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Abstract: The paper deals with natural language processing and question answering over large corpora of formalised 
natural language texts. Our background theory is the system of Transparent Intensional Logic (TIL). Having 
a fine-grained analysis of natural language sentences in the form of TIL constructions, we apply Gentzen’s 
system of natural deduction to answer questions in an ‘intelligent’ way. It means that our system derives 
logical consequences entailed by the input sentences rather than merely searching answers by keywords. Nat-
ural language semantics is rich, and plenty of its special features must be taken into account in the process of 
inferring answers. The TIL system makes it possible to formalise all these semantically salient features in a 
fine-grained way. In particular, since TIL is a logic of partial functions, it deals with non-referring terms and 
sentences with truth-value gaps in an appropriate way. This is important because sentences often come at-
tached with a presupposition that must be true in order that a given sentence had any truth-value. Yet, a 
problem arises how to integrate those special semantic rules into a standard deduction system. Proposal of the 
solution is one of the goals of this paper. The second novel result is this. There is a problem how to search 
relevant sentences in the labyrinth of input text data and how to vote for relevant applicable rules to meet the 
goal, i.e. to answer a given question. To this end, we propose a heuristic method driven by constituents of a 
given question.

1 INTRODUCTION 

Logic and computational linguistics are the disci-
plines that have much in common; in particular, they 
should work hand in hand in natural language pro-
cessing and question answering. In the era of infor-
mation overload, the systems that can answer ques-
tions raised over the large corpora of text data in an 
‘intelligent’ way gain more and more interest in the 
research community. In this paper, we introduce a 
system that derives the logical consequences of infor-
mation recorded in the huge knowledge bases of text 
data. Thus, the system not only answers the questions 
by providing explicit knowledge sought by keywords. 
It answers in an ‘intelligent’ way and computes infer-
able knowledge (Duží, Menšík, 2017) such that ra-
tional human agents would produce if only this were 
not beyond their time and space capacities. To this 
end, we apply Gentzen’s system of natural deduction 

 
1 See, for instance, (Tichý, 1988) or (Duží, Jespersen, Ma-

terna, 2010).  

adjusted to our background theory Transparent Inten-
sional Logic (TIL) with its procedural semantics.1 In 
TIL, meanings of natural language sentences are 
viewed as abstract structured procedures that produce 
Possible World Semantic (PWS-)propositions as their 
products. Duží and Horák in (2019) introduce the sys-
tem that applies the goal-driven, backward-chaining 
strategy of inferring answers by general resolution 
method adjusted for TIL. It seems to be a natural 
choice because by applying the goal-driven strategy, 
we can easily solve the problem of searching for rel-
evant information resources in the huge labyrinth of 
input data. Yet, a problem arises here, namely the 
problem of integrating special rules rooted in the rich 
natural language semantics into the deduction pro-
cess. These rules include, inter alia, the rules of left 
and right subsectivity for property modifiers, the rules 
for handling non-referring terms and propositions 
with truth-value gaps, the rules dealing with factive 
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verbs like ‘knowing’ or ‘regretting’, presuppositions 
of sentences, de dicto vs de re attitudes, and many 
other. TIL with its fine-grained procedural semantics 
is the system in which all these semantically salient 
features are successfully formalised.   

In (Duží, Horák, 2019) and (Duží, Menšík, 2020) 
it has been assumed that it is possible to pre-process 
the sentences first so that the special semantic rules 
are applied prior to the application of a proving 
method. Yet, it turned out that such a system is under-
inferring (Duží, Fait, Menšík, 2019). We have to inte-
grate these special semantic rules into the very pro-
cess of inferring answers. To this end, we vote for 
Gentzen’s natural deduction here, because enrich-
ment by special rules seems to be easier for the sys-
tem of natural deduction than for the General Resolu-
tion Method where the input sentences must come in 
Skolem Clausal Form.  

The goal of this paper and its novel contribution 
is to introduce such a system of natural deduction ex-
tended by semantic rules for TIL and natural language 
processing. Yet, another problem crops up here, 
which is the problem of a proper search strategy in the 
huge amount of input data. As mentioned above, in 
GRM it was easy to solve thanks to the goal-driven 
backward chaining resolution. However, inferring by 
natural deduction usually applies a forward-chaining 
strategy. Moreover, even if we apply the backward-
chaining strategy, it cannot be strictly goal driven. 
Sometimes, the process of satisfying one goal after 
another has to be interrupted by an application of a 
semantic rule to one or more other constructions, and 
only then can we continue the inferential process by 
applying standard rules to answer questions. Thus, 
another goal of this paper is to introduce a heuristic 
method of searching for proper input constructions 
driven by constituents occurring in a given query or 
goal. Using two case studies, we demonstrate the so-
lutions by an example dealing with property modifi-
ers and an example of dealing with factive verbs and 
their presuppositions. In both cases, we also deal with 
anaphora resolution.    

The rest of the paper is organized as follows. Sec-
tion 2 summarises the main principles of TIL. In Sec-
tion 3 we briefly describe the rules of natural deduc-
tion adjusted to TIL. In Section 4 we introduce the 
semantic rules and their formalization in TIL. Section 
5 illustrates our method of intelligent question an-
swering by two case studies. Concluding remarks can 
be found in Section 6. 

 
2 A kindred theory of procedural semantics has been intro-

duced by Moschovakis in (2006) and further developed by 
Loukanova, see, e.g. (Loukanova, 2009). 

2 FOUNDATIONS OF TIL 

As mentioned above, TIL comes with procedural (as 
opposed to set-theoretical denotational) semantics. 
Hence, the meaning of a sentence is conceived as an 
abstract structured procedure encoded by the sen-
tence, the structure of which is isomorphic with the 
structure of the sentence. These procedures can be 
viewed as instructions how, in any possible world and 
time, to evaluate the truth-value of a sentence.2 They 
are known as TIL constructions. There are six kinds 
of such constructions defined, namely variables, 
Trivialization, Composition, (-)Closure, Execution 
and Double Execution. While variables and Triviali-
zations are atomic constructions that supply objects 
on which molecular constructions operate, Composi-
tion and Closure are molecular constructions. Trivial-
ization roughly corresponds to a constant of formal 
languages; where X is an object whatsoever of TIL 
ontology, Trivialization 0X produces X. Variables 
produce objects of their respective ranges de-
pendently on valuations, they v-construct.  Composi-
tion [F A1 … Am] is the procedure of applying the 
function f produced by F to its arguments produced 
by A1, …, Am  to obtain the value of f, if any; dually, 
Closure [x1 … xm C] is the procedure of declaring or 
constructing a function by abstracting over the values 
of -bound variables in the ordinary manner of 
lambda calculi. Thus, we define. 

Definition (Constructions). 
(i) Variables x, y, … are constructions that con-

struct objects (elements of their respective 
ranges) dependently on a valuation v; they  
v-construct. 

(ii) Where X is an object whatsoever (even a con-
struction), 0X is the construction Trivialization 
that constructs X without any change of X. 

(iii) Let X, Y1,…,Yn be arbitrary constructions. Then 
Composition [X Y1…Yn] is the following con-
struction. For any v, [X Y1…Yn] is v-improper 
if at least one of the constructions X, Y1,…,Yn 
is v-improper, or if X does not v-construct a 
function that is defined at the n-tuple of objects 
v-constructed by Y1,…,Yn. If X does v-construct 
such a function, then [X Y1…Yn] v-constructs 
the value of this function at the n-tuple.  

(iv) (-) Closure [λx1…xm Y] is the following con-
struction. Let x1, x2, …, xm be pair-wise distinct 
variables and Y a construction. Then Closure 
[λx1…xm Y] v-constructs the function f that 
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takes any members B1, …, Bm of the respective 
ranges of the variables x1, …, xm into the object 
(if any) that is v(B1/x1,…,Bm/xm)-constructed by 
Y, where v(B1/x1,…,Bm/xm) is like v except for 
assigning B1 to x1, …, Bm to xm. 

(v) Where X is an object whatsoever, 1X is the con-
struction Single Execution that v-constructs 
what X v-constructs. Thus, if X is a v-improper 
construction or not a construction as all, 1X is 
v-improper. 

(vi) Where X is an object whatsoever, 2X is the con-
struction Double Execution. If X is not itself a 
construction, or if X does not v-construct a con-
struction, or if X v-constructs a v-improper 
construction, then 2X is v-improper. Otherwise 
2X v-constructs what is v-constructed by the 
construction v-constructed by X.  

(vii) Nothing is a construction, unless it so follows 
from (i) through (vi).  

From the formal point of view, TIL is a typed  
-calculus that operates on functions (intensional 
level) and their values (extensional level), as ordinary 
-calculi do; in addition to this dichotomy, there is 
however the highest hyperintensional level of proce-
dures producing lower-level objects. And since these 
procedures themselves can serve as objects on which 
other higher-order procedures operate, there is a fun-
damental dichotomy between two modes in which 
constructions can occur, namely displayed (as an ob-
ject to be operated on) and executed to v-construct a 
lower-level object. In principle, constructions are dis-
played by Trivialization. A dual operation to Trivial-
ization is the construction called Double Execution 
that executes constructions twice over. Hence, while 
0X displays X, 20X voids the effect of Trivialization 
and is thus equivalent to executed X. Below we refer 
to this equivalence as to 20-rule.    

To avoid vicious circle problem and keep track of 
particular logical strata in its stratified ontology, TIL 
ontology is organized into a ramified hierarchy of 
types built over a base. For natural language pro-
cessing, we use the epistemic base consisting of for 
atomic types, namely  (the set of truth-values),  (in-
dividuals),  (times or real numbers) and  (possible 
worlds). The type of constructions is n, where n is 
the order of construction.  

Definition (Ramified Hierarchy of Types). 
Let B be a base, where a base is a collection of pair-
wise disjoint, non-empty sets. Then: 

T1 (types of order 1).  
i) Every member of B is an elementary type of order 

1 over B. 
ii) Let α, β1, ..., βm (m > 0) be types of order 1 over 

B. Then the collection (α β1 ... βm) of all m-ary 
partial mappings from β1  ...  βm into α is a 
functional type of order 1 over B. 

iii) Nothing is a type of order 1 over B unless it so 
follows from (i) and (ii). 

Cn (Constructions of Order n)  
i) Let x be a variable ranging over a type of order n. 

Then x is a construction of order n over B. 
ii) Let X be a member of a type of order n. Then 0X, 

1X, 2X are constructions of order n over B.  
iii) Let X, X1, ..., Xm (m > 0) be constructions of order 

n over B. Then [X X1... Xm] is a construction of 
order n over B. 

iv) Let x1, ..., xm, X (m > 0) be constructions of order 
n over B. Then [x1...xm X] is a construction of 
order n over B. 

v) Nothing is a construction of order n over B unless 
it so follows from Cn (i)-(iv).   

Tn+1 (Types of Order n+1) Let n be the collection of 
all constructions of order n over B. Then 
i) n and every type of order n are types of order 

n+1.  
ii) If m > 0 and , 1, ..., m are types of order n+1 

over B, then ( 1 ... m) (see T1 ii)) is a type of 
order n+1 over B. 

iii) Nothing is a type of order n+1 over B unless it so 
follows from (i) and (ii). 

Empirical sentences and terms denote (PWS-)inten-
sions, functions with the domain of possible worlds 
; they are frequently mappings from  to chronolo-
gies of -objects, hence functions of types 
((orfor short. Where variables w, t range 
over possible worlds (w  and times (t  ), re-
spectively, constructions of intensions are usually 
Closures of the form wt [… w … t …].  

We model sets and relations by their characteris-
tic functions. Hence, (), () are types of a set of 
individuals and of a binary relation-in-extension be-
tween individuals, respectively. Quantifiers ,  

are type-theoretically polymorphic total functions of 
types (()) defined as follows. Where B is a con-
struction that v-constructs a set of -objects, [0B] 
v-constructs T if B v-constructs the set of all  
-objects, otherwise F; [0B] v-constructs T if B  
v-constructs a non-empty set, otherwise F.  

Notational Conventions. That an object X belongs 
to a type  is denoted as ‘X/’; that a construction C 
v-constructs an -object (provided not v-improper) is 
denoted by ‘C  ’. Instead of [0 x A], [0 x A] 
we write ‘x A’, ‘x A’ whenever no confusion arises. 
If C   then the frequently used Composition  
[[C w] t], aka extensionalization of the -intension  
v-constructed by C, is abbreviated as Cwt. We use 
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classical infix notation without Trivialization for 
truth-value functions  (conjunction),  (disjunction), 
 (implication) and  (negation). Also, identities = 

of -objects are written in the infix way without Triv-
ialization and the superscript  whenever no confu-
sion arises.       

For a simple example, where Student/() is a 
property of individuals and John/an individual, the 
sentence “John is a student” encodes as its meaning 
the hyper-proposition 

wt [0Studentwt 0John] 

The property Student must be extensionalized first, 
Studentwt  () and only then can it be applied to 
John, [0Studentwt 0John]  Abstracting over the 
values of variables w, t the proposition of type  that 
John is a student is produced.   

3 NATURAL DEDUCTION IN TIL  

The rules of natural deduction adjusted to TIL have 
been described in (Duží, Menšík, 2020). Here we just 
briefly recapitulate. For a correct application of the 
rules of a proof calculus in TIL it is important to real-
ize that the rules are applicable to constituents of a 
given construction producing propositions and or 
truth-values. As described above, constituents of a 
procedure are not the input/output objects on which 
the procedure operates; they are beyond the proce-
dure. Rather, constituents of a procedure are its sub-
procedures occurring in executed mode.  

When a construction C occurs in the displayed 
mode in D, then the construction C itself becomes the 
object on which other sub-constructions of D can op-
erate; we also say that the context of its occurrence is 
hyperintensional, because all the sub-constructions of 
a displayed construction occur neither intensionally 
nor extensionally; they are displayed as well. When a 
construction C occurs in the executed mode in D, then 
the product (if any) of C is the object to be operated 
on. In this case the executed construction C is a con-
stituent of its super-construction D.   

The rules follow the general pattern of natural de-
duction and are thus introduced in I/E pairs. The rules 
dealing with truth-functions, namely conjunction in-
troduction (-I) and elimination (-E), disjunction in-
troduction (-I) and elimination (-E), implication 
introduction (-I) and elimination (-E, known also 
as modus ponendo ponens MPP) are standard, as in 
propositional logic.  Additionally, there are rules for 
quantifiers (general  and existential ). Again, these 
additional rules are of two kinds, namely introduction 

and elimination rules. Yet, quantifiers in TIL (see 
above) are not special symbols; rather, they are func-
tions applicable to classes of objects. Hence, the rules 
must be adjusted for the TIL system. Here is how. 

Let x,y  , B(x)  : the variable x is free in B; 
[x B]  (), /(()), C  . Then general 
quantifier elimination in full detail consists of these 
steps: 

 

[0x B]   
[[x B] y]  -E 
B(y)  reduction 
B(C/y)  substitution 

where B(C/y) arises from B by a collision-less, valid 
substitution of the construction C for all occurrences 
of the variable y in B.  

For the sake of simplicity, we write this rule in the 
shortened form: 

X ⊢ [0x B]    
  (-E) 
X ⊢ B(C/x)  

The dual rule -I then comes down in this form: 
 

 X ⊢ B(y/x)    
  (-I) 
X ⊢ [0x B]  

Furthermore, there are rules for -introduction  
(-I) and elimination (-E). They are used in particu-
lar when dealing with empirical propositions. Since 
in any world w and time t the proof sequence must be 
truth-preserving from premises to a conclusion, the 
first steps of each such proof are -elimination (-E) 
of the left-most wt to obtain constructions of truth-
values, and the last steps introduce these wt again 
(-introduction (-I). 

4 SEMANTIC RULES  

There are many features of the rich semantics of nat-
ural language that must be formalized by special rules 
that are not found in the formal logical languages. TIL 
is a logical system that has been primarily applied to 
the analysis of natural language because it is a pow-
erful system in which almost all the semantically sa-
lient features of a language can be captured by rigor-
ous, fine-grained analysis. Since it is out of the scope 
of this paper to deal with all the natural language se-
mantic peculiarities, we refer for details to (Duží, Jes-
persen, Materna, 2010). To illustrate the problems we 
have to deal with when building up a question an-
swering system over natural language corpora, we are 
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now going to deal with factive verbs and presupposi-
tions triggered by them, property modifiers and ana-
phoric references.  

4.1 Factive Attitudes and  
Presuppositions 

Factive verbs like to ‘know that’, ‘regret that’, ‘be 
sorry’, ‘be proud’, ‘be indifferent’, ‘be glad that’, ‘be 
sad that’, etc., presuppose that the embedded clause 
denotes a true proposition. For, if one asks, “Does 
John regret that he came late?” and John did not come 
late, there is no direct answer Yes or No. For, both 
answers entail that John did come late. In such a case 
an appropriate answer conveys information that the 
presupposition is not true, like “It is not true that John 
regrets his coming late because he did not come late”. 
Note that while the direct answer applies narrow 
scope negation, the complete answer denies by wide 
scope negation.3 Hence, both John regrets and John 
does not regret his coming late entail that John did 
come late. If John did not come late, he could neither 
regret nor not regret it, the proposition that he regrets 
it has a truth-value gap. Schematically, if K is a fac-
tive verb and X its complement clause, the following 
rules are valid: K(X) ⊢ X, K(X) ⊢ X.   

Factive verbs should be distinguished from im-
plicative verbs like ‘to manage’ or ‘to dare’. While 
sentences applying factive verbs presuppose the truth 
of the embedded clause, those with implicative verbs 
only entail it.4 Schematically, where I is an implica-
tive verb and X the complement clause, we have the 

following rules. I(X) ⊢ X, I(X) ⊢ X.  
TIL is a logic of partial function, and as such is apt 
for dealing with presuppositions and truth-value gaps. 
Yet, partiality, as we all know very well, brings about 
technical complications. To manage them properly, 
we define properties of propositions True, False and 
Undefined, all of type (), as follows (P  ): 

[0Truewt P] v-constructs T if Pwt, otherwise F; 

[0Falsewt P] v-constructs T if Pwt, otherwise F; 

[0Undefinedwt P] = [0Truewt P]  [0Falsewt P]. 

 
3 For details on narrow and wide scope negation see (Duží, 

2018b) and for answering questions with presuppositions, see 
(Duží, Číhalová, 2015).  

4 We are not going to deal with implicative verbs here; yet, see 
(Nadathur, 2016), and also (Baglini, Francez, 2016) for 
detail. Note however, that the notion of presupposition that 
these authors deal with is pragmatic in nature, while we deal 
with logical presuppositions the definition of which comes 

Now we can rigorously define the difference between 
presupposition and a mere entailment. Let P, Q be 
constructions of propositions. Then 

Q is entailed by P iff 
wt [[0Truewt P]  [0Truewt Q]]; 

Q is a presupposition of P iff  
wt [[[0Truewt P]  [0Falsewt P]]  [0Truewt Q]]. 

Hence, we have: Q is a presupposition of P iff wt 
[[0Truewt Q]  [0Undefinedwt P]]. If a presupposition 
of a proposition P is not true, then P has no truth 
value.  

Factive verbs being a special case of attitudinal 
verbs, they thus denote relations-in-intension of an in-
dividual to the meaning of the embedded clause, 
which is a construction of a proposition. Hence, if K 
is the meaning of a factivum, then K  (n). Fur-
thermore, let c/n+1  n, 2c   be a variable ran-
ing over constructions of propositions, a  . Then 
the rules for factive propositional attitudes are: 

[0Kwt a c]  [0Kwt a c] 
  
[0Truewt

2c] [0Truewt 2c] 

4.2 Property Modifiers 

Property modifiers are denoted by adjectives and they 
are functions in extension that applied to a root prop-
erty return as a value the modified property. Here we 
deal with properties of individuals and modifiers of 
such properties of type (()()). There are three 
basic kinds of modifiers, namely intersective, sub-
sective and privative. Here are the examples. 

a) Intersective. “A yellow elephant is yellow and is 
an elephant.” 

b) Subsective. “A skilful surgeon is a surgeon.” 
c) Privative. “Forged passport is non-passport.”  

We are not going to analyse these modifiers in detail 
here. TIL analysis has been introduced in numerous 
papers, see, e.g. (Jespersen, Carrara, Duží, 2017), 
(Duží, 2017) or (Jespersen, 2015), (Jespersen, 2016). 
The issue we deal with bellow is the rule of left sub-
sectivity.5  

The principle of left subsectivity is trivially (by 
definition) valid for intersective modifiers. If Jumbo 

below. It appears the implicative verbs listed above presup-
pose a weaker version of a presupposition; ‘to manage some-
thing’ presupposes ‘to try that something’ (and a certain dif-
ficulty of the task) and ‘to dare’ presupposes a sort of ‘want’. 
We are grateful to an anonymous referee for this note. 

5 Here we partly draw on material from (Duží et al., 2010, 
§4.4). 
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is a yellow elephant, then Jumbo is yellow. Yet how 
about the other modifiers? If Jumbo is a small 
elephant, is Jumbo small? If you factor out small from 
small elephant, the conclusion says that Jumbo is 
small. Yet this would seem a strange thing to say, for 
something appears to be missing: Jumbo is a small 
what? Nothing or nobody can be said to be small  
or forged, skilful, good, notorious, or whatnot, 
without any sort of qualification. A complement to 
provide an answer to the question, ‘a … what?’ is 
required. We are going to introduce the rule of left 
subsectivity that is valid for all kinds of modifiers 
including subsective and privative ones. The idea is 
simple. From a is an [MP] we infer that a is an M-
with respect to something.   

Here is the scheme of defining left subsectivity 
rule, SI being substitution of identical properties 
(Leibniz’s Law).   

(1)   a is an MP                        assumption  
(2)   a is an (M something)                      1, EG 
(3)   M* is the property (M something)       definition 
(4)   a is an M*                 2, 3, SI 

To put the rule on more solid grounds of TIL, let 
 = () for short, M  () be a modifier, P   
an individual property, [MP]   the property 
resulting from applying M to P, Further, let =/() 
be the identity relation between properties, and let p 
v  range over properties, x v  over individuals. 
Then the proof of the rule is this: 

1. [[MP]wt a]                      assumption 
2. p [[Mp]wt a]                      1, EG 

3. [x p [[Mp]wt x] a]                  2, -expansion 

4. [w’t’ [x p [[Mp]w’t’ x]]wt a]            3, -expansion 
5. M* = w’t’ [x p [[Mp]w’t’ x]]    definition 
6. [M*wt a]                4, 5, SI  

Any valuation of the free occurrences of the variables 
w, t that makes the first premise true will, together 
with step five, make the conclusion true. Left 
subsectivity (LS), dressed up in full TIL notation, is 
this: 

[[MP]wt a] 
[M* = wt x p [[Mp]wt x]] 

(LS)            ––––––––––––––––––––––– 
[M*wt a]. 

Additional type: /(()). 
 

This specification of the rule easily dismantles 
objections raised against the (LS) principle by Gamut 
(1991, §6.3.11) and Geach (1956). Summarising 
briefly, there are three such arguments against (LS).  

First Objection. If Jumbo is a small elephant and 
a large mammal, then Jumbo is small and large  

contradiction! Yet, there is no contradiction, because 
Jumbo is small as an elephant and large as a mammal. 
Hence the properties p, q with respect to which Jumbo 
is a [0Small p] and [0Large q] are distinct.  

The conclusion ought to strike us as being trivial. 
If we grant, as we should, that nobody and nothing is 
absolutely small or absolutely large, then everybody 
is made small by something and made large by 
something else. And if we grant, as we should, that 
nobody is absolutely good or absolutely bad, then 
everybody has something they do well and something 
they do poorly. That is, everybody is both good and 
bad, which here just means being good at something 
and being bad at something else, without generating 
paradox (Good, Bad/()):  

wt x [p [[0Good p]wt x]  q [[0Bad q]wt x]]. 

But nobody can be good at something and bad at the 
same thing simultaneously:  

wt x p [[[0Good p]wt x]  [[0Bad p]wt x]]. 

The Second Objection is rejected in a similar way. 
The argument goes as follows. If Jumbo is a small 
elephant and Mickey is a large mouse, then Jumbo is 
small, and Mickey is large; hence Jumbo is smaller 
than Mickey. Again, to derive the conclusion, it 
would have to be granted that Jumbo is small with 
respect to the same property as Mickey, which is not 
so.  

Third Objection. If we do not hesitate to use 
‘small’ not only as a modifier but also as a predicate, 
then it would seem we could not possibly block the 
following fallacy: 

Jumbo is small 
Jumbo is an elephant 

 
Jumbo is a small elephant. 

But we can and must block it, for this argument is 
obviously not valid. The premises do not guarantee 
that the property p with respect to which Jumbo is 
small is identical to the property Elephant. 

4.3 Anaphoric References and  
Substitution Method 

Resolving anaphoric references is a hard nut for every 
linguist dealing with the semantics of natural 
languages because there are frequently many 
ambiguities as for to which part of the foregoing 
discourse the anaphoric pronoun refers. Logic cannot 
disambiguate any sentence, of course. Instead, logic 
can contribute to disambiguation and better 
communication by making these hidden features 
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explicit and logically tractable. If a sentence or term 
is ambiguous, we furnish it with multiple 
constructions as its proposed meanings and leave it to 
the agent to decide which of these meanings is the 
intended one.   

To deal with anaphoric references, we apply 
generalized Hans Kamp’s Discourse Representation 
Theory (DRT), see (Kamp, 1981), (Kamp, Reyle, 
1993). ‘DRT’ is an umbrella term for a collection of 
logical and computational linguistic methods 
developed for a dynamic interpretation of natural 
language, where each sentence is interpreted within a 
certain discourse. DRT as presented in (Kamp, 1981) 
is a first-order theory. Thus, only terms denoting 
individuals (indefinite or definite noun phrases) can 
introduce so-called discourse referents, which are free 
variables that are updated when interpreting the 
discourse.  

Since TIL semantics is procedural, hence 
hyperintensional and higher-order, not only 
individuals, but entities of any type, like properties of 
individuals, propositions, relations-in-intension, and 
even constructions (i.e., meanings of antecedent 
expressions), can be linked to anaphoric variables. 
Moreover, the thoroughgoing typing of the universe 
of TIL makes it possible to determine the respective 
type-theoretically appropriate antecedent, which also 
contributes to disambiguation.6  

For instance, the ambiguous anaphoric reference 
to properties as in Neale’s example “John loves his 
wife and so does Peter” has been analysed in (Duží, 
Jespersen, 2013). The authors prove that the sentence 
entails that John and Peter share a property. Only that 
it is ambiguous which one; there are two options, (i) 
loving John’s wife and (ii) loving one’s own wife. 
The property predicated of Peter in ‘so does Peter’ is 
a function of the property predicated of John in ‘John 
loves his wife’. Since the source clause is ambiguous 
between attributing (i) or (ii) to John, the target clause 
is likewise ambiguous between attributing (i) or (ii) 
to Peter. The ambiguity of the anaphoric expression 
‘his wife’ as applied to John is visited upon the 
likewise anaphoric expression ‘so does’. The authors 
propose the analyses of both readings and show that 
unrestricted -reduction ‘by name’ reduces both 

 
6  The algorithm for dynamic discourse representation 

within TIL has been specified in (Duží, 2018a) and imple-
mented by Kotová, (2018). It is applied in a multi-agent 
system to govern the communication of individual agents 
by messaging. 

7 (Loukanova, 2009) also warns against unrestricted -re-
duction and its undesirable results.  

8 We analyse Know(ing)/(n) as a hyperintensional atti-
tude, i.e. the relation-in-intension of an individual to a  
hyperproposition (construction of a truth value or a PWS 

readings to the strict one on which John and Peter love 
John’s wife, which is undesirable.7  

The solution consists in the application of  
-reduction ‘by value’ that makes use of the functions 
Sub and Tr defined as follows. The function Sub/ 
(nnnn) operates on constructions so that the 
Composition [0Sub C1 C2 C3] produces a construction 
D that is the result of the collision-less substitution of 
the product of C1 for the product of C2 into C. The 
function Tr/(n ) produces the Trivialization of the 
-object.  

What is also special about “John loves his wife, 
and so does Peter” is that it involves two anaphoric 
terms, namely ‘his’ and ‘so does’. It might seem 
tempting, though, to analyse “John loves his wife” as 
though it were synonymous with “John loves John’s 
wife”. Then “So does Peter” would unambiguously 
attribute to Peter the property of loving John’s wife. 
But this analysis would not be plausible as it would 
entirely annihilate the anaphoric character of ‘his’. 
Instead, the form of the solution must be in terms of 
resolution of verb-phrase ellipsis. It needs to be spelt 
out which of two properties applies to John in “John 
loves his wife” and so applies to Peter in “So does 
Peter”.  

The property (i) of loving John’s wife is produced by  

wt x [0Lovewt  x [0Wife_ofwt 0John]] 

while the property (ii) of loving one’s own wife is 
produced by  

wt x [0Lovewt x 2[0Sub [0Tr x] 0y 0[0Wife_ofwt y]]] 

From the logical point of view, anaphoric 
pronouns denote variables, valuation of which is 
supplied by referring to an appropriate antecedent. To 
this end, we developed a substitution method that 
exploits the functions Sub and Tr defined above  

To adduce an example of referring to the meaning 
of a term, i.e. to the encoded construction, the 
sentence “Sin of  equals zero and John knows it” 
encodes the following construction as its meaning8. 

wt [[[0Sin 0] = 00]   
 2[0Sub [0Tr 0[[0Sin 0] = 00]] 0it 0[0Knowwt 

0John it]]] 

 

proposition). In case of mathematics it is obvious that such 
attitudes must relate an individual to the very procedure 
rather than its product; it makes no sense to know a truth 
value without any mathematical operation producing it. In 
an empirical case intensional attitudes are also thinkable. 
Yet, since intensional attitudes inevitably yield a variant 
of the well-known paradox of logical/mathematical omnis-
cience, we vote for the hyperintensional analysis here. 
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Types. Sin/(); 0,/; [[0Sin 0] = 00]/1  ; 
Know/(n); John/; it/2  1.     
  

Note that the result of the substitution (application of 
the Sub function) is an adjusted construction [0Knowwt 
0John 0[[0Sin 0] = 00]]. But the second argument of 
conjunction must be a truth-value; hence, the adjusted 
construction must be executedtherefore Double 
Execution.  

This analysis is fully compositional. The meaning 
of “John knows it”wt [0Knowwt 

0John 

it]contains a free variable it as its constituent. If the 
sentence is uttered in isolation, the valuation 
assignment is a pragmatic matter of a 
speaker/interpreter. However, if the sentence is 
embedded in the discourse context, the variable it 
becomes bound, and the value assignment is provided 
by the substitution method.9     

5 TWO CASE STUDIES 

5.1 Reasoning with Property Modifiers 

Scenario. John is a married man. John's partner is 
Eve. John is a member of a sports club and a student. 
All students like holidays. Everybody who is married 
believes that his/her partner is fantastic. Frank is a 
student. Frank thinks that Peter is an actor. 

Question. Does John believe that Eve is fantastic? 
To formalise our mini knowledge base, we start with 
assigning types to the objects that receive mention in 
the text: 
 

Types: John, Eve, Peter, Frank, S(port)C(lub)/;  
Partner-of/(); Marriedm/((οι)τω(οι)τω); Married, 
Actor, Student, Fantastic/(); Member, Like 
/(οιι)τω; Holidays/; Believe, Think/(n); w  ω;  
t  τ; x, y  . 
 

Analysis of the sentences of our scenario comes down 
to these constructions: 
 

A.wt [[0Marriedm 0Man]wt 0John] 

wt [[0Partner-ofwt 0John] = 0Eve] 
C. wt [[0Memberwt 0John 0SC]  [0Studentwt 

0John]] 
D.wt x [[0Studentwt x]  [0Likewt x 0Holidays]] 
wt x [[0Marriedwt x]   

[0Believewt x [0Sub [0Tr [0Partner-ofwt  x]] 0y 
0[wt [0Fantasticwt y]]]]] 

F. wt [0Studentwt 0Frank] 
G. wt [0Thinkwt 

 0Frank  
0[wt 0Actorwt 

0Peter ]] 

 
9 A similar stance and solution can be found in (Loukanova, 

2012).   

Conclusion/question: 
Qwt [0Believewt 0John 0[wt [0Fantasticwt 0Eve]]] 

To derive the answer, we are going to apply the 
system of Gentzen’s natural deduction (ND) adjusted 
for TIL. In addition to the standard rules of the ND 
system, we need the rule of left subsectivity (LS) for 
dealing with the property modifier Marriedm.  

The rule results in 

[[0Marriedm 0Man]wt  x ] ⊢ [0Marriedwt  x] 

Informally, this rule represents the fact that “Married 
man is married”.   

We must also deal with technical rules and 
functions specific for TIL. For instance, application 
of the functions Sub and Tr must be properly 
evaluated, or Leibniz’s law of substitution of 
identicals specified for TIL in (Duží, Materna, 2017) 
and (Fait, Duží, 2020) must be properly applied.  

Table 1 presents the proof. The answer to the 
question Q is Yes, of course; it follows from our mini 
knowledge base that John indeed believes that Eve is 
fantastic.  

However, in this proof, we simplified the 
situation. We took into account only the premises 
relevant for deriving the conclusion, ignoring the 
others. For instance, from premises D and F one can 
infer (by applying -E and MPP) that “Frank likes 
holidays”. Similarly, by applying -E, -E and MPP 
to the premises C and D we can infer that John likes 
holidays. Yet, these conclusions are pointless for 
answering the question Q.  

In practice, there are a huge number of sentences 
formalised in the form of TIL constructions so that 
extracting the relevant ones is not so easy. Moreover, 
implementation of the method within the interactive 
question answering system calls for an algorithm of 
selecting relevant input sentences so that to reduce 
inferring consequences that are not needed. To this 
end, we propose a simple solution that nevertheless 
restricts the number of input premises and thus also 
the length of the proofs significantly. We select only 
those sentences that talk about the objects that receive 
mention in a given question.      

In our example, the following constructions 
would be selected because they contain the 
constituents 0Believe, 0John, 0Fantastic and 0Eve, 
which they have in common with the question Q.  
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Table 1: Derivation of the answer. 

1. wt [[0Marriedm 0Man]wt 0John]  
2. wt [[0Partner-ofwt 0John] = 0Eve]  
3. wt x [[0Marriedwt x]  [0Believewt x [0Sub [0Tr [0Partner-ofwt  x]] 0y 

                                                                  0[wt [0Fantasticwt y]]]]]
 

4.  [[0Marriedm 0Man]wt 0John] 1, -E 
5. [[0Partner-ofwt 0John] = 0Eve] 2, -E 
6. x [[0Marriedwt x]  [0Believewt x [0Sub [0Tr [0Partner-ofwt  x]] 0y 

                                                         0[wt [0Fantasticwt y]]]]]
3, -E 

7. [[0Marriedwt 0John]  [0Believewt
0John [0Sub [0Tr [0Partner-ofwt  

0John]] 0y
                                                               0[wt [0Fantasticwt y]]]]]

6, -E, 0John/x

8. [[0Marriedwt 0John]  [0Believewt
0John [0Sub [0Tr 0Eve] 0y 

                                                                 0[wt [0Fantasticwt y]]]]] 
5,7, SI 
(Leibnitz) 

9. [0Marriedwt 0John] 4. LS 
10. [0Believewt 0John [0Sub [0Tr 0Eve] 0y 0[wt [0Fantasticwt y]]] 8,9 MPP 
11. [0Believewt 0John 0[wt [0Fantasticwt

0Eve]]] 10, Sub, Tr
12. wt [0Believewt

0John 0[wt [0Fantasticwt
0Eve]]] 11, λ-I 

 
wt [[0Marriedm 0Man]wt 0John] 

wt [[0Partner-ofwt 0John] = 0Eve] 
C. wt [[0Memberwt 0John 0SC]   

        [0Studentwt 
0John]] 

wt x [[0Marriedwt x]   
[0Believewt x [0Sub [0Tr [0Partner-ofwt x]] 0y 
0[wt [0Fantasticwt y]]]]] 

 

The premises D, F and G are irrelevant because they 
do not have any constituent in common with the 
question Q. This heuristic method does not guarantee 
that all the selected constructions are necessary for 
deriving the answer (in our case the premise C is 
spare), nor that the selected set is sufficient for 
deriving the answer. It may happen that in the proof 
process the heuristic method must be iterated to select 
additional input sentences. Anyway, it turns out that 
in most cases one-step heuristic is sufficient, and the 
process of proving is effectively optimized.    

5.2 Factive Propositional Attitudes 

Scenario. The Mayor of Ostrava is Tomáš Macura. 
Prof. Vondrák likes teaching. The Mayor of Ostrava 
knows that the President of Technical University of 
Ostrava (TUO) does not know (yet) that he (the 
President of TUO) will go to Brussels.  The President 
of TUO is prof. Snášel. Prof. Snášel likes swimming. 
Prof. Vondrák is a politician.  

Question. Will prof. Snášel go to Brussels? 

Types: Snasel, Macura, Vondrak, Brussels/ι; 
President(-of TUO), Mayor (-of Ostrava)/ιτω; 

 
10 For the sake of simplicity, we assign type  to these ac-

tivities, because this simplification is harmless to the der-
ivation we are going to demonstrate.  

Go/(); Like/(οι)τω; Know/(n). Swimming, 
Teaching/;10 Politician/(). 

Knowledge base: 
wt [0Mayorwt  = 

0Macura] 
wt [0Likewt 

 0Vondrak  
0Teaching] 

C.  wt [0Knowwt 
 0Mayorwt  

0[wt [0Knowwt 
0Presidentwt [0Sub [0Tr 0Presidentwt] 0he  
0[wt [0Gowt he 0Brussels]]]]]] 

D.  wt [0Presidentwt = 0Snasel] 
wt [0Likewt 

 0Snasel  
0Swimming] 

Fwt [0Politicianwt 
 0Vondrak ] 

Question: 
Q.  wt [0Gowt 

0Snasel 0Brussels] 

What is interesting about this example is that it makes 
it possible to demonstrate a top-down derivation from 
hyperintensional level of the complement of 
knowing/not knowing that “he will go to Brussels” to 
the extensional level of Snasel’s going to Brussels. It 
is made possible by application of the rules for factive 
attitudes defined above, plus the rule for True-
Elimination and resolution of anaphoric references by 
the substitution method. To recapitulate, here are the 
rules (c  n, 2c  ; p  ; True/()). 

ሺF1ሻ   [0Knowwt  a c] ⊢ ሾ0Truewt  2cሿ 

ሺF2ሻ  [0Knowwt  a c] ⊢ ሾ0Truewt  2cሿ 

ሺTrue-Eሻ  ሾ0Truewt  pሿ ⊢ pwt  
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Table 2: Top-down derivation of the answer. 

1 wt [0Knowwt 
 0Mayorwt  

0[wt [0Knowwt 
0Presidentwt [0Sub [0Tr 0Presidentwt]  

0he 0[wt [0Gowt he 0Brussels]]]]]] 
 

2. wt [0Presidentwt = 0Snasel]  
3. wt [0Likewt 

 0Snasel  
0Swimming]  

4. wt [0Mayorwt  = 0Macura].  
5. [0Knowwt 

 0Mayorwt  
0[wt [0Knowwt 

0Presidentwt [0Sub [0Tr 0Presidentwt] 0he 
          0[wt [0Gowt he 0Brussels]]]]]]

1, -E 

6. [0Presidentwt = 0Snasel] 2, -E 
7.  [0Likewt 

 0Snasel  
0Swimming] 3, -E 

8.  [0Mayorwt  = 
0Macura] 4, -E 

9. [0Truewt 
20[wt [0Knowwt 

0Presidentwt [0Sub [0Tr 0Presidentwt] 0he  
                 0[wt [0Gowt he 0Brussels]]]]]]

5, F1 

10. 20[wt [0Knowwt 
0Presidentwt [0Sub [0Tr 0Presidentwt] 0he  

                0[wt [0Gowt he 0Brussels]]]]]wt

9, True - E 

11. [wt [0Knowwt 
0Presidentwt [0Sub [0Tr 0Presidentwt] 0he  

0[wt [0Gowt he 0Brussels]]]]]wt 
10, 20-E 

12. [0Knowwt 
0Presidentwt [0Sub [0Tr 0Presidentwt] 0he 0[wt [0Gowt he 0Brussels]]]] 11, -r 

13. [0Truewt  
2[0Sub [0Tr 0Presidentwt] 0he 0[wt [0Gowt he 0Brussels]]]] 12, F2 

14. 2[0Sub [0Tr 0Presidentwt] 0he 0[wt [0Gowt he 0Brussels]]]wt 13, True – E 
15. 2[0Sub [0Tr 0Snasel] 0he 0[wt [0Gowt he 0Brussels]]]wt 14,6, SI  
16. 2[0Sub 00Snasel 0he 0[wt [0Gowt he 0Brussels]]]wt 15, Tr 
17. 20[wt [0Gowt 

0Snasel 0Brussels]]wt 16, Sub 
18. [wt [0Gowt 

0Snasel 0Brussels]]wt 17, 20-E 
19. [0Gowt 

0Snasel 0Brussels] 18, -r 
20. wt [0Gowt 

0Snasel 0Brussels] 19, -I  
 

For technical reasons, we also need the rule of 20-
Elimination, a simple technical adjustment, which 
holds for any construction C that is typed to  
v-construct a non-procedural object of a type of order 
1. 

(20-E)  20C = C 

For the selection of constructions that are relevant for 
deriving the answer we now apply the heuristics 
described above. Constituents of the question Q are 
0Go, 0Snasel and 0Brussels. These constituents occur 
as sub-constructions of the sentences C, D and E.  

C. wt [0Knowwt 
 0Mayorwt  

0[wt [0Knowwt 
0Presidentwt [0Sub [0Tr 0Presidentwt] 0he  
0[wt [0Gowt he 0Brussels]]]]]] 

Dwt [0Presidentwt = 0Snasel] 
E. wt [0Likewt 

 0Snasel  
0Swimming] 

 

In the sentence C there is another constituent, namely 
0Mayor, and this same constituent also occurs in the 
premise A. By iterating the heuristics, we include A 
among the premises as well: 

wt [0Mayorwt  = 
0Macura]. 

The proof of the argument, i.e. the derivation of 
the answer to the question Q from premises A, C, D 
and E can be found in Table 2. Since we proved that 
the premises A, C, D and E entail that Snášel is going 
to Brussels, the answer to the question Q is YES.  

6 CONCLUSION 

In this paper, we introduced the system for 
‘intelligent’ question answering over natural 
language texts. The system derives answers to the 
questions as logical consequences of assumptions 
extracted from given text corpora. When designing 
such a system, one has to solve several problems. 
First, natural language sentences must be analysed in 
a fine-grained way so that all the semantically salient 
features of a language are captured by an adequate 
formalization. To this end, we exploited the system of 
Transparent Intensional Logic (TIL). Second, there 
are special rules rooted in the rich semantics of 
natural language which are not found in standard 
proof calculi. The problem is how to integrate these 
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rules with a given proof system. And the third 
problem is how to extract just those sentences that are 
needed for deriving the answer from the large corpora 
of input text data. There are two novel contributions 
of the paper. While in the previous proposals based 
on TIL it has been tacitly presupposed that it is 
possible to pre-process the natural language sentences 
first, and then to apply a standard proof calculus, we 
gave up this assumption, because it turned up to be 
unrealistic. Instead, we voted for Gentzen’s natural 
deduction system so that those special semantic rules 
could be smoothly inserted into the derivation process 
together with the standard I/E rules of the proof 
system. Yet, by applying the forward-chaining 
strategy of the natural deduction system, we faced up 
the problem of extracting those sentences that are 
relevant for the derivation of the answer. As a 
solution, we proposed a heuristic method that extracts 
those sentences that have some constituents in 
common with the posed question.  
 Future research will concentrate on the comparison 
of this approach with the system of deriving answers 
by means of the backwards-chaining strategy of 
general resolution method and/or sequent calculus, 
and an effective implementation thereof. Moreover, 
we will also deal with Wh-questions like “Who is 
going to Brussels?”, “When did an American 
president visit Prague?”, analyse them and propose a 
method of their intelligent answering.   
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