
Detection of Crawler Traps: Formalization and Implementation
Defeating Protection on Internet and on the TOR Network

Maxence Delong1, Baptiste David1 and Eric Filiol2,3
1Laboratoire de Virologie et de Cryptologie Opérationnelles, ESIEA, Laval, France

2Department of Computing, ENSIBS, Vannes, France
3High School of Economics, Moscow, Federation of Russia

Keywords: Crawler Trap, Information Distance, Bots, TOR Network.

Abstract: In the domain of web security, websites want to prevent themselves from data gathering performed by auto-
matic programs called bots. In that way, crawler traps are an efficient brake against this kind of programs.
By creating similar pages or random content dynamically, crawler traps give fake information to the bot and
resulting by wasting time and resources. Nowadays, there is no available bots able to detect the presence of
a crawler trap. Our aim was to find a generic solution to escape any type of crawler trap. Since the random
generation is potentially endless, the only way to perform crawler trap detection is on the fly. Using machine
learning, it is possible to compute the comparison between datasets of webpages extracted from regular web-
sites from those generated by crawler traps. Since machine learning requires to use distances, we designed our
system using information theory. We used wild used distances compared to a new one designed to take into
account heterogeneous data. Indeed, two pages does not have necessary the same words and it is operationally
impossible to know all possible words by advance. To solve our problematic, our new distance compares two
webpages and the results showed that our distance is more accurate than other tested distances. By extension,
we can say that our distance has a much larger potential range than just crawler traps detection. This opens
many new possibilities in the scope of data classification and data mining.

1 INTRODUCTION

For most people, surfing the web is done via a web
browser where it is just about to click on a few links.
But the ecosystem is not only made of humans. In-
deed, there are automatic programs, called bots, that
allow you to automatically browse websites. Brows-
ing motivations of the latter are multiple. Indeed, they
can be used for archiving, search engine optimization,
content retrieval, user information collection — with
or without agreement —search for non-posted and po-
tentially confidential documents, intelligence gather-
ing for attack preparation... Usually, bots are efficient
and largely faster than humans to collect all informa-
tion. If the motivations of such tools are more or less
legitimate, it is understandable that some sites do not
wish to be analyzed in such a way.

To counter these unwanted automatic analysts,
websites have implemented different strategies. From
the detection of bots with basic methods, to chal-
lenges offered that only humans (Turing test) can
solve (or supposed to be), various methods have

emerged across the last years. In a few cases, the
most advanced ones have the ability to neutralize the
importune bot. The main technique used to deceive
and hinder bots’ operations is generically described as
“Crawler traps”. As always in IT security, what refers
to detection measures and protection on one side, also
refers to bypass techniques symmetrically. Hence the
aim of our paper is to formalize the concept of crawler
trap detection and management, to present different
techniques capable of interfacing with anti-bot coun-
termeasures and to present our detection results.

More than trying to be stealthy (it would result in
reducing the bot’s performance and therefore losing
its main interest), we want to counter the measures
put in place to neutralize bots. The objective is to have
ways to pass where the other widely used bots gener-
ally stop and fail, trapped by the website’s defenses.
Our whole problem is to have the operational means
to be able to detect whenever a website traps our bot
and therefore to be able to avoid it. Surprisingly, there
are neither no research no real public operational so-
lutions on the subject, which means we are going to

Delong, M., David, B. and Filiol, E.
Detection of Crawler Traps: Formalization and Implementation Defeating Protection on Internet and on the TOR Network.
DOI: 10.5220/0009367207750783
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 775-783
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

775



explore a new field.
This paper is therefore organized to address this

problem. Section 2 presents the state of the art on the
different website protection mechanisms. Section 3
addresses te formalization we have considered and
presents the solutions implemented based on the theo-
retical aspects we have considered. Section 4 presents
the results we have obtained from our solutions dur-
ing a large number of experiments both on the Inter-
net and on the TOR network (aka Darkweb). Finally,
Section 5 resumes our approach and possible uses.

2 STATE OF ART

As far as web bots are concerned, there is a great di-
versity of uses. If the majority of bots as chatbots
(Rouse, 2019) or Search Engine Optimization (SEO)
bots as Googlebot (Google, 2019) are very helpful for
websites owners, some of them are malicious. The
purpose of malicious bots can be multiple. Among
many example, we can mention spambots which col-
lect email addresses to prepare phishing campaigns.
Subsequently to fight against botnets’ activities, many
security measures have been developed.

Most solutions degrade the user experience or
come to be impractical from a user point of view. An
example of a repressive solution is the IP banishment.
If the web server guessed that a bot is crawling it,
an error code can be returned on legitimate webpages
thus disallowing content access. In the case where the
website has incorrectly guessed and real user has been
blocked, the frustration is high. Another example of
common impractical security on the web are captchas
(Hasan, 2016). Indeed, if originally, most of captcha
were used to validate specific operation where a hu-
man user was mandatory (online payment, registra-
tion...), nowadays, websites more and more condition
the access to the total content of the website by re-
solving a captcha first. But this is not a sufficient so-
lution since there exists practical ways to automati-
cally bypass them (Sivakorn et al., 2016). As a conse-
quence, other security systems have been developed
to be more efficient.

Usually, the official way to prevent web-crawlers
is to create a file named ”robot.txt” put at the root
of the website. In this file, all the section forbid-
den for crawling are referenced to prevent legitimate
bots from falling into them. This file is only declara-
tive and there is no deeper protection to forbid crawl-
ing. In a way, it is a gentleman’s agreement that
determined bots shamelessly bypass. Moreover, the
”robot.txt” give direct information to the attacker on
sensitive parts of the website.

The new trend to provide real protection is fo-
cused on systems called ”spider trap” or ”crawler
trap”. The goal is to ambush the malicious bot on a
dedicated trap inside the website. The intent is to im-
prison the bot in a specific place where it is supposed
continue to operate endless false information (or the
same one, again and again) in order to finally waste
time and resources. There are many ways to create
and deploy a crawler trap.

Involuntarily Crawler Traps. Surprisingly, the
notion of crawler trap exists from a long time, since
some of them were not designed to be a crawler trap.
This is what we call involuntarily crawler trap. For
instance, for management purpose, we can find online
interactive calendar which are constituted by an infi-
nite number of page, one for each month, generated
on the fly by the webserver. Nowadays, most of cal-
endars are developed in javascript but this language is
prohibited on the TOR network for security reasons.
This is why we can still find such objects online. An-
other example stands in some website which generate
pages on the fly from a general link but with differ-
ent parameters. Incorrectly managed by the bot, it is
possible to make them endlessly loop on this type of
link.

Infinite Depth or Infinite Loop. In contrast, we
can find intentional crawler which are designed for
that purpose. The most used solutions stands in the
automatically generated pages when the system de-
tects a bot. The content generated does not matter as
long as the crawler hits the trap and that it crawls fake
sub-pages. In the majority of cases, a loop with rela-
tive URL is created and the bot will crawl the same set
of two pages. For instance, we can use two twin direc-
tories referencing each other such as the bots comes
to one to go to the other and vice-versa:

http://www.example.com/foo/bar/foo/
bar/foo/bar/somepage.php

Identifiers. For some website, the strategy is to
generate a unique identifier store in the page URL.
This one is assigned to each client visiting it in order
to track him. This one is usually called a session ID.
The bot — as any user —will receive such identifier.
The trap lies in the fact that the user ID is changing
randomly at random time. Such a way, the bot can be
redirected to already visited webpages but with a dif-
ferent ID — an transparent action a regular user will
not perform. The session ID is usually implemented
in the URL as follows:

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

776



http://example.com/page?sessionid=3
B95930229709341E9D8D7C24510E383

http://example.com/page?sessionid=
D27E522CBFBFE72457F5479117E3B7D0

There exists countermeasures to bypass such pro-
tection for bots, starting by registering hashes of al-
ready visited webpages to a smarter implementation
of URL management.

Random Texts. A different solution, which — in
addition to its deployment —is more effective than
others, stands in random generation of text in a web-
page. With simple script from webserver side, one
page can be randomly generated with random text and
random links referencing the same page. Once this
page is hit, the bot will treat what looks to it as differ-
ent webpage, since it comes from different links with
a different page’s name, over and over.

But whatever is the level of sophistication of the
crawler trap, it can only generate pages that respect
the strategies for which it has been designed. It means
that each crawler trap has specific characteristics. Ei-
ther the web page is created automatically on the fly
and the content is fully random, or it starts from an
existing webpage whose content is randomly derived.
In other words, the crawler can be working on to-
tally fake platforms, where the pages are similar to
the original site in terms of shape, HTML architec-
ture, even some key words, part of content...

This is this last category of crawler trap which
matters for us. Indeed, the involuntary one can be
avoided by a bot aware of such objects. And about
intentional ones, where they are based on URL man-
agement, it is possible to bypass the security with a
specific management of already visited pages. But the
last technique with random text generation cannot be
managed in the same way and it requires a specific
approach to handle it. This is the purpose of our pa-
per.

From an operational point of view, we are visiting
websites, page after page. The main difficulty lies in
the fact that the trap generates random pages after the
bot has visited a certain number of pages (based on
the speed of the visit, the number of visits, the logic
of the order of the links visited, etc). In a way, we can
only base our decisions on the already visited pages
and the ones we are going to visit next. This is the
operational context in which we operate. Our whole
approach is not to avoid being detected by the website
(crawling performance would be too downgraded) but
to detect whenever the website starts setting a trap.
For this reason, we need to measure the distance be-
tween regular and irregular webpages.

3 USE OF DISTANCES

The objective is to measure the distance between sev-
eral data sets to perform a distinction between several
families. This can be done in section 3.1 in order to
define precisely what we are really trying to measure
and the approach which drives our forthcoming anal-
yses. Subsequently, we will be able to present some
of the existing distances in the section 3.2 and then
we will discuss the contributions proposed by our dis-
tance to answer our problematic.

3.1 Approach to Resolve the Problem

From a generic point of view, we have two ethnic
groups: pages extracted from regular website and
pages generated by crawler traps. In each of the ethnic
group, it is possible to find different families. In the
case of regular websites, it means that all the pages of
a family come from the same website. The same ap-
plies for pages generated from different crawler traps.

In our case, we are trying to detect whenever there
is a webpage generated from a crawler trap in a set of
regular webpages. According to our operational con-
text, we are aggregating webpages on the fly, which
means we cannot know the full dataset in advance. It
means we have to check the difference of a new web-
page from a set of already visited webpages. This
is doable by computing a distance D between the
new webpage and the current set. In that sense, we
can assume that a family F composed of n samples,
∀i, j ∈N+∗ such as 1≤ i≤ j≤ n we have the random
value X which models the distance between two sam-
ples si and s j such as X = D (si,s j). Since all samples
belong to the same family, there is no reason that the
distance between two samples is different to a third
one, that is to say ∀i, j,k ∈ N+∗ where i 6= j 6= k we
have D (si,s j)≈D (si,sk).

For optimization purposes, we cannot compute a
distance between the new one and all pages of the cur-
rent set. Since the distance between webpages of a
single family is supposed to be the same, we can con-
sider the mean (expected value) as a good estimator.
This mean is computed on the fly by updating it with
each new value which belong to the family. It means
that our detector system is based on the fact that the
distance between a new sample s and the mean of a
family m is based on the fact that D (si,s j)≤ ε where
ε is distinctive for each each family.

The challenge is therefore to define a distance D
that respects the property defined bellow. It means
that our distance must be discriminating in the sense
that each family must have its own mean of distance.
And it should be accurate which means that the stan-

Detection of Crawler Traps: Formalization and Implementation Defeating Protection on Internet and on the TOR Network

777



dard deviation from the mean is supposed to be as
small as possible.

The reduction of the mean makes sense in
terms of confidence intervals. Indeed, when ap-
plied to our case, such intervals are composed by[

x̄− tα
s√
n

; x̄+ tα
s√
n

]
where x̄ is the mean of the

family, tα is the confident level selected, s the stan-
dard deviation observed and n the size of the current
family. The goal is to avoid the overlapping of several
confidence intervals and the best way to achieve such
a goal when we cannot increase the size of the family
(since it could introduce crawler-trapped pages) is to
reduce the standard deviation.

3.2 Distances Evaluated

As part of our research, we studied many distances.
Among those selected, we kept two of them with the
requested properties as described in section 3.1: the
Jensen-Shannon distance (JSD) and the Hellinger dis-
tance (HD). Moreover we have designed a custom dis-
tance to solve our problem more efficiently.

For all distances, we consider the content of two
webpages as a random value X and Y composed of
words. Each word (or group of words) in a page has a
probability of occurrence. The set of all of these prob-
abilities constitutes a probability distribution usually
noted P and Q from the same space X .

3.2.1 Jensen-Shannon

The Jensen-Shannon divergence (JSD) (Lin, 1991) is
based on the idea that we should be able to balance
the different distributions involved in the divergence,
according to their importance. As for previous distri-
butions, it aims at measuring the diversity (or the dis-
similarity) between two populations. With π1,π2 ≥ 0
real positive numbers such as π1 +π2 = 1 which are
the weights of the two probability distributions, we
define the Jensen-Shannon divergence as:

JSπ (P,Q) = H (π1P+π2Q)−π1H (P)−π2H (Q)

where H is the entropy function as defined by
Shannon (Shannon, 1948) on a random variable such
as:

H (X) =−∑
x∈X

p(x) log2 p(x)

In order to manipulate a true metric, it is common
to compute the square root of the JSD divergence such
as:

DJSπ
(p1, p2) =

√
JSπ (p1, p2)

3.2.2 Hellinger

The Hellinger distance (although known under the
name of Matusita measure (Matusita, 1955)) has been
designed to check if one probability distribution fol-
lows another probability distribution and if it is a true
metric (Comaniciu et al., 2003). The normalized ver-
sion (the values are between 0 and 1) is as follows
(Nikulin, 2011):

DH(P,Q) =
1√
2

√
n

∑
i=1

(
√

pi−
√

qi)
2

3.2.3 Custom Distance - Shark

The main drawback of the existing distances we ob-
served is that the random variables they consider are
defined on the same space X . It makes sense in sim-
ple cases but our one is a bit more specific. Indeed,
we are computing the set of words page after page
and it means we do not have access to the set of all
words. In a page, we can find words which are not a
present in the next page (and vice-versa) for the sake
of example.

The main issue when we use existing distance is
that, to be mathematically exact, we must remove
unique words from each page. The possibility to
preload all possible words from website is out of
scope in our operational context since we compute
the set of words, page after page, on the fly and con-
sidering unknown words on a page with a probabil-
ity of zero does not fulfill all mathematical designs
(we artificially increase the number of words and we
change the probability distributions to remain con-
sistent). Such a loss deprives us of information and
therefore a loss of accuracy for our measurements.
The idea of our measure has its roots in this simple
observation.

The idea of one of our measures, called Shark
(others will be provided in an extended version) is
based on the rate of the entropy of the symmetric
difference on the entropy from the two distributions.
In other words, we look at the information contri-
bution of the exclusive words from the two pages
on all the information embedded in these two pages.
Considering P ∈ X and Q ∈ Y we have P \ Q =
{∀x ∈ X where x 6∈ Y} where we define our measure
such as:

D(P,Q) =
H (P\Q)+H (Q\P)

H (P)+H (Q)

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

778



Figure 1: Full process to determine a page family.

4 EXPERIMENTS

When we have conducted these experiments, we did
not forget the main objective of detecting a crawler
trap automatically. From an operational point of view,
the crawler processes a website, page after page, and
can fall into a crawler trap at any time. It is nearly
impossible to detect a crawler trap with only two con-
secutive pages. The concept we developed is to train a
classifier progressively with n consecutive pages then
to detect whenever a page is too different or too simi-
lar from the previous ones.The process is schematized
in Figure 1. At the time, only the creation of a more
discriminating measureis presented. The implementa-
tion or the choice of a classification algorithm and the
operational tests will be the outcome of future works
or an extended version.

Since we have defined properties and the protocol
to evaluate different distances, it is relevant to focus
on which data we are going to process. First, we pro-
pose to explain which are the websites used to help
our procedure to distinguish between regular websites
(for what it could mean) from crawler traps. Then, we
propose to explain which data are relevant in a web
page so that it will help to build efficient detection
system.

4.1 Experimental Dataset

The approach we propose is requiring the presence of
a dataset, which will be presented in the section 4.1.1.
More than explaining the context of our paper and the
different actors involved, the idea is also to open our
approach to make it reproducible and leave the results
being critically analyzed, by anyone, as we did in sec-
tion 4.2.

4.1.1 Websites

As there is no dataset available for our problematic
— it has not been studied in the past —, we created
our own. In this dataset, we chose to collect webpages
from 13 distinct sources, each with different linguis-
tic properties. To gather the dataset, we used a sim-
plified version of our crawler. For some webpages
like Wikipedia, we ”clicked” on the random genera-
tion of article on the left side of the page (available in
all languages) to have various panel of subjects. The
inescapable component is that all pages are one click
away (from a bot point of view) from the previous and
next one, hence they all are consecutive pages.

In the collected set, 4 sources are from a crawler
trap and 9 are from ”classic” websites. We collected
500 pages from each sources. There are divided in
two main categories: regular websites and crawler
trap ones. The first is about ”classic” websites
that anyone can easily find online. We wanted to
have enough material from ”spoken-language” to
have relevant tests. Among the different websites
evaluated for this purpose, we have selected the
following detailed list:

• CPAN - 1 Set (F1): ”Comprehensible Perl
Archive Network” is a documentation for each
Perl libraries. It can be a very long explanation
or just few lines of codes. People wrote the docu-
mentation in a good English.

• Jeuxvideo.com - 1 Set (F2): JeuxVideo.com is a
well known French website for news and discus-
sions about video games. A part of the website is
a forum for teenagers with very few moderation.
The language used is an approximate French, not

Detection of Crawler Traps: Formalization and Implementation Defeating Protection on Internet and on the TOR Network

779



Figure 2: Summary of data.

well mastered but still understandable for native
speakers.

• Stack Exchange - 1 Set (F3): Network composed
of 174 communities. The topics covered are var-
ious and range from science to religion through
history, literature or mathematics. A proper En-
glish is mandatory for the validation of the ques-
tion asked.

• Stack Overflow - 1 Set (F4): One of the network
in Stack Exchange specialized in computer pro-
gramming questions. There is less English sen-
tences and more sources codes as an example of
their issues.

• Wikipedia - 5 Sets: Wikipedia is the most known
free encyclopedia. The language is very accu-
rate. We have downloaded 5 sets, one by language
(German (F5), English (F6), French (F7) and Ital-
ian (F8)) and the last one is composed of a com-
bination of this four previous languages (F9).

The second category is about crawler-trap web-
sites. We have to admit that it exists really few
crawler-traps, at least identified. Why? Because most
of the techniques used are based on simple values
saved in cookies in web browsers. They are not hard
to bypass for a trained enough bot. The real difficul-
ties arise when the targeted website adapts the content
of the webpage when it is close to detect a bot instead
of a real human. To achieve such a goal, it exists few
scripts or programs able to perform this task. More
than a long list, the following one aims to represent
all the diversity we have found about:

• notEvil - 2 Sets: notEvil is originally a search en-
gine in the TOR network. On this website, there is
an embedded game named Zork. This game is as-
sociated with an identifier and, on the page, there

are three links to a new game. Hence, a crawler
trap is created because once the bot hits this link,
it will play games indefinitely. On the same page,
a small part is for ”Recent Public Channels” and
changes every time a channel is created or some-
one responds to an old one. To determine if this
change has an impact on your classification, we
collected two sets: one is composed of webpages
downloaded (F10) as the bot does (everything is
collected in the same minute) and one set (F11)
is for a long time gathering process (one webpage
per hour). This changing part is usually spambots,
URL links or unethical topics.

• Poison - 1 Set (F12): Poison (poi, ) is the
most random crawler trap we ever met. There
is no practical example available online, there-
fore we have downloaded the software (developed
in 2003) and generated our sample of 500 pages.
Through this, we had the possibility to play with
several coefficients to generate a real random sam-
ple of pages:

– Number of paragraphs [1:10]
– A CSS background (adding HTML tags and

data to create a colorful page) [0:1]
– Minimum number of words per paragraph

[25:75]
– Number of words added to the minimum num-

ber of words per paragraph [25:100]

This crawler trap is based on the operating sys-
tem dictionary, thus, a lot of words are uncom-
mon and very advanced, even for native speakers
(ex:thionthiolic). In this system, the probability
of picking up the word ”house” is the same as the
word ”chorioretinitis”.

• Tarantula - 1 Set (F13): This is the name of a

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

780



PHP crawler trap available on GitHub (tar, ). It
generates a simple page with 1 to 10 new links
and a text that contains between 100 and 999
words chosen randomly in a list of 1000 prede-
fined words. Tarantula is not online so we have
configured it on our local web server and gener-
ated 250 samples from the root address and 250
by following a random link of the page.

In order to ensure reproducibility (Nosek et al.,
2015) of results presented here, the dataset (514.3
MiB uncompressed) will be made available on the
third author’s webpage.

4.1.2 Relevant Data in a Webpage

There is no defined rules for a functioning crawler
trap. It can be located on a small part of the web-
page just as it can be on the whole page. And, as
explained previously in section 1, a web page is com-
posed of different parts. A crawler trap can have an
impact on all of these different parts. The shape of the
page (more precisely the way or the style in which it
is written) and the content (words which are displayed
to user’s eyes) are equally relevant to classify. There-
fore, we divided the page in three parts and created
four main features:

– A list of words contains in the <body> tag of
the page. To collect them, we used the follow-
ing regex: m/\w+/. We convert all words in lower
case to normalized data.

– The HTML tag architecture starting at the
<body> tag. To remove all text between each tag,
we used the regex s/>[ˆ<]+</></. We also re-
moved comments and links found in <src> and
<href> tags.

– The metadata of the page located in the <head>.
Comments and text between tags were removed.

– For comparison purposes, the fourth category is
composed of the list of words and the HTML ar-
chitecture. The same pre-processing were applied
for each part.

If the content and the HTML tag architecture
seems to be the most relevant data to exploit, some
crawler traps are not smart enough to change the
header for example. In that case, the metadata are
signing and distinct features. We did not add coeffi-
cient between each feature to keep them with an equal
weight.

4.2 Experimental Results

Since the content of the material used for experiment
has been described, it matters to evaluate our measure

comparing to existing ones. Empirical results that we
have been able to evaluate, using words split one by
one does not necessarily give very precise results. In-
deed, words are often used in a given context, which
means that they are linked each others. It is for this
reason that we decided to evaluate the probability of
clusters of consecutive words. Our best results are in
the case where we are using bi-grams with overlap-
ping extraction. Provided results are given in the fol-
lowing tables, where columns represent each a family
as described in section 4.1 and rows the means and the
associated standard deviation for the given distances.

The first point to note is that each distance does
not give the same values, even for the same family. In
truth, what matters is that each family, for a given dis-
tance, has more or less a unique value to be enough
accurate. It is the standard deviation that allows us to
discuss accuracy. The results clearly show that, on av-
erage, the standard deviation of the proposed measure
is smaller than that of other distances.

Indeed, in the case of Jensen-Shannon distance,
when we are looking at the raw date from the page
(the most relevant information we can extract here),
values of distance are usually located around the av-
erage value of 0.25 with an average standard devia-
tion of 0.10. This is almost the same situation for
Hellinger distance which has, on the same type of
data, all its distances close to an average of 0.18 with
an average standard deviation of 0.08. The situation
differs with Shark. Indeed, the average distance is
0.95 and the standard deviation is about 0.03 with a
range of values larger than others. This is the differ-
ence of range between vales from the group of reg-
ular web pages and those coming from crawler trap
worlds which is relevant to perform the discrimination
between the two groups thanks to a small standard de-
viation. This consequence avoids the phenomenon of
overlapping between families..

One interesting point lies in the ability for Shark
measure to produce bigger values than one. This is
due to the way we decide to design of the probabili-
ties in the set resulting of the symmetrical difference.
Indeed, those ones can be build intrinsically which
means probabilities are computed internally in each
set resulting of the difference or extrinsically which
means probabilities are computed considering all the
different sets (exclusive ones and the common one).
Going beyond unity is a rare phenomenon that can be
observed on large sets where the ratio of common and
different words is enough strong (which is the case on
crawler traps) when using probabilities designed in an
intrinsically way.

Considering the average of the distances as the
sum of normalized random variables, it becomes pos-

Detection of Crawler Traps: Formalization and Implementation Defeating Protection on Internet and on the TOR Network

781



JSD F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Content 0.30 0.13 0.18 0.26 0.15 0.16 0.19 0.18 0.16 0.00 0.12 0.22 0.19

0.16 0.09 0.07 0.08 0.09 0.09 0.09 0.09 0.10 0.00 0.03 0.14 0.06

HTML 0.00 0.00 0.00 0.00 0.41 0.52 0.48 0.47 0.48 0.00 0.03 0.25 0.00

0.00 0.00 0.00 0.00 0.14 0.15 0.14 0.14 0.15 0.00 0.02 0.13 0.00

Header 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Raw 0.26 0.13 0.18 0.26 0.31 0.42 0.38 0.38 0.41 0.00 0.08 0.28 0.19

0.15 0.09 0.07 0.08 0.14 0.16 0.14 0.14 0.16 0.00 0.02 0.11 0.06

Hellinger F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Content 0.22 0.09 0.13 0.19 0.11 0.12 0.14 0.13 0.12 0.00 0.09 0.16 0.89

0.12 0.07 0.05 0.06 0.06 0.07 0.07 0.06 0.08 0.00 0.02 0.10 0.28

HTML 0.00 0.00 0.00 0.00 0.30 0.38 0.35 0.35 0.35 0.00 0.02 0.18 0.00

0.00 0.00 0.00 0.00 0.10 0.12 0.11 0.11 0.12 0.00 0.02 0.10 0.00

Header 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Raw 0.19 0.09 0.13 0.19 0.23 0.31 0.28 0.28 0.30 0.00 0.05 0.20 0.13

0.11 0.06 0.05 0.06 0.11 0.12 0.11 0.11 0.12 0.00 0.02 0.08 0.04

Shark F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Content 0.94 0.84 0.92 0.93 0.94 0.94 0.94 0.95 0.97 0.37 0.98 1.00 0.00

0.04 0.05 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.09 0.01 0.00

HTML 0.71 0.00 0.00 0.00 0.96 1.00 0.99 0.98 0.98 0.74 0.73 0.56 0.00

0.15 0.00 0.00 0.00 0.05 0.07 0.05 0.06 0.05 0.00 0.01 0.19 0.00

Header 0.75 0.48 0.85 0.72 0.66 0.66 0.65 0.68 0.79 0.00 0.00 0.71 0.00

0.02 0.02 0.03 0.02 0.03 0.04 0.04 0.02 0.08 0.00 0.00 0.09 0.00

Raw 0.94 0.83 0.92 0.93 0.95 0.97 0.96 0.97 0.98 0.62 1.23 1.02 1.00

0.04 0.05 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.11 0.02 0.00

Figure 3: Detection Results for JSD, Hellinger and Shark distances.

sible to apply the consequences of the central limit
theorem which says that the resulting variable (av-
erage of distances, in our case) tends towards the
normal distribution. Thus, the interval [x̄−σ; x̄+σ]
should contain 68 % of the observed values of mea-
sures inside elements from given family and the inter-
val [x̄−3σ; x̄+3σ] should hold 99 % .

For this reason, a small standard deviation allows
us to have a more efficient distance than those evalu-
ated here. This is the main idea of our evaluation of
different measures we have used to perform an effi-

cient detection. More details will be provided in an
extended version.

5 CONCLUSION

In our study, we have defined a new measure to com-
pare two objects (from a family to a single sample)
and we have applied it to the case of crawler trap de-
tection. We can decide with a reasonable accuracy if
a web page belongs to a given family (crawler trap

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

782



or not) with better results compared to existing infor-
mation distances. Our results are characterized with
a lower standard deviation which mean less overlap-
ping between families.

Since we can detect that we are about to be trapped
by the targeted website, the ability to avoid it can be
computed not so hardly. For the sake of simplicity
about the procedure to use , it would require to check
a subset of previously visited websites and to avoid to
go on pages with a distance value too far from the one
actually measured in the current set. Consequently,
we can focus on relevant links and avoid trapped ones.

Of course, just talking about distance efficiency
is not enough to claim the accuracy of our results.
But we wanted to present the way we designed mea-
sure and procedure we develop to solve this problem
which does not already exist in academic world. In an
extended version, we will present our system coupled
with statistical tests able to say if a new sample can be
integrated to an existent family (since its distance with
it is enough small) or not. The most important part
has been covered with confidence intervals on which
tests are based. The notion of overlap rates from con-
fidence intervals is central to assessing and explaining
the effectiveness of our distances from existing ones.
This one needs to be further developed in future work.

In addition with the extended version of the cur-
rent paper , we would present more distances and
more details about how to use them in the case of de-
tection. Extended results will be provided to defini-
tively prove efficiency of methods we are using. This
future work would aim to complete the theoretical
background which stands behind our concepts of en-
tropy based on symmetrical difference from different
sets.

Of course, this new concept of distance can be ap-
plied to different fields of datamining and anywhere
machine learning is relevant, as Hellinger or Jensen-
Shannon distances are usually used . If the goal is still
to provide better and more efficient ways to break-
through against crawler traps in order to allow bots to
escape them, the area of exploitation can be expanded
to different fields. Actually, it should be relevant to
any problem based on a dataset crafted on the fly (or
which cannot be known in advance) or where manip-
ulated data are heterogeneous in their characteristics.
From a general point of view, applications and further
developments can be infinitely vast.

REFERENCES

Stickano/tarantula: Spider trap. https://github.com/
Stickano/Tarantula. Accessed: 2019-11-21.

Sugarplum – spam poison. http://www.devin.com/
sugarplum/. Accessed: 2019-11-21.

Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernel-
based object tracking. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(5):564–577.

Google (2019). Googlebot definition.
Hasan, W. (2016). A survey of current research on captcha.

International Journal of Computer Science & Engi-
neering Survey, 7:1–21.

Lin, J. (1991). Divergence measures based on the shannon
entropy. IEEE Trans. Information Theory, 37:145–
151.

Matusita, K. (1955). Decision rules, based on the distance,
for problems of fit, two samples, and estimation. The
Annals of Mathematical Statistics, 26.

Nikulin, M. (2011). Hellinger distance. Encyclopedia of
Mathematics.

Nosek, B., Alter, G., Banks, G., Borsboom, D., Bowman,
S., Breckler, S., Buck, S., Chambers, C., Chin, G.,
Christensen, G., Contestabile, M., Dafoe, A., Eich,
E., Freese, J., Glennerster, R., Goroff, D., Green, D.,
Hesse, B., Humphreys, M., and Yarkoni, T. (2015).
Promoting an open research culture. Science (New
York, N.Y.), 348:1422–5.

Rouse, M. (2019). Chatbot definition.
Shannon, C. E. (1948). A mathematical theory of communi-

cation. Bell System Technical Journal, 27(3):379–423.
Sivakorn, S., Polakis, J., and Keromytis, A. D. (2016). I ’

m not a human : Breaking the google recaptcha.

Detection of Crawler Traps: Formalization and Implementation Defeating Protection on Internet and on the TOR Network

783


