Cognitive and Social Aspects of Visualization in Algorithm Learning

Luděk Kučera¹,²
¹Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
²Faculty of Information Technologies, Czech Technical University, Prague, Czech Republic

Keywords: Visualization, Algorithm, Invariant, JavaScript, Computer-supported Education, Social Aspect.

Abstract: The present paper tries to point out two aspects of the computer supported education at the university level. The first aspect relates to cognition, in particular to methods of computer support of learning difficult concepts in natural sciences, computer science, and engineering, like mathematical notions and theorems, physical laws, and complex algorithms and their behavior. The second aspect is social - only few papers describe how the new educational methods are or have been accepted by the community, whether they finished as a single experiment at the authors’ institution or whether they are used in other schools, how difficult is spreading them out and what kind of obstacles the authors meet. We feel that even quite successful projects face certain inertia of the school system and the community of teachers that make the wider use of new methods complicated.

1 INTRODUCTION

The present paper tries to point out two aspects of the computer supported education at the university level that are highly ignored in the mainstream of the field. The first aspect relates to cognition, in particular to methods of computer support of learning difficult concepts in natural sciences, computer science, and engineering, like mathematical notions and theorems, physical laws, and complex algorithms and their behavior.

The second aspect is social - only few papers describe how new educational methods are or have been accepted by the community, whether they finished as a single experiment at the authors’ institution or whether they are used in other schools.

1.1 Knowledge and Skills

The ways of supporting education by computers relate closely to the type of education. The goal of education can be defined as building knowledge and/or skills.

A skill is an ability to behave in certain way to achieve required goals - e.g., manual skills in medicine or social skills in management. Skills play also very important role in arts.

For the purpose of the present paper, knowledge is classified as soft and hard. We have no intension to claim that one or the other type of knowledge is more valuable.

One page of the proof of Farkas’ Lemma in the Linear Programming Theory might take more time the ten pages of a cardiology textbook, but no one would claim that the mathematical knowledge is more valuable than the medical one.

There is a very deep distinction between methods of acquiring the soft and the hard knowledge that is reflected in a rather pronounced way in methods of computer support of such learnings. Roughly speaking, the soft knowledge is often a selection among possible worlds, based on a general understanding of possibilities.

E.g., a heart is composed of several chambers, 2, 3, or 4. A cardiologist learns that a human hart has 4 chambers.

Examples of hard knowledge are abundant especially in natural sciences and engineering: e.g., principles of magnetic resonance methods, quantum entanglement, properties of smooth differentiability of manifolds, and many others.

In its extreme form, acquiring hard knowledge is trying to grasp the essence of one single situation, which has no reflection in the previous learner’s experience. This implies that acquiring hard knowledge is strictly different from acquiring the soft one.

Acquiring hard knowledge is a very important (perhaps principal) part of education in many fields of mathematics, computer science and natural sciences,
but the inspection of the past years of CSEDU shows there is practically no overlap with the research interests of the CSEDU community.

It seems that the main reason is sociological and will be discussed later; the goal of the first part of the present paper is to induce interest of the community in the exciting and important field of finding methods of computer support (usually visualization) for hard knowledge learning.

1.1.1 Skills

There are many ways of computer support of manual skill acquiring: videos showing proper ways of execution of desired operation, assembly, or other type of manual activity; advanced computer games - e.g., the paper Snyder et al. (2019) describes a serious game RealTeeth, where dentistry students face virtual patients.

There are publications developing skills that aim at a general evolution of personality of younger children, e.g., Homanova and Havlaskova (2019).

Learning languages can also be classified as developing skills, with numerous articles describing various systems of language learning computer support.

Building social skills can highly benefit from using information technology. It is very frequent to use electronic communication means to support communication among students in a group.

1.1.2 Soft Knowledge

The mainstream of the results in computer support of education deals with building certain kinds of soft knowledge. It is out of the scope of the present paper to give a full review of different approaches that have been published in the literature.

1.1.3 Hard Knowledge

The literature about ways of computer support of hard knowledge acquiring is rather limited. We have found no practically result of this type in the recent CSEDU publications.

One of the reason why such results are so rare is sociological and will be discussed later. Another possible reason is that methods of supporting skills and soft knowledge learning systems are typically very general, while a hard knowledge system is usually directed to a single topic in a given narrow and advanced field, and using an ad hoc approach that can hardly be generalized.

Most of approaches widely used to support skills and soft knowledge learning cannot be used in the case of hard knowledge. Learning hard knowledge is a single person activity, we are not aware of any system that would use student collaboration to learn, e.g., the duality theorem of Linear Programming. Gaming approach has also a very limited use.

We see the only way to use computers to support hard knowledge learning - the method can be formulated in a simple way, but its implementation is usually extremely difficult: transform a mental process that had lead the discoverer of a theorem, law, or an algorithm to his discovery into a visual form that can be shown in the computer screen.

It is important to note that this does not mean creating a visual representation of the publication description of the result; it is crucial that the discoverer’s intuition and the ideas that are behind the discovery are visualized in some form.

Nothing general can be said about the process, each particular theorem, natural law or algorithm has its own intellectual story, and it seems impossible to find any common feature that could be used to build a more universal system.

2 PRINCIPLES OF SUPPORT OF HARD KNOWLEDGE LEARNING BY VISUALIZATION

During the prenatal phase of a new human being, she or she follows in some sense stages of development of the mankind during past hundreds of thousands of years. Similarly, when a learner tries to understand difficult concept, she or he has to follow in a certain way the mental process that has led to the discovery of the concept. As a conclusion, a computer support of such a learning process should help a student to find and follow such a process.

The absence of such a feature is very frequent source of a failure of a computer supporting system.

When a path leading to a discovery (which might be a new mathematical theorem, computational algorithm, or a newly formulated law of physics) has been found, looking back to a series of failed attempts and dead ends usually discloses that the path can be improved, made shorter, the proof of the theorem made simpler, certain unnecessary computations of an algorithm eliminated, the evidence of a physical law made more convincing.

A sometimes long series of improvements eventually gives a publication form of the description of the new discovery which, quite often, is dead in the sense that almost all traces of the intuition that lead to the discovery are hidden and invisible. Mechanical ver-
ification of statements demonstrating the correctness can show that the result is valid, but it does not give the true understanding.

An expert in the field usually shares at least a part of the intuition of the discoverer, and is able to see the full landscape of a new discovery when given just few hints and the static description involved in the publication text.

However, a novice in the field must be guided and the path that lead to the discovery and the discoverer’s view of the problem must be at least partially disclosed to a learner to give her or him the full, flexible and long lasting knowledge.

Quite often, the discoverer’s intuition has a form of images - sometimes mental images, in other cases drawings on pieces of paper (or in sand in the case of Archimedes). An author of a computer supporting system has to collect such images or to infer how they could have looked, and then put them into screen. Once again, let us note that only a small part of such visual ideas eventually appear in the final publication.

3 ALGORITHM LEARNING

3.1 Invariant Visualization

In this paper, hard knowledge learning is exemplified in the field of algorithm learning by a system of visualizations called Algovision (algovision, 2020). Some of algorithms are quite complicated and a lot of mental energy is necessary to understand them properly.

The field of algorithms has one specific feature that simplifies our attempts to illustrate not only how the algorithm works, but also why it has been designed in the present form, and why the algorithm fulfills its task correctly.

In the case of a more complicated algorithm, it is necessary to prove its correctness, i.e., to show that it is able to achieve the desired output or result in all cases. Our need for such proofs in not only the philosophical one (in such a case we speak about Program Correctness Theory), but also the practical one - we have to give a guarantee that a real computer program is ready for practical use (in such a case we speak about Software Verification).

However, the underlying method is the same in both cases: we have to find an invariant of the algorithm - a logical statement such that:

- it is verified at the beginning of the computation under assumption the a valid input data were provided;
- the invariant together with conditions that induce the end of the computation imply that the final result verifies all required conditions; and
- no single step of the computation violates the validity of the invariant.

Checking that an invariant of a given algorithm satisfies all the above requirements is sometimes very time consuming, but mechanical task. Some automatic software verification systems perform such checks automatically.

However, finding a full collection of invariants of a given algorithm is a task that is far from being mechanical (it is possible to prove that finding an invariant of a given algorithm is not an algorithmically solvable problem). The only way to such a statement is using the discoverer’s intuition and understanding the problem, as it has been discussed above.

We strongly believe (and share this belief with many computer scientists) that knowing the invariant is equivalent to understanding the algorithm. The one who understands the algorithm knows internal relations among variables of the program, and simply writes them down to get the desired invariant. On the other hand, the invariant simply writes what are our goals in the actions the algorithm does, and this implies the understanding of the method.

If we accept the postulate that the algorithm understanding is equivalent to the knowledge of the algorithm invariant, educational algorithm visualization becomes easier. The goal is not only to visualize the data and to show them changing, but we have to arrange the data and possibly add some other visual objects to visualize the invariant(s). Since it often happens that relatively similar algorithms have quite different invariants (e.g., the shortest path algorithms of Dijkstra and Bellman-Ford, see below), there is no general method of visualizing algorithm invariants, and any such animation is unique and incomparable with the others.

3.2 Case Studies

The next subsections describe some of the visualizations of our system, pointing out the invariants and/or ideas that support efficient and easier learning of the corresponding computational method.

3.2.1 Binomial Heap

The main idea of the binomial heap Vuillemin (1978) is that it closely follows addition of binary numbers, where “1” in the k-th column is represented by a tree with \(2^k\) nodes. Visualization of the binomial heap data structure can be found, e.g., at Galles (2020a),
Figure 1: Binomial heap join as a binary number addition.

but only Algovision suggests immediately in a clear way the correspondence with the original idea of J. Vuillemin, see Fig. 1, where binary addition is presented in the background.

3.2.2 Fibonacci Heap

Visualization of the Fibonacci heap data structure Fredman and Tarjan (1987) can be found, e.g., at Galles (2020c). A student familiar with a binomial heap has usually no problems with operations.

However, the form of Fibonacci heap trees is variable, and the main property of the heap that a student should learn in order to fully understand the heap and the reason why it was invented is that a tree with large root degree \(d \) must be large (in fact, the minimum size of such a tree is \(F_d \), the \(d \)-th Fibonacci number - this explains the name of the heap).

No attempt to illustrate this implication is made in the above cited visualizations. On the other hand, the principal part of our visualization is a series of play scenes, where a student is given a sequence of tasks to build trees of the form that appears in the background. The tasks gradually lead a student to a surprising conclusion that is possible to build a large tree with a small root degree, but not a small tree with a large root degree.

Thus, in certain situations, a play-to-learn concept can be used for hard knowledge acquiring as well.

3.2.3 Shortest Path Algorithms

Shortest path algorithms are usually the most advanced topic that is explained in a generic Algorithm and Data Structure course at Computer Science departments of Engineering Schools. Two of the main algorithms of the class are algorithms of Dijkstra and Bellman-Ford. They are very similar, the only difference being that the former uses a priority queue to store open nodes of a graph, and requires non-negative lengths of edges, while the other uses a simple queue and has no restrictions to edge labeling.

Since they are so similar, their visualizations available on the web (e.g., Makohon et al. (2016); Galles (2020b) as a selection of very large choice) look very similar as well. And this is wrong from the point of view of understanding their behaviors that are very different and this behavioral difference is what a student has to know in order to understand well the topic.

The background understanding of the algorithms dictates two different visualization methods in our collection:

In the Dijkstra visualization, nodes “slide” horizontally and the \(x \)-coordinate of their location is proportional to the estimation of their distance from the origin, which is continuously upgraded by the algorithm, see Fig. 2 (where nodes in a cluster near the right side of the window are assumed to be yet in the infinite distance from the origin).

This arrangement is one of the most successful applications of the rule that important values should not be visualized as numbers (as it is done in the implementations cited above), but by some geometrical property (e.g., the height of a column, the width or the shape of a certain visual object, or the location as in the present case).

In a preliminary experiment with 14 students 2 weeks before Dijkstra’s algorithm was read in their Algorithms and Data Structure class, a generic animation as cited above has been shown first, followed by our dynamic visualization.

The general comparison score average from the range 1-10, where “1=without dynamic visualization, I would have no idea how it works”; and 10=“the dynamic version did not help at all”; was 1.76 (including one student that admitted to give a bad score because he knew the algorithm from his high school), which we view as a confirmation of our design philosophy.

A new experiment with larger group of students and electronic collection of their answers is prepared for February 2020, and the results will be reported in the full version of the paper.

On the other hand, our visualization of the Bell-
man Ford algorithm is of the type “If I knew it, I would not . . .”. After the computation is finished, possibly without animation, nodes are partitioned according to their distance from the origin in the tree of shortest paths (represented by the wide white or gray right-to-left oriented arrows behind the yellow or brown edges of the original graph), see Fig. 3.

Unlike with the Dijkstra’s algorithm, in the method of Bellman and Ford an already closed vertex could be reopened when its estimation of the distance from origin changes, and all work previously done with the work is invalidated. This makes the time analysis of the algorithm especially involved.

In our representation, a student clearly sees that
- the black area on the left is already “dead”, all variables have their final values and no activity occurs;
- the nodes in the dark green layer have their final values that are propagated to the light green layer; and
- any other activity is useless, because it will later be invalidated, when the corresponding nodes are reopened (but we see it only now, after the whole computation has been finished and is only back-analyzed).

The visualization clearly shows that in all cases (if no negative cycle is present) there is always some activity that pushes the computation to the end after finishing at most as many phases as is the number of nodes.

The standard visualizations, e.g., those cited above, give no hint to the time analysis of the Bellman-Ford algorithm.

3.2.4 Network Flows: Dinitz Type Algorithms

The first algorithm to find the maximum flow in a network is due to Ford and Fulkerson Ford and Fulkerson (1956). Its main problem is that its computation might take long time that cannot be limited by any function of the number of vertices and edges of the network, but it depends only of the relation of the capacities of edges.

In the Ford-Fulkerson algorithm, generalized edges that can be used to build flow-augmenting paths, are both eliminated and reopened during the computation, which causes sometimes very long computation.

An improved version of the algorithm, discovered simultaneously in Dinitz (1970) and Edmonds and Karp (1972), is an implementation of the Ford-Fulkerson algorithm, when a flow augmenting path selected by the algorithm must always have the smallest possible number of edges.

The fact that this simple enhancement guarantees fast computation could seem to be a mystery, unless the visual representation of the graph is changed to show layers (defined by the length of the shortest path from the network source), see Fig. 4.

It is easy to see in this representation left-to-right oriented edges that may be used by the Dinitz algorithm are blue or green (the green ones forming a particular augmenting path), the yellow edges are not on any shortest source-sink path and hence should not be used.

The picture clearly shows that each time an augmenting path is processed, at least one blue edge disappears, while the edges that are reopened are the opposites of blue edges, thus being oriented right-to-left, not belonging to any shortest source-sink path at the moment, and hence forbidden by the Dinitz algorithm.

This is how our visualization makes it obvious that the Dinitz algorithm approaches the end of the computation in a very straightforward manner. No such hints can be found in visualization that are published in the web.

3.2.5 Fast Fourier Transform

FFT (Fast Fourier Transform) is an efficient algorithm for computing the discrete version of the Fourier Transform, a useful tool for spectral analysis of digital
Our experience showed that high proportion of students understood the method as the application of the divide-and-conquer principle: partition the problem to two subproblems, solve them recursively, and combined together.

In fact, the divide-and-conquer paradigm is really used, but, since the matrix of the problem is two-dimensional, there are four subproblems to be solved, and the essence of the FFT analysis is that there are two pairs of identical subproblems.

This is one of our most successful visualizations, because student examinations clearly showed a substantial drop of the percentage of students that misunderstood the FFT method in the way described above.

3.2.6 Conjugate Gradient Method

The CGM (Conjugate Gradient Method, Hestenes and Stiefel (1952)) is the fundamental method of Numerical Linear Algebra. The CGM and its more advance variants (e.g., BiCGStab) are used in many applications like CFD (Computational Fluid Dynamic, which covers virtual wind tunnels to test aerodynamics in automotive and aerospace industry).

The problem of numerical solving systems of partial differential equations that arise in physics and engineering is reduced to sparse systems of linear equations, which in turn are solved as finding the minimum of a quadratic functional given by the matrix of the system. In Fig. 6 shows the situation in the 2-dimensional case. The solution of the problem, represented by the red point at the bottom of the surface is unknown, can be found by the Steepest Descent method, which, however, needs many zig-zag iteration.

The essence of the CGM Method is to shrink the surface so that the horizontal elliptic contour lines become circles. Then, the minimum is found as one iteration of the steepest descent.

Our experience shows that after having seen the compression visualization of the notion of the conjugated gradient, students exhibit much better understanding of the CGM and higher flexibility that makes them better prepared for applications of the CGM as well as learning CGM generalizations.

3.2.7 Voronoi Diagram

With reference to Fig. 7, NW corner, given a finite set of points of the plane (called sites, black dots in the figure), we have to partition the plane so that monochromatic areas around each site are collections of all points of the plane, for which the site in the area is the nearest site. The partition is called a Voronoi diagram or a Dirichlet tessellation of the set of sites (Dirichlet (1850); Voronoi (1908)).

Our visualization explains an elegant algorithm due to Steve Fortune Fortune (1987). The key point to understanding the algorithm is to imagine the plane with sites inserted as a horizontal plane into the 3D space; for each site, we also create a cone with its summit in the site. A view of the obtained surface in a general direction is in Fig. 7, NE corner. However, if observed vertically, see Fig. 7, SW corner, the intersections of cones reveal the boundary lines of the Voronoi diagram.

The algorithm itself works by sweeping the mountains of cones by an inclined plane (Fig. 7, SE corner). The animation is one of the best examples of “Oh, I see” visualization: with only a slight exaggeration, since the moment students see the scene of the plane sweeping the cones, most of them would be able to write the corresponding program by themselves.
3.2.8 Simplex Algorithm

The simplex algorithm, the oldest algorithm of Linear Programming, is still used frequently in practice. For the history of the algorithm, see, e.g., Simpex (2020). The way it is taught (especially outside Computer Science, e.g., in schools of economy) is often very formal and students just memorize certain computational steps without having any understanding of the principles of the method.

However, the problem and the algorithm have a natural geometrical representation: the set of linear inequalities defines a polytope in a space (see Fig. 8 taken from Algovision) A teacher or a learner can rotate the polytope to see it from all directions. The linear functional to be optimized is represented using colors of hot iron: dark blue for low values, light yellow to white for high values. And the idea of the simplex algorithm is to find the hottest tip of the polytope.

4 SOCIAL ASPECTS OF COMPUTER SUPPORT OF ALGORITHM LEARNING

A typical article in the field of computer-supported education presents motivation, a description of a particular supporting system, and a single example of using the system in education. This suggests that the system has been used just in a single occasion by the authors and no attempt was made to offer the system to other educational institutions. Or, if the system is successfully used in several schools, the social aspects of the dissemination process are not mentioned.

It would also be interesting to know the distribution of the expertise in the team of authors - such an information might be valuable for those that start working in the area of computed supported education (and for experienced researchers as well).

4.1 The Golden Age of Algorithm Animation and Its Decline

The temporal nature of algorithms immediately calls for animated visualization. It was believed that the universal paradigm is quite simple: take a static representation of the background object of an algorithm (usually a graph drawn in a textbook form or a sequence of numbers represented by columns of different heights), and update them periodically as they are updated by the algorithm. A continuous or step-by-step update of the visual information is controlled in a way that is well-known from programming development system, when the option of interrupted “execution” of a program is used for debugging.

Some time ago, I had arrived to Pittsburgh the day when Steelers played the Super-bowl final, and it was my strict obligation to see the match. Having no idea of rules of football, I was even unable to figure out who was winning (or how it happened that Steelers won).

Unfortunately, the same situation occurred with algorithm animations created using the above approach. A person with previous knowledge of an algorithm was able to see clearly the progress of the computation, but a novice student saw just a picture changing in a messy and incomprehensible way, being usually unable to figure out what is going on.

The situation about 12 years ago was best characterized by an article bassat Levy and Ben-Ari (2007) with the title “We work so hard and they don’t use it: acceptance of software tools by teachers”. Hardworking researchers were the authors of algorithm animations, “they” were teachers of algorithms at computer science departments.

At the present time, the activity in algorithm animation and visualization has almost stopped; they are certain sites that are mentioned in references that are sometimes used as an illustration of algorithms, but their use in the mainstream computer science teaching is limited.

4.2 How to Offer a Computer-supported Educational System to Colleagues

With respect to the previous section, our experience is rather different.

We have very good experience with accepting our visualizations both by students and teachers. This year, almost one third of computer science majors in the first year of their study at our university are taking a facultative course based on Algovision in parallel
with the standard and obligatory Algorithm and Data Structure course using pdf slides.

While our colleagues from our university or even abroad (including Stasko (2019)) are also quite enthusiastic with the way visualization of algorithms and their background ideas makes learning easier and more efficient, when confronted with an offer to use the visualization in their standard course, it seems that they don’t hear a friendly offer, but they feel to be said in a harsh voice “Hey, throw your stupid slides out of window; what we offer is much better that you would ever be able to do by yourself”.

Well, this is highly exaggerated, but if we try to understand the point of view of an experienced teacher with carefully prepared slides, who successfully teaches Algorithms and Data Structures already for many years, we understand that it is in fact very impolite and aggressive to try to make him or her to throw away all his or her experience and to switch to a completely different method.

The present paper has been prepared in a typesetting system \TeX. In one interview, its author, Donald Knuth, mentioned his meeting with an owner of a small publishing house, specialized in fine typesetting of mathematical books and journals. The publisher asked Knuth not to disseminate \TeX any more, because the system was destroying his tool of making money to live. We are afraid that the reason why we work so hard and they are not using it is very similar.

REFERENCES

algovision (2020). www.algovision.org, the main reference to the visualization system presented in the paper.

