
A New Programming Environment for Teaching Secure
C Programming and Assessment

Dieter Pawelczak a
Institute of Software Engineering, University of the Bundeswehr München, Germany

Keywords: Tool based Learning, Teaching Programming, Secure Programming, Programming Environments, Automated
Assessment System, Computer-supported Collaborative Learning, Computer Science Education.

Abstract: Learning programming is a barrier for many students enrolled in engineering degree programs. In addition,
students need to develop an awareness of security aspects in programming, especially with respect to
robustness and correctness. Professional integrated development environments might overwhelm students
with many options and features and distract them from learning. In order to lower the burden for novice
programmers, we developed the Virtual-C IDE, a programming environment designed for programming
beginners, which embeds some rules of the CERT secure C coding standard, provides memory visualizations
to foster the students’ understanding of the memory model of C and integrates a testing framework that enables
programming exercises and automated assessment. The paper shows the benefits of learning and teaching
with the Virtual-C IDE, describes our experience with integrating secure coding in an introductory course and
presents the students’ evaluation of that course.

1 INTRODUCTION

Many students enrolled in our electrical engineering
bachelor’s degree program struggle with learning
programming. Independent from our university, these
difficulties are widespread and range from lack of un-
derstanding syntax to conceptual and strategic mis-
conceptions (Qian and Lehman, 2017). In addition,
new challenges arrive with our emergent technolo-
gies: learning programming requires addressing secu-
rity aspects (Tabassum et al., 2018).

Although modern integrated development
environments (IDE) support software developers
with template-based programming and code
completion (Vihavainen et al., 2014), the high
number of features, menus and dialogs in those IDEs
might overburden students and divert effort from the
actual learning target (Dillon et al., 2012).
Furthermore, modern IDEs print many notifications
on errors or give advice for alternations during the
editing, which might irritate novice programmers.

To lower the burden for our students we
developed a programming environment called the

a https://orcid.org/0000-0002-1742-2520
1 The IDE is freely available for Windows, macOS and
Linux at: https://sites.google.com/site/virtualcide/

Virtual-C IDE1, which runs C programs in a virtual
machine, allows to easily include secure program-
ming aspects in our introductory course, and supports
teaching by visualizing many concepts during the
execution of a C program. The main requirements for
developing a new IDE were:
 a single installation without any configuration,
 same behavior on different computer systems,
 easy to use for students and teachers,
 support for secure programming aspects,
 integration of exercises with direct feedback

for individual learning,
 automatic assessment for lab work,
 support for collaborative learning,
 available for standard computer platforms.

Other aspects for creating our own programming en-
vironment were changes in license models of existing
professional IDEs as well as platform specific beha-
viour or fast-moving modifications from one version
to the next version of an IDE.

We have been using the Virtual-C IDE in the
introductory programming course for more than 5
years now and are continuously developing it further.

374
Pawelczak, D.
A New Programming Environment for Teaching Secure C Programming and Assessment.
DOI: 10.5220/0009354003740381
In Proceedings of the 12th International Conference on Computer Supported Education (CSEDU 2020) - Volume 1, pages 374-381
ISBN: 978-989-758-417-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

This paper discusses related work (Section 2), the be-
nefits for teaching and learning (Section 3), a short
evaluation of the IDE and the new course design with
respect to secure C coding (Section 4) and concludes
with an outlook (Section 5).

2 RELATED WORK

2.1 Educational Programming
Environments

Many educational programming environments have
evolved to counteract the difficulties for program-
ming beginners. The most common are BlueJ, Alice2
and Scratch3. BlueJ4 allows users to write Java code
by guiding the programmer with a model of the pro-
gram structure; thus, focusing on the modelling as-
pect during learning programming. Alice and Scratch
are block-based and more designed for children’s
education. Block-based programming is performed
visually by drag and drop of specific blocks and there-
fore does not require any knowledge about a language
syntax, which is a typical barrier for learning pro-
gramming (Lahtinen et al., 2005). Block-C incorpo-
rates this idea for an introductory C course: programs
can be dragged together on a block base, the resulting
functions can be exported to C program code, edited
and reversely translated back to blocks (Kyfonidis et
al., 2017). Although this concept sounds promising,
we prefer students to work with an IDE, which differs
not too much from available professional IDEs (com-
pare Vihavainen et al., 2014).

Another interesting project is ICE, an automated
tool for teaching advanced programming with an
integrated assessment system, which provides quite
similar functionality compared to the Virtual-C IDE,
yet with the focus on advanced topics (Gonzalez,
2017). Other introductory courses use professional
IDEs configured or modified by plugins. An
extensive overview is found in (Luxton-Reilly, 2018).

2.2 Integration of Secure Coding Rules

Since the turn of the millennium, the ACM (Associa-
tion for Computing Machinery) has been calling for
computer science education to be adapted to secure
software development. Usually, this takes place in ad-
vanced courses such as IT security or secure software
engineering (ACM, 2016). Due to the high impor-
tance of the topic (Williams et al., 2014) suggest

2 https://www.alice.org/
3 https://scratch.mit.edu

introducing security aspects already in introductory
programming courses. These aspects mainly focus on
robustness and correctness. It is important to teach
students programming with security awareness from
the beginning, because it is difficult to adapt bad ha-
bits or to eliminate misunderstandings later. In ad-
dition, many textbooks on programming provide little
information on security or may even contain vulner-
abilities (Zhu et al., 2013). In addition, more and more
compilers print warnings about security issues, so stu-
dents need to learn how to deal with them. ASIDE -
an eclipse plugin for secure coding in Java addresses
this subject by explaining such compiler warnings
and showing proper solutions to fix the code (Zhu et
al., 2013).

Of course, dealing with security aspects in the
introductory programming course cannot replace an
advanced course on IT security (Bandi et al., 2019).
The security subjects have to be carefully chosen, to
fit in with the scope of known concepts for the novice
programmers. Although previous research reports on
successful integration of secure coding into introduc-
tory courses (Williams et al., 2014), even without
changing the workload of the students (Bandi et al.,
2019), we propose that some security issues might
even help with understanding the execution of a
computer program.

3 BENEFITS OF THE IDE

3.1 Benefits for Teaching

3.1.1 Usability and Scalability

The Virtual-C IDE starts with a clearly arranged set
of windows for editing and debugging C programs.
Each view has a zoom-in and zoom-out option and is
freely locatable to easily fit to different video beamer
solutions. Window arrangements can be stored for
different applications or varying lecture rooms.
Compiler, linker and debugger are configured for
instant debugging – thus a lecturer can directly debug
a correct C program without the need for a project
configuration. While for many examples in introduc-
tory programming a single source file is sufficient, the
Virtual-C IDE also supports projects with multiple
files. We use the IDE for beginners and advanced pro-
gramming courses, as well as for the compiler con-
struction course. Therefore, the compiler generators
flex and bison can be directly integrated. The IDE

4 https://bluej.org

A New Programming Environment for Teaching Secure C Programming and Assessment

375

supports platform independent ISO C18, including
C18 threads and provides a subset of the Simple
DirectMedia Layer to work with hardware access
(graphics, keyboard and mouse events). Therefore, it
offers a wide variety of possibilities for course design.

3.1.2 Memory Visualization

Understanding different memory segment types is far
more important for learning C as compared to other
programming languages like e.g. Java or Python,
which hide low level memory operations from the
programmer or provide a garbage collector.

Figure 1: Examples of memory visualization.

During debugging, the memory is visualized in the
IDE with a colour scheme for memory segments;
(Figure 1) shows a code snippet in which a variety of
different memory segments are addressed through
pointers: light green/ yellow marks visible variables
on the stack (e.g. s), whereas valid stack in general is
shown in yellow. This applies to sIn (Figure 1)
which is passed as a parameter. Invalid memory is
painted in red, constant memory in blue (contents of
sp) memory on the heap in purple (contents of shp)
and memory in the data segment in green, which
applies to global variables like e.g. stdin (not
shown in Figure 1).

3.1.3 Secure Programming

In addition to the compiler, a static code analyser is
enabled per default, which currently checks about 17
rules from the SEI CERT C Coding Standard (Cert,
2016) and is extended with every new version. As the
usage of the static code analyser is optional, the
lecturer can show insecure code first and then adapt it

5 https://code.google.com/p/googletest/

to fit the requirements from (Cert, 2016) by enabling
the checks, which are reported as warnings (compare
Figure 2).

Figure 2: Security warning example for STR31-C and
FIO47-C (Cert, 2016).

3.1.4 Simple Exercises

The Virtual-C IDE integrates a testing framework
which allows lecturers to hand out simple exercises to
their students. The testing framework is adapted from
the Google C++ Testing Framework5 for C and pro-
vides additional test methods to simplify writing tests.
In contrast to standard software tests, randomized test
data in particular can be used to prevent students from
cheating in tests (compare e.g. Kratzke, 2019).

In addition to standard assertions, the testing
framework supports reference tests, which compare
the return value or output parameters of a function
under tests with a given reference function. Simple
I/O-tests stimulate the standard input and checks the
standard output against simple text content or regular
expressions. A unique feature of the Virtual-C IDE is,
that all functions of the program under test (PUT) are
linked dynamically. Thus, functions can be relinked
during the test in order to inject mock functions or to
test if functions are called with the right parameters.
Although the use of mock functions is common for
testing, mock functions are usually linked statically6.
Re-linking during the test is possible without any
modifications of the PUT as it runs in a virtual ma-
chine. Additionally for each test case, global variables
are re-linked dynamically, and the heap is reset in
order to provide a consistent test environment.

(Figure 3) shows the description of two test cases
with function and I/O tests; the exemplary result of
such a test run is depicted in (Figure 4).

6 Compare e.g. CMocka: https://cmocka.org

a) Stack visualization of function foo() at the return statement

b) Corresponding code snippet

CSEDU 2020 - 12th International Conference on Computer Supported Education

376

Figure 3: Example for two test cases with reference
function and I/O tests.

Figure 4: Exemplary test report for the test cases described
in (Figure 3).

The ARG macro defines arguments for testing. The
macro can either specify the expected result or
address the result from a reference function, as for
instance used (in line 10, Figure 3) with the reference
function refStrAppend(). The ARGR macro and
the RANDS macro generate random data. The !-oper-
ator in the I/O tests defines strings or regular
expressions, that shall not match the output. Other-
wise, students can simply print all of the expected
output and pass without providing the requested
functionality (compare e.g. Kratzke, 2019).

Beyond simple tests, the testing framework can
access a lot of statistical information about the PUT,
e.g.: loop depth, number of execution steps per test,
number of function calls, etc.

Figure 5: Excerpt from an example exercise dialog.

3.1.5 Complex Exercises and Assessment

The Virtual-C IDE is equipped with a web interface,
that allows exercises from a web server to be down-
loaded into the IDE. While simple test files require a
separate description, the web interface enables the
combination of an exercise description and the exe-
cution of automated tests in a single view. (Figure 5)
shows an example, which guides the user step by step
through an exercise. Almost all functions of the IDE
can be automated through the web interface, so that
exercises can provide assistance to the students such
as the “Let me help”-link (Figure 5).

We use the web interface in our introductory
course to embed the programming assignments
directly into the IDE: the students log in to the
assignments from within the Virtual-C IDE, solve
their tasks and get feedback on their solutions. Once
registered the students can access their course
checklist and select their exercises for the
assignments. The web server is responsible for the
user management.

Figure 6: Automated assessments by integrating the
Virtual-C IDE into a web environment.

The IDE runs tests on the students’ source files and
loads the sources to the server. This allows students
to interrupt their work and to continue later, (compare

Student

Student

Student

Teacher

WebServer

Virtual‐C
IDEUser dependent checklist

load & store

User management, course checklist
load & store

Course / User
Management

Download exercises and test files

Upload source files

Plagiarism
Detection

Code
Quality
Analysis

Web
View

Test
View

Editor

Compiler

Debugger

A New Programming Environment for Teaching Secure C Programming and Assessment

377

Figure 6). We also use the uploaded files to check for
plagiarism. Advantages of an automatic plagiarism
detection system are that teachers are released from
manually checking the sources and that each student
is treated equally. A disadvantage of such a system is
that it prevents students from sharing or discussing
their solutions. Details about the plagiarism detection
system are found in (Pawelczak, 2018).

3.2 Benefits for Learning

3.2.1 Focus on Learning Programming

In contrast to professional IDEs, which focus on fast
development and teamwork, the programming envi-
ronment provides a pure and intuitive interface for
learning programming. A program skeleton helps stu-
dents to start writing their first programs. The IDE
does not provide autocompletion or automatic error
fixes and checks for errors only, when the user com-
piles or debugs the program in order to give the stu-
dents control on their individual workflow.

On the other hand, students get everything they
need by installing the Virtual-C IDE: there is no need
to install compilers, plugins, or to configure projects
etc. Programs run in a virtual machine; thus, all
programs behave equally independent of the
platform, the IDE runs on. Students therefore can
concentrate on the C programming language and do
not need to take platform specific concepts into
account.

3.2.2 Individual Time Management

Students can work on exercises or tests independent
of the course hours, as the automatic generated test
reports provide feedback to them. We often experi-
ence that students access our exercises on the server
once more before the course examinations.

3.2.3 Competition and Collaboration

Automated assessment systems decide on students’
solutions in a rather binary way, i.e. a certain number
of tests must pass before the assignment is marked as
passed. Unfortunately, even clumsy solutions often
pass, as the tests are primarily based on input-output-
behaviour and less on performance characteristics.
Although the IDE supports performance tests, such
kind of tests are elaborate to develop and teachers can
usually assess a student’s solution much better
(compare Pieterse and Liebenberg, 2017). So ideally,
we should combine the automatic assessment with a
teacher’s review. With this combination, we expe-
rienced that students are often sufficiently content

when they pass the assignment and are not willing to
accept change proposals to their programs by the
teachers. Besides, we also found out, that students
spend more time on their programming assignment,
when they notice, that their fellow students get better
results. In our case, the programming assignments re-
port the results in percent and whereas above 80 % is
sufficient to pass, some students still want to reach
100 %, because they see the automatic assessment
system more as a computer game and want to receive
the best results.

In order to utilize the competitive aspects on the
one hand and on the other hand not to hinder weaker
students, we extended our assessment system with a
code quality analysis module (compare Figure 6),
which is located on the server. This module runs the
compiler and the static code analysis first, and then
executes the students’ program with a given set of test
data. During the run, it monitors the execution steps
for each function and checks the memory allocation
on the heap. From this data collection it generates a
report on the quality of the program with respect to
coding style, security (static code analysis), efficien-
cy (required execution steps for a given input, cyclo-
matic complexity) and memory management. In
addition to the report, the metrics are stored per stu-
dent on a function basis. This allows links to be in-
cluded into the report to solutions of other students
with a better quality (compare Figure 11 in the
appendix). We intend students to use this as an ex-
change platform and to foster the competition among
the students. To avoid a conflict with plagiarism, the
students must pass the plagiarism check once before
they can access the quality report.

4 EVALUATION

4.1 General Data

About 65 students enrol in the introductory course
each year. In addition to the standard course evalu-
ation, we asked our students in 2019 for their opinion
about the programming environment and secure C
coding. We received feedback from 45 students in
total. About 80 % of the students stated that they had
already gathered experience with programming and
programming environments before their studies.
Figure 7 gives an overview of the programming lan-
guages students encountered before enrolment to
university.

CSEDU 2020 - 12th International Conference on Computer Supported Education

378

Figure 7: Knowledge of different programming language
before enrolment.

Although the percentage of students with previous
knowledge is higher compared to the years before,
only 16 % assessed themselves as skilled program-
mers before the course, while 58 % had little or no
previous knowledge. As the feedback from students
with only little experience in programming is parti-
cularly interesting, we divided our results into two
groups: 1. good previous knowledge and 2. little or no
previous knowledge.

4.2 Evaluation of the IDE

With respect to the programming environment we
asked our students to answer four questions on a 5
level Likert scale:

A) First steps in the programming environment
were generally easy.

B) I like the automated assessment system.
C) The test dialog helped to understand imple-

mentation errors.
D) The plagiarism check is useful, and its usage

should be extended.

The results from the students’ evaluation are shown
in (Figure 8). For the first two questions, the answers
did not vary much within the groups: About 87 %
agreed or strongly agreed that the first steps with the
programming environment were easy (Question A).
All students from group 1 strongly agreed that they
liked the automated assessment system. In total, 89 %
agreed on that (Question B). For students with little
or no previous knowledge about programming (group
2), the majority of this group agreed or strongly
agreed that the test dialog was helpful (Question C).
During the analysis of the students’ answers we found
an ambiguity in (Question C): students might answer
in a sense, that they solved their implementation
errors without the help of the test dialog, that they
made no implementation errors, or that the dialog was
not useful for them. This might explain the big devi-
ation for the answers from the experienced group 1.

Figure 8: Results from the students’ evaluation questions
A-D for the two groups and the whole class (Likert scale);
the “x” represents mean values and “o” outliners.

The highest diversity of answers was found in
(Question D) about the plagiarism checks. On the one
hand, some students with good programming skills
strongly appreciate them for the sake of justice, whilst
other students from the same group feel restricted by
their freedom. Over 70 % of this group disagreed on
using solutions from their fellow students, while in
group 2 about 54 % agreed on that. As stated before
(Section 3.2.3), we encourage students to look at
solutions from others as reading and understanding
them helps to develop better programming skills.

4.3 Evaluation of Secure Coding

Students gave us feedback with respect to secure
coding on the following four questions (Figure 9):

E) Course contents regarding secure coding are
very important.

F) Examples of security vulnerabilities deepens
my understanding how C works.

G) Course content regarding secure coding com-
plicate my understanding on C programming.

H) Compiler warnings on security issues are more
distracting.

Most students (83 %) were aware of the importance
of security aspects in the C programming (Question
E). Students with good programming knowledge
(group 1) all agreed that examples of security vulner-
abilities are helpful to explain how C programs are
executed (Question F). The answer of the group 2
show a big deviation in their answer. Of course,
knowledge on C and knowledge about possible
vulnerabilities are closely interwoven; knowing the
memory model of C allows to easily understand a
buffer overrun.

A New Programming Environment for Teaching Secure C Programming and Assessment

379

Figure 9: Results from the students’ evaluation questions
E-H for the two groups and the whole class (Likert scale);
the “x” represents mean values and “o” outliners.

About 27 % of group 2 disagreed with our proposal
that showing e.g. a buffer overrun helps to understand
the C memory model. Still, 67 % of that group agreed
with that. There is a big difference in answers be-
tween both groups with respect to (Question G).
While almost all students of group 1 disagreed that
additional course content about secure coding com-
plicates their understanding on C programming, about
33 % of the second group agreed. Some students even
state in their evaluation, that this is an add-on, they
have to learn for the examination. The answers to
(Question H) showed the biggest deviation in both
groups. Even some students from group 1 agreed that
warnings about security issues distracts them during
programming. Still, over 54 % of all students disa-
greed on this point. Asking the students about their
self-assessment before and after the course, group 2
declared the highest learning output: In average, they
estimated on a 5 level scale from 1 (excellent) to 5
(insufficient) their programming skills 1.6 grades
better (Figure 10).

Adding security aspects to our introductory
course had no directly measurable effect on the
overall examination results. Still, the results were not
inferior to the preceding examinations, although
additional subject matters were assessed.

5 CONCLUSION AND OUTLOOK

We have been using the Virtual-C IDE successfully
in our introductory C programming course for over
five years now. An important factor is the integration
of all course activities into a single tool: teaching with
live coding, exercises at home and automated assess-
ment of programming assignments.

Figure 10: Self-assessment in grades from 1 (excellent)
to 5 (insufficient) before and after the course; the “x”
represents mean values and “o” outliners.

Including secure coding into introductory courses is
challenging while it is doubtless necessary (Williams
et al., 2014). The latest integration of some rules of
the CERT C secure coding standard into the Virtual-
C IDE supports teaching security aspects. Although a
few students felt distracted by these additional
warnings, the majority of the students agreed that
showing vulnerabilities can illustrate the memory
model of C and help consolidate their knowledge on
programming. To enhance the automatic assessment
system, we added a quality report for the submitted
solutions that allows student to view and analyse
better rated solutions from their fellow students. Our
research at the Institute of Software Engineering is
focused on teaching methods and tools that help
students to better grasp programming concepts and to
build better programming skills with less burden. In
future we want to analyse the effects of the quality
report on students’ learning behaviour during the lab
work, and enhance the feedback of the compiler, the
test and the assessment system.

REFERENCES

ACM, 2016. Computer Engineering Curricula 2016 – Cur-
riculum Guidelines for Undergraduate Degree Pro-
grams in Computer Engineering. Tech. Rep., Assoc. for
Comp. Machinery (ACM)/ IEEE Comp. Society.

Bandi, A., Fellah, A., Bondalapati, H., 2019. Embedding
security concepts in introductory programming courses.
J. Comput. Sci. Coll. 34, 4 (April 2019), 78-89.

Cert, 2016. SEI CERT C Coding Standard: Rules for
Developing Safe, Reliable, and Secure Systems. Online
available: https://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=454220 [accessed 2020-02-27]

Dillon, E., Anderson, M., Brown, M., 2012. Comparing
feature assistance between programming environments

CSEDU 2020 - 12th International Conference on Computer Supported Education

380

and their "effect" on novice programmers. J. Comput.
Sci. Coll. 27, 5 (May 2012), 69-77

Gonzalez, R., 2017. ICE: An Automated Tool for Teaching
Advanced C Programming. In Proc. Int. Conf. on
Educational Technologies, Sydney, Australia, 137-144

Kratzke, N., 2019. Smart Like a Fox: How Clever Students
Trick Dumb Automated Programming Assignment
Assessment Systems. In Proc. of the 11th Int. Conf. on
Computer Supported Education, SCITEPRESS

Kyfonidis, C., Moumoutzis, N., Christodoulakis, S., 2017.
Block-C: A block-based programming teaching tool to
facilitate introductory C programming courses. In IEEE
Global Eng. Educ. Conf. (EDUCON), Athens, 570-579.

Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M., 2005. A
study of the difficulties of novice programmers.
SIGCSE Bull. 37, 3 (June 2005), 14-18

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A.,
Giannakos, M., Kumar, A. N., Ott, L., Paterson, J.,
Scott, M. J., Sheard, J., Szabo. C., 2018. Introductory
programming: a systematic literature review. In Proc.
Companion of the 23rd ACM Conf. on Innovation and
Technology in Comp. Science Educ. (ITiCSE Com-
panion), ACM, 55–106

Jansen, P., 2019. The TIOBE Quality Indicator - a prag-
matic way of measuring code quality. TIOBE Software
BV, Netherlands.

Pawelczak, D., 2018. Benefits and drawbacks of source
code plagiarism detection in engineering education. In

IEEE Global Eng. Educ. Conf. (EDUCON), Santa Cruz
de Tenerife, 1048-1056.

Pieterse, V., Liebenberg, J., 2017. Automatic vs manual
assessment of programming tasks. In Proc. of the 17th
Koli Calling Int. Conf. on Computing Educ. Research
(Koli Calling '17), ACM, 193-194.

Qian, Y., &. Lehman, J., 2017. Students’ Misconceptions
and Other Difficulties in Introductory Programming: A
Literature Review. ACM Trans. Comput. Educ. 18 (1),
1-24

Tabassum, M., Watson, S., Chu, B., Richter-Lipford, H.
2018. Evaluating Two Methods for Integrating Secure
Programming Education. In Proc. of the 49th ACM
Technical Symp. on Comp. Science Educ. (SIGCSE
'18), ACM, 390-395.

Vihavainen, A., Helminen, J., Ihantola, P., 2014. How
novices tackle their first lines of code in an IDE:
analysis of programming session traces. In Proc. of the
14th Koli Calling Int. Conf. on Computing Educ.
Research (Koli Calling '14). ACM, 109-116.

Williams, K. A., Yuan, X., Yu, H., Bryant, K., 2014.
Teaching secure coding for beginning programmers. J.
Comput. Sci. Coll. 29, 5 (May 2015), 91–99

Zhu, J., Lipford-Richter, H., Chu, B., 2013. Interactive
support for secure programming education. In Proc. of
the 44th ACM technical Symp. on Comp. Science
education (SIGCSE '13), ACM, 687-692.

APPENDIX

Figure 11: Excerpt from an example quality report (adapted from Jansen, 2019).

A New Programming Environment for Teaching Secure C Programming and Assessment

381

