, a
suitable auto-scaling algorithm needs to be suggested,
implemented and evaluated for our edge context.

This work aims at evaluating whether a server-
less systems managed by an intelligent auto-scaling
functionality offers a potential basis for lightweight
edge computing. Serverless aims at delegating the
deploying, scaling and maintaining of software to the
cloud/edge provider, simply requiring only to pass ap-
plications to a serverless platform. Even though a re-
cent concept, serverless technology is already in use
in a variety of application areas since it became first
relevant around fivecyears ago (Baldini et al., 2017).

Our edge platform is implemented on a cluster of
eight single-board devices. Small clusters have previ-
ously been evaluated in basic, i.e., static forms. How-
ever, they has not yet been used to run and evaluate a
complete system based on real-life requirements and
constraints with dynamic scalability included. Since
small single-board devices, like the Raspberry Pi, are
widely used, we will evaluate under which conditions
a cluster of these devices is able to support a dis-
tributed system requiring low latency that is tightly
constrained by a fixed set of performance require-
ments. Our system is based on MQTT for inter-
cluster communication, openFaas and Docker Swarm
for the implementation of the serverless concept, us-
ing Prometheus for monitoring purposes and utilizing
fuzzy logic for the central auto-scaling component.
The implemented auto-scaling algorithm will be eval-
uated experimentally. We report on the performance
of the system for different scenarios.

In the remainder, in Section 2, relevant concepts,
tools and technologies are introduced. Then, work
on distributed edge systems and auto-scaling is dis-
cussed. Section 4 introduces first a high-level archi-
tecture, before detailing the auto-scaling component
in Section 5. Finally, we evaluate the platform and
conclude with directions for future research.

Gand, F., Fronza, I., El Ioini, N., Barzegar, H., Azimi, S. and Pahl, C.
A Fuzzy Controller for Self-adaptive Lightweight Edge Container Orchestration.
DOI: 10.5220/0009379600790090
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 79-90
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

79



2 TECHNOLOGIES &
ARCHITECTURE

We introduce important concepts, tools and technolo-
gies that we combine to define the core architecture.

2.1 Architecture Concepts

The presented platform is based on a range of con-
cepts for architecture, deployment and self-adaptivity.

Cloud computing is based on centralised data cen-
ters that are able to process large amounts of data in
the "Cloud" (Kiss et al., 2018). This, however, leaves
the potential local processing power of the "Edge"
network unused, causing often significantly increased
latency. Edge Computing leverages the processing
power of local nodes at the edge of the network.
These nodes are an intermediate layer (Kiss et al.,
2018) that process data within the local network that
would otherwise by handled by a remote cloud.

Microservices are a recent architectural paradigm.
Traditional architectures usually deliver an applica-
tion as a monolith, i.e., an application is bundled into
one executable that is then deployed. When migrating
to a microservice architecture, the monolith is split
into different parts (the microservices) that run in in-
dependent processes with their own deployment arti-
facts (Jamshidi et al., 2018).

The serverless concepts allows developers to fo-
cus only on the application without having to con-
sider the deployment servers, which is handled by
the cloud provider. This allows for features such as
fault-tolerance and auto-scaling to be managed (Bal-
dini et al., 2017). Usually, serverless computing
is linked to a concept called Functions-as-a-Service
(FaaS), which means that small chunks of function-
ality are deployed in the cloud and scaled dynami-
cally by the cloud provider (Kritikos and Skrzypek,
2018). These functions are usually smaller than mi-
croservices, are short-lived and have clear input and
output parameters. If the component to be deployed is
more complex than a simple function and is supposed
to stay active for a longer period of time, a stateless
microservice is another option (Ellis, 2018).

2.2 Self-adaptiveness and Fuzzyness

A self-adaptive system dynamically adapts its be-
havior to either preserve or enhance required qual-
ity attributes in the presence of uncertain operating
conditions. The development of microservice appli-
cations as self-adaptive systems is still a challenge
(Mendonca et al., 2019). In practice, e.g., the Ku-
bernetes container orchestration platform facilitates

to deploy and manage microservice applications, but
natively only supports basic autoscaling by automati-
cally change the number of instances of a service.

Computers traditionally excel at tasks that contain
simple mathematical calculations. Human reasoning,
however, is usually more complex. Natural language
is rarely precise in a way that it quantifies something
as one thing or the other: words can have uncertain,
ambiguous meanings (Hong and Lee, 1996), human
reasoning is fuzzy. Uncertainty also arises in edge en-
vironments through incomplete or potentially incor-
rect or conflicting observations. Fuzzy logic is try-
ing to represent this by mapping inputs (e.g., obser-
vations) to outputs (e.g., analyses or reactions) based
on gradually changing functions and a set of rules
rather than fixed thresholds. A membership function
is a function that represents a fuzzy set and decides to
which degree an item belongs to a certain set. Fuzzifi-
cation refers to input values that are mapped to mem-
bership functions to derive the degree of membership
in that set (Lin and Lee, 1991). This is a stark con-
trast to a binary approach where the element can ei-
ther be part of a set or not. Fuzzy rules define how
after fuzzification the values are matched against if-
else rules. Defuzzyfication is the final step, where a
numerical output value is generated.

A sample goal might be to calculate the money
that should to be saved each month based on a flex-
ible salary and the expected expenses. The amount
of money that is to be saved in a long-term savings
account will be returned by the fuzzy system.

• Membership functions – The three variables
salary, expected expenses and the money that is
suggested to be saved are visualized in Figures 1a,
1b and 2. Each variable consists of three member-
ship functions: low, high and medium – represent-
ing, for example, the degree to which a salary of
50 can be considered a low, high or average salary.

• Rules – The rules are set as follows:

IF salary LOW OR expenses HIGH THEN savings LOW

IF salary AVERAGE THEN savings AVERAGE

IF salary HIGH OR expenses LOW THEN savings HIGH

• System Inputs – The savings are calculated based
on a salary of 82 and expected expenses of 51.4.

• Defuzzyfication – After defuzzyfication, we get a
savings recommendation of 15.03.

2.3 Selected Tools and Technologies

The concrete infrastructure and software technologies
used in the implementation of the platform shall be
introduced now. The Raspberry Pi is a single-board
computer based on an ARM-processor. Docker is a
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(a) Membership function of the flexible salary. (b) Membership functions of the expected expenses.

Figure 1: Membership functions of the two input values.

Figure 2: Savings membership functions with final value.

containerization software. Containerization is a virtu-
alization technology that, instead of virtualizing hard-
ware, separates processes from each other. It has been
successfully used on Raspberry Pis (Scolati et al.,
2019). Docker swarm is the cluster management tool
that is integrated into the Docker Engine. It is based
on services. Instead of running the services and their
corresponding containers on one host, they can be
deployed on a cluster of nodes that is managed like
a single, docker-based system. By setting the de-
sired number of replicas of a service, basic scaling
can also be handled. MQTT is a network protocol
suitable for the Internet of Things. Prometheus is a
monitoring tool that can be used to gather and pro-
cess application metrics. Contrary to other monitor-
ing tools, Prometheus "scrapes" the metrics from a
predetermined interface in a given interval. Open-
Faas is a Functions-as-a-Service framework that can
be deployed on top of a Docker swarm or a Kuber-
netes cluster. By default openFaas contains simple
autoscaling that leverages the default metrics aggre-
gated by Prometheus and scales based on predefined
thresholds (openFaaS, 2019). Stateless microservices

can be built by using the Dockerfile template.

Figure 3: Hardware and networking components.

2.4 Lightweight Edge Platform Design

Combining the above technologies suggests splitting
the application into microservices and containerizing
it, allowing the hardware to be reallocated dynami-
cally. This also enables scaling the different parts
of the application. OpenFaas allows building and
deploying services in the form of functions across
the cluster. Some of its features, such as built-in
Prometheus or the gateway, can be extended upon to
make openFaas the central building block of the appli-
cation (Gand et al., 2020). An overview of the differ-
ent technologies in the context of the given platform is
provided in Figure 3. Even though openFaas scaling
is limited, it can be used as a foundation for our self-
adaption. We implement a more fine-grained scal-
ing algorithm using the built-in monitoring options as
well as fuzzy logic as the reasoning foundation.
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3 RELATED WORK

A system similar to ours in architectural terms as a
Raspberry Pi-based implementation of an application
system has been introduced in (Steffenel et al., 2019).
The authors introduce a containerized cluster based
on single-board devices that is tailored towards ap-
plications that process and compute large amounts of
data. They deploy this application, a weather fore-
cast model, to the Raspberry Pi cluster and evaluate
its performance. They note that the performance of
the RPI cluster is within limits acceptable and could
be a suitable option for comparable use cases, al-
though networking performance of the Raspberry Pis
has been identified as a bottleneck. We will address
performance degradations here through auto-scaling.

There are a range of scalabity approaches.
(Jamshidi et al., 2014) categorize them into reac-
tive, proactive and hybrid approaches. Reactive ap-
proaches react to changes in the environment and take
action accordingly. Proactive approaches predict the
need for resources in advance. Hybrid systems com-
bine both approaches, making use of previously col-
lected data and resource provisioning at run time.

AI approaches in this context can be used to im-
prove the response of the network to certain envi-
ronmental factors such as network traffic or threats
to the system (Li et al., 2017). The authors pro-
pose a general architecture of smart 5G system that
includes an independent AI controller that commu-
nicates with the components of the application. Ex-
amples of implementations of algorithms for auto-
scaling and auto-configuration exist. (Saboori et al.,
2008) propose tuning configuration parameters using
an evolutionary algorithm called Covariance-Matrix-
Adaption. Using this approach, potential candidates
for solving a problem are continuously evolved, eval-
uated and selected, guiding the subsequent genera-
tions towards a desired outcome. Another paper in-
troduces a Smart Hill Climbing Algorithm for finding
the optimal configuration for a Web application (Xi
et al., 2004). The proposed solution is based on two
phases: In the global search phase, they broadly scan
the search space for a potential starting point of the lo-
cal search phase. Another interesting approach aims
at optimizing the configuration of Hadoop, a frame-
work for distributed programming tasks (Kambatla
et al., 2009), an offline, proactive tuning algorithm
that does not reallocate resources at run-time, but tries
to find the best configuration in advance.

There are some proposals using fuzzy logic for
auto-configuration. (Jamshidi et al., 2014) introduce
an elasticity controller that uses fuzzy logic to auto-
matically reallocate resources in a cloud-based sys-

tem. Time-series forecasting is used to obtain the es-
timated workload at a given time in the future. Based
on this information, the elasticity controller calculates
and returns the number of virtual machines that needs
to be added to or removed from the system. The al-
location of VMs is consequently carried out by the
cloud platform. There, the rule base and membership
functions are based on the experience of experts.

Reinforcement Learning in the form of Fuzzy Q-
learning has been evaluated in this context (Ipek et al.,
2008), (Jamshidi et al., 2015). The aim of these sys-
tems is to find the optimal configuration provisioning
by interacting with the system. The controller, mak-
ing use of the Q-learning algorithm, selects the scal-
ing actions that yield the highest long-term reward. It
will also keep updating the mapping of reward val-
ues to state-action pairs (Ipek et al., 2008). Adap-
tive neuro-fuzzy inference systems (ANFIS), combin-
ing neural networks and fuzzy logic, are discussed in
(Jang, 1993). Fuzzy logic and neural networks are
shown to complement each other in a hybrid system.

The work presented in this paper focuses on
applying a practical approach for implementing a
lightweight auto-scaling controller based on fuzzy
logic. So far, fuzzy auto-scaling for lightweight edge
architectures has not been investigated.

4 ARCHITECTURE OVERVIEW

We overview the architecture before covering low-
level implementation details of the platform and
its auto-scaling component. The proposed binding
blocks of the application such as the a serverless and
microservices-based architecture can be reused for
different applications in different contexts. The scal-
ing component is also usable in different applications
by simply updating a few constants.

Figure 4: Interaction between different systems.

The architecture consists of three layers. The plat-
form layer represents the hardware architecture of the
cluster. The system layer comprises the central man-
agement components. On top of these, the controller
layer scales the components of the platform. Figure 4
shows the interaction between system layer, controller
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layer and additional components. We use a Traffic
Management (TM) System as a sample application.
We assume a constant exchange of messages between
the traffic management and vehicle components that
in our prototype implementation contains simulations
of vehicles. The control system is used to scale the
TM System based on the current situation.

Figure 5: Platform Layer

The high-level platform layer is shown in Figure
5. The application is deployed on a cluster managed
by Docker Swarm. The cluster includes one master
node and an arbitrary number of worker nodes. An-
sible is used to execute commands on all nodes with-
out having to connect to each node individually. All
nodes are able to connect to the MQTT broker that
is running on the master device after startup. Using
Docker swarm and openFaas, the RPIs can be con-
nected so that they can be seen as one system. If a
service is supposed to be deployed, openFaas will dis-
tribute it among the available nodes. There is no need
to specify a specific node as this abstraction layer is
hidden behind the openFaas framework. The services
and functions are built and deployed using the open-
Faas command line interface. OpenFaas is also uti-
lized to scale the services independently. Communi-
cation between the services is achieved by relying on
the openFaas gateway as well as on the MQTT bro-
ker. The cluster is comprised of eight Raspberry Pi
2 Model B connected to a mobile switch via 10/100
Mbit/s Ethernet that is powering the RPIs via PoE
(Power over Ethernet).

Monitoring is done through the openFaas
Prometheus instance. This instance is used to store
metrics and query them when needed. Before startup,
Prometheus needs to be informed about the endpoints
that metrics should be collected from.

5 AUTOSCALING CONTROLLER

The autoscaling controller is the central component in
the architecture to manage performance. One require-

ment for it was that it had to be lightweight. Using too
many system resources such as storage space or CPU
usage was to be avoided since the algorithm is meant
to be deployed on the RPI cluster itself with most of
the clusters resources being reserved for actual appli-
cation components.

Fuzzy logic allows for a good compromise be-
tween a powerful decision-making process and a lim-
ited resource consumption. However, the initial fuzzy
knowledge base is difficult to obtain. The follow-
ing solution combines reactive and proactive config-
uration methods by initially anticipating demand in
the calibration and configuration (proactive) and then
continuously re-adjusting them if needed (reactive).
Values of previous runs of the system are used to
set-up an initial fuzzy knowledge base. The reactive
part of the algorithm continuously updates parts of the
knowledge base at runtime.

5.1 Scaling Principles

The functionality of the algorithm can be visualized
by using the MAPE-K (Kephart and Chess, 2003)
controller loop for self-adaptive systems. The steps of
the controller loop are as follows: Monitor the appli-
cation and collect metrics, Analyze the gathered data,
Plan actions accordingly in order to maintain objec-
tives, and Execute the planned actions. The Knowl-
edge component defines a shared knowledge base that
is continuously updated.

Figure 6: MAPE-K loop for fuzzy auto-scaling controller.

Scaling Configuration and Calibration: The
MAPE-K loop for the given system is presented in
Figure 6. The scaling algorithm, based on the four
main phases of the loop, is implemented in a python
script (control.py). The script is run independently on
a single cluster node. The algorithm starts by build-
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ing the fuzzy membership functions, essentially cali-
brating them based on existing experience. The val-
ues used for constructing the functions are part of the
MAPE-K knowledge base. These values are calcu-
lated by relying on metrics of previous runs of the
system. Therefore, before starting the scaling algo-
rithm effectively, the system needs have been run at
least once to detemine behaviour that can be antic-
ipated. Based on the initial membership functions,
a first global scale value is computed according to
which the system is scaled. This forms the proactive
part of the controller, which provides settings for fu-
ture runs based on anticipated load and performance.

Continuous Scaling: Once the system is started,
the reactive part of the algorithm is executed as the
default that adjusts current settings to specified re-
quirements. The script receives current performance
metrics from the Prometheus API. These metrics are
evaluated against the allowed threshold values stored
in the knowledge component. The knowledge compo-
nent is implemented within the control script. Based
on these computations, a plan is devised that involves
updating the fuzzy membership functions. The goal
is to constantly update the membership function such
that the fuzzy service provides optimal scale values
for all load scenarios. Here, optimal is defined as a
system that is scaled in order to meet the SLO without
wasting unnecessary resources, i.e., the ultimate goal
is to only scale up as much as necessary. The defi-
nitions of the membership functions are also part of
the knowledge component and are continuously up-
dated. The membership functions are passed to the
fuzzy service that calculates a scale value. After scal-
ing, the loop repeats by monitoring and analyzing the
effects of the previous iteration.

Figure 7: Details of services providing scaling functionality.

5.2 The Fuzzy Service

The fuzzy service is used to calculate the scale value.
It receives the membership functions as input. An-
other parameter is the range of the scale values. This
parameter can be defined to set the minimum and
maximum scale values that are perceived as accept-
able. The services returns a global scale value as
output. The rules in the fuzzy service are predefined.
The minimal alpine distribution, which is used for the
other images, could not be used in this case since sk-
fuzzy, the python fuzzy module that was used, relies
on the numpy module that requires a more complex
OS. Therefore, the image of the fuzzy service is based
on ubuntu:18.04. The calc function is used to simu-
late a function that is called continuously. It is always
scaled to the maximum. If there are only a few mes-
sage processes by the system that the calc function is
allowed to scale higher. When the number rises, the
allowed number of replicas will decrease.

Figure 8: Initial membership functions.

Figure 9: Re-adjusted membership functions: the system
can handle less messages than expected.
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5.3 Calibration and Configuration

This preparatory part of the solution relies on met-
rics gathered during previous runs of the system that
are then used as the basis for calibrating the fuzzy
membership functions to manage anticipated demand.
The metric that is used to measure the current load of
the system is the number of exchanged messages in a
given time frame. This metric, called messages_total,
only defines the total number of messages the system
had to process since the monitoring started. What
is needed, is a way to measure how many messages
were processed in a given timeframe. We base this
on the Prometheus rate() function, which returns the
"per second rate of increase". Executing the following
example query that is used throughout the application
returns the per-second rate of increase measured over
the last 20 seconds:

rate(messages_count_total[20s])

The rate r is calculated as follows:

r =
xi− xi−t

t
(1)

where xi−t is the number of messages for t seconds
in the past with xi as the most recent number of mes-
sages. This value is divided by t, the time frame that
is considered, since r is the per-second value. Based
on the rate, the Prometheus query language is used
to obtain three values: the global median, the global
standard deviation and the global maximum. Global
in this context refers to metrics that were calculated
based on previous runs of the system. These values
are used to create the initial membership functions of
the rate of messages. In sk-fuzzy, Gaussian member-
ship functions are created by defining their mean and
their standard deviation. The Gaussian membership
functions are simple to create and re-adjust. All mem-
bership functions set the previously obtained global
standard deviation σg as their own standard devia-
tion. The mean of the average membership function
is placed at the global median:

median(a)g (2)

with a being a set of data, in this case the rate of mes-
sages. The mean of the low membership function is:

median(a)g−σg (3)

with σg again being the global standard deviation.
The mean of the high membership function is thus:

median(a)g +σg (4)

The initial membership functions are shown in Fig. 8.
The details of calculating the three global vari-

ables are discussed now. The following sample query

returns the single median value over all rates of mes-
sages (the rates covering a time span of 20 seconds
each) of the last 90 days:

quantile_over_time(
0.5,
rate(messages_count_total[20s])[90d:20s]

)

Prometheus does not offer a median function, but the
built-in quantile function can be used to calculate the
median. A quantile splits a proabablilty distribution
into groups according to a given threshold. The 0.5
quantile equals the median. Generally, the median can
be expressed as follows:

QA(0.5) = median(a) (5)

The standard deviation over time is calculated by us-
ing the corresponding PromQL function:

stddev_over_time(
rate(messages_count_total[20s])[90d:20s])

)

This call returns the standard deviation of the rate
of messages (covering a time span of 20 seconds
each). The total time span that is considered are the
last 90 days. The standard deviation for the given con-
text is:

σg =

√
1
N
∗

N

∑
i=1
∗(xi−µ) (6)

with N being the rates of messages considered while
xi is a single rate of messages and µ is the mean of all
rates of messages. Finally, only the global maximum
of the data set remains to be calculated:

max_over_time(
rate(messages_count_total[20s])[90d:20s]

)

5.4 Continuous Scaling

The continuous scaling uses the previously created
initial membership functions and re-adjusts them con-
tinuously. This reactive part is implemented as part of
an infinite loop. After the initial configuration and
calibration part is concluded, the initial membership
functions are passed to the fuzzy service that returns
a scale value. This is used to scale services as follows:

s = round(D∗G) (7)

where s is the new scale value a specific service is
scaled to, D is the default value the service is scaled
to at startup and G is the rounded global scale value
that has been calculated by the fuzzy service and is
used for all dynamically scaled components. These
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scalable components include the gatherer service and
the decision function.

After scaling the components and waiting for a set
period of time, the Message Roundtrip Time MRT is
calculated. This metric for the sample Traffic Man-
agement use case indicates the average time a vehi-
cle needs to wait for a response from the gatherer af-
ter publishing its latest status. In the analysis phase,
the MRT is compared to the maximum threshold that
is defined in the SLA. If the average MRT is above
the SLO, the membership functions need to be re-
adjusted. The initial membership function shown in
Fig. 8 results in a scale value too low for the given
load: the measured MRT after scaling was above the
defined threshold. Therefore, the membership func-
tion need to be shifted to the left. The result of this
shift can be seen in Fig. 9. If we assume the current
load to be 0.5 and compare the degree of membership
in both figures, we find that in the initial figure a load
value of 0.5 is considered an "average" load. Look-
ing at the re-adjusted functions, a value of 0.5 is now
seen as more of a "high" load. Since the fuzzy ser-
vice classifies a value of 0.5 as a "higher" load now,
it also maps it to a higher scale value. Consequently,
the system now scales up at a load value of 0.5 where
it had previously taken no action. Similarly, we need
to consider a situation in which the MRT is well be-
low the defined threshold. In this case, the functions
need to be shifted to the right. The rate at which the
functions are shifted in each iteration of the loop can
be controlled by (manually) updating the adjustment
factor. Hence, the membership functions for each it-
eration are computed as follows:

• Membership function low: median(a)g−σg +A

• Membership function average : median(a)g +A

• Membership function high: median(a)g+σg+A

where A here is the adjustment factor for the func-
tions. A is computed at each iteration. A positive
re-adjustment factor results in a shift to the right, a
negative one shifts functions to the left. To avoid con-
stantly moving the functions back and forth, shifting
right is only allowed until a situation is encountered
where the STO threshold is not met anymore. Af-
ter completing the shifting process within the con-
trol script, the reactive part of the algorithm is started
anew by passing the re-adjusted membership func-
tions to the fuzzy service.

The following algorithm provides an overview of
the continuous scaling functionality:

Algorithm 1: Reactive Autoscaling.

1: function SCALE(MEMBERSHIPFCTS)
2: sto← STO threshold
3: scalevalue←
4: getScaleValueFromFuzzyService(membershipFcts)
5: rescale(scalevalue)
6: invocationtime← get current invocation time
7: if invocationtime < slo then
8: shift membership functions right
9: if invocationtime >= slo then

10: shift membership functions left
11: Scale(membershipFcts)

6 EVALUATION

The evaluation focus lies on the performance of the
proposed serverless microservice solution and the
auto-scaling approach. The bottlenecks are identified
by measuring a number of performance metrics that
will be introduced later on.

6.1 Evaluation Objectives and Metrics

The effectiveness of the autoscaling approach needs
to be evaluated as the core solution component. Being
effective means that the auto-scaling algorithm is able
to maintain the set SLO thresholds by re-adjusting
the fuzzy membership functions. This would result
in a smooth scaling process where the scalable com-
ponents are gradually scaled up or down, avoiding
sudden leaps of the scale value. For the given appli-
cation, we alslo determined the maximum load, i.e.,
here the maximum number of vehicles the architec-
ture (including the network it is operated in) can sup-
port. Note, that the vehicles referred to here could be
replaced by other application components.

These objectives were evaluated for two different
cluster set-ups. In order to obtain a first understanding
of the system and the possible range of variables, a
pilot calibration evaluation was conducted on a small
cluster of three RPIs. Then, the evaluation procedure
was repeated for a complete cluster of eight devices.

All evaluation steps report on a number of per-
formance metrics that indicate the effectiveness of
the system or provide insight into an internal pro-
cess. The Message Roundtrip Time (MRT) is the cen-
tral variable of the system since it reports on the ef-
fectiveness of the application execution. Included in
the MRT is the (openFaas) Function Invocation Time
(FIT) that is listed separately in order to individually
report on serverless performance aspects. All MRT
and FIT values are considered average values aggre-
gated over the last 20 seconds after the previous scal-
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Table 1: Results for cluster of 3 RPIs. Scaling was active
with variables set to values reported in Figure 2.

Vehicles Memory CPU MRT FIT
2 25.55 46.97 1.63 1.51
4 37.94 47.24 1.85 1.48
8 57.1 49.36 1.79 1.61
12 71.77 51.81 4.49 1.79
14 92.78 55.49 10.24 2.13

Table 2: Initial Calibration Scaling run for a cluster of three
RPIs with a (fixed) number of 12 cars. Shift Left/Right re-
ports on the direction the membership functions are shifted
to during a given iteration. The number of scaled compo-
nents is also reported. Manually set variables: Maximum
Scale Value: 5, MRT Threshold: 2.0 seconds – FSV: Fuzzy
Scale Value, IT: Invocation Time after scaling, Ga: Gath-
erer, DF: Decision Function.

Iteration FSV IT Shift # Ga # DF
1 2.74 1.74 Right 10 5
2 2.63 2.5 Left 10 5
3 2.74 2.05 Left 10 5
4 2.95 1.9 Right 12 6

ing operation was completed. Here, the maximum
scale value was unknown. In concrete scenarios, this
value might have been specified beforehand.

We use different MRT thresholds. In concrete
settings, the maximum response time could be given
in advance and would unlikely to be the subject of
change. For all set-ups and iterations that were eval-
uated, the hardware workload was measured by com-
puting the average CPU and memory usage over all
nodes of the cluster, combining it to a single value.

6.2 Evaluation Setup

In order to evaluate the system, a couple of configura-
tions had to be made. Prometheus is used to gather
and aggregate the metrics for the evaluation. The
cloud-init configuration was adjusted so that an ad-
ditional python script is executed on each node. The
script uses the psutil python module to record CPU
and memory usage of the node and publish them to
a specific MQTT topic. Additional functionality was
also added to the metrics service: the service receives
the CPU/memory metrics of all nodes and stores them
internally. When the metrics are collected, the service
calculates average CPU and memory usage across all
nodes and exposes them to Prometheus.

6.3 Experimental Evaluation

Pilot Calibration. An initial evaluation (calibration
pilot) was conducted to obtain an initial idea of the
system’s capabilities and adjust the manually-tuned

Table 3: Scaling experiment for cluster of 8 RPIs. Manually
set variables: Maximum Scale Value: 12, Number of cars:
changing, MRT Threshold: 0.3 seconds – FSV: Fuzzy Scale
Value, AF: Adjustment Factor.

Iteration cars FCV MRT AF
1 25 4.77 Initial 0.0
2 25 6.94 0.03 2.58
3 25 7.79 0.04 0.0
4 25 8.80 0.03 -2.58
5 50 10.11 0.178 -7.74
6 50 10.82 0.44 -10.32
7 50 10.82 0.44 -10.32
8 75 11.06 0.09 -12.9
9 75 11.24 0.033 -18.06
10 75 11.3 3.95 -20.64
11 75 11.34 0.07 -23.22

parameters accordingly. It was also used to evalu-
ate whether the scaling functionality yields promis-
ing results before putting it to use in a bigger set-up.
The evaluation was started with a cluster consisting
of three RPIs: a master and two worker nodes. The
maximum scale value was initially set to 5 in order to
avoid scaling unreasonably high. Table 1 reports on
the initial set of metrics for different numbers of ve-
hicles. The scaling functionality was active when the
metrics were monitored. Table 2 includes data of the
scaling algorithm for an initial calibrating run.

Full Cluster. A cluster of eight RPIs was used.
Here, the decision-making functionality is included
in the gatherer service, which is now scaled indepen-
dently. Hence, there is no longer the need to call the
decision function for each message. Results for the
auto-scaling algorithm can be found in Table 3.

The CPU usage started at 47% and showed a lin-
ear increase up to about 56% at 14 vehicles. The hard-
ware does not seem to be the limiting factor. The ini-
tal setup, however, shows a MRT of about 1.6 sec-
onds for only 2 vehicles. At 12 vehicles, a Roundtrip
Time of 4.5 seconds is reached and at 14 vehicles the
MRT is already above 10 seconds, which is clearly a
value too high for many real-world scenario. How-
ever, based on these findings, an initial evaluation run
of the auto-scaling algorithm was conducted with the
Roundtrip Time threshold set to 2.0 seconds. Even
though this is not realistic, it allows for testing the
auto-scaling functionality.

The experimental runs yielded promising results
and show that the algorithm is able to adaptively
rescale the system: The MRT is initially below the
predefined threshold at about 1.7 seconds. In the sec-
ond iteration, the MRT value is recorded above the
threshold at 2.5 seconds. The system reacts to this sit-
uation by slowly re-adjusting the membership func-
tion, resulting in a higher fuzzy scale value, which
consequently scales the system up until the measured
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MRT dropps below the threshold again.

6.4 Discussion of Evaluation Results

Using a smaller cluster set-up, it was possible to de-
rive starting values for all variables (calibration pilot).

The evaluation of the architecture indicated that
serverless function calls should be restricted since
they introduce network latency problems. The lim-
iting factor is here the network. The used set-up was
not able to process more than 75 user processes at a
time. The CPU and Memory usage numbers as well
as the steady but slow increase of the MRT imply that
the hardware itself is able process a higher number
of vehicles. Future evaluations should find different
network set-ups that allow for a dependable service
beyond identified limits.

The implemented scaling algorithm works as in-
tended and is able to scale the system in a balanced
manner. After finding a SLO, that is usually given by
the specifications of the system, the only values that
need to be set manually are the maximum scale value
and the adjustment factor.

In summary, the full version of the system yields
satisfying results in terms of hardware consumption
and performance (MRT), while the presented scaling
algorithm gradually scales the system as intended.

7 CONCLUSIONS

This work introduced a containerized platform archi-
tecture on a cluster of single-board devices. The ap-
plied approach results in a reconfigurable, scalable
and dependable system that provides built-in solu-
tions for common problems such as service discov-
ery and inter-service communication. The implemen-
tation is a proof-of-concept with the constraints of
the environment playing a crucial factor in the imple-
mentation. We aimed at experimentally evaluating a
self-adaptive autoscaler based on the openFaas frame-
work and a microservices-based architecture. The
evaluation of the system was conducted to determine
the performance of the proposed set-up. The imple-
mented auto-scaling algorithm was specifically eval-
uated in order to assess dependable resource manage-
ment for lightweight edge device infrastructures. By
using openFaas beyond its documented boundaries, it
was possible to use the framework for inter-service
communication as well as for monitoring.

The auto-scaling algorithm, by using fuzzy logic,
is able to gradually scale the system. Unlike pre-
vious examples of fuzzy auto-scalers that were de-
ployed to a large cloud infrastructure, the fuzzy scal-

ing functionality here was constrained in its process-
ing demands since it was deployed alongside the main
system components on the limited hardware clus-
ter. Consequently, the algorithm was focused on us-
ing data and technologies that were already available
within the cluster. There still remain parameters that
need to be tuned manually to achieve the desired out-
comes. This leaves a certain degree of uncertainty
when applying the algorithm on a black-box system.
The evaluation also showed that the given set-up is
only able to process up to 75 vehicles simultaneously
in the used traffic management application, but indi-
cating network aspects as the reason (while our focus
was on compute/storage resources).

Future work shall focus on improving the applica-
tion management components to drive them towards
a more realistic behavior. Additionally, security con-
cerns have not been covered in detail and need more
attention in the future. However, this abstract appli-
cation scenarios, with cars just being simulated data
providers, allowed us to generalise the results beyond
the concrete application case.

This also applies for fuzzy systems based on neu-
ral networks. Related work on Adaptive Neuro-Fuzzy
Inference Systems (ANFIS) was discussed earlier.
Working examples of ANFIS are relatively rare. One
example uses python and the machine-learning frame-
work tensorflow to combine fuzzy logic and a neu-
ral network (Cuervo, 2019). Relying on the ubuntu
distribution used for the fuzzy service, it is possible
to create an ANFIS service for our setting. Previ-
ously, compiling and running the tensorflow frame-
work on hardware such as the Raspberry Pi was a
challenging task. With release 1.9 of the framework,
tensorflow officially started supporting the Raspberry
Pi (Warden, 2019). Pre-built packages for the plat-
form can now be directly installed. This adds new
possibilities for creating a lightweight ANFIS ser-
vice for the given system. ANFISs rely on train-
ing data. This introduces the challenge of finding
sample data that maps the rate of messages and a
scale value to an indicator that classifies the perfor-
mance as acceptable/not acceptable: (rate of mes-
sages, scale value) →acceptable/not acceptable per-
formance This dataset could be aggregated manually
or in an automated manner.

Another direction is to address more complex ar-
chitectures with multiple clusters. We propose Parti-
cle Swarm Optimization (PSO) (Azimi et al., 2020)
here, which is a bio-inspired optimization methods
suitable to coordinate between autonomous entities
such as clusters in our case. PSO distinguishes per-
sonal (here local cluster) best fitness and global (here
cross-cluster) best fitness in the allocation of load to
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clusters and their nodes. This shall be combined with
the fuzzy scaling at cluster level as proposed here.

In terms of use cases, we looked at traffic man-
agement and coordinated cars, where traffic and car
movement is captured and processed, maybe supple-
mented by infotainment information with image and
video data. Another application domain is mobile
learning that equally includes heavy use of multime-
dia content being delivered to mobile learners and
their devices (Murray et al., 2003; Pahl et al., 2004;
Kenny et al., 2003). These systems also rely on close
interaction with semantic processing of interactions in
order to support cognitive learnign processes. Some
of these can be provided at edge layer to enable satis-
factory user experience.
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