
Public Key Infrastructure Issues for Enterprise Level Security

Kevin Foltz and William R. Simpson
Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311, U.S.A.

Keywords: Enterprise, Public Key Infrastructure, System Design, Application Security, Security, Distinguished Name,
X.509, Certificate, Zero Trust Architecture.

Abstract: A public key infrastructure (PKI) provides a way to manage identities within an enterprise. Users are
provided public/private key pairs, and trusted certification authorities issue credentials binding a user name
to the associated public key for that user. This enables security functions by users within the enterprise, such
as authentication, signature creation and validation, encryption, and decryption. However, the enterprise
often interacts with partner enterprises and the open web, which may use different PKIs. Mobile devices do
not easily operate with hardware-based PKI tokens such as smartcards. Standard digital signatures lack
timing information such as validity or expiration. This paper examines some of the security challenges
related to PKI deployment in the context of Enterprise Level Security (ELS), an enterprise solution for a
high security environment.

1 INTRODUCTION

Public key infrastructure (PKI) is a commonly used
method for managing entity identities in large
enterprises. Standard PKI components include:

• Public key certificates

• Certificate repository

• Certificate revocation

• Key backup and recovery

• Non-repudiation of digital signatures

• Automatic update of key pairs and certificates

• Management of key histories

• Support for cross-certification

• Software implementation to use items listed
above

Together, these form the basis for an automatic,
transparent, and usable PKI (Entrust Datacard, 2019)
(Cooper et al., 2018).

The use of PKI is widespread on the public web,
as well as within enterprises. Web servers use
certificates from trusted certification authorities
(CAs) to authenticate to users connected from
remote locations through potentially untrusted or
hostile networks. Enterprises use PKI to provide

employees, servers, services, and other entities with
a convenient way to encrypt and decrypt data, sign
and verify content, and perform third-party
authentication, where neither party has an
established relationship prior to the authentication.

Enterprise Level Security (ELS) is an approach
for enterprise security that builds from basic
principles and concepts. PKI is one of the key
building blocks for ELS. However, for high security,
many issues arise in a practical PKI implementation
that are not commonly addressed. Naming of entities
in an enterprise is a core function that PKI relies on.
This affects not only PKI functions within an
enterprise, but interactions with partner
organizations and the web in general. Credential
management with mobile devices opens new
opportunities and challenges. Common functions,
such as signatures, in raw form lack many desirable
properties related to time and transitioning roles and
responsibilities.

This paper examines some of the key issues for
ELS PKI implementation. It identifies issues with
certain enterprise situations and describes solutions
to maintain security properties within the ELS-
enabled enterprise. This is part of a larger effort to
secure information sharing for the United States Air
Force (Foltz and Simpson, 2017; Foltz and Simpson,
2016a, Foltz and Simpson, 2016b).

Foltz, K. and Simpson, W.
Public Key Infrastructure Issues for Enterprise Level Security.
DOI: 10.5220/0009342000910098
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 1, pages 91-98
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

91

2 ELS BACKGROUND

ELS is an architectural approach for designing
security into a distributed web-based enterprise
system of information sharing. It focuses on identity
and access management as the root of security. PKI
is an important part of ELS, because it is the
preferred method for managing identities and
performing authentication. However, ELS is much
bigger than PKI. The key elements of ELS are
identified in this section (Simpson, 2016; Trias et al.,
2016).

ELS is an end-to-end security model. Unlike
many current architectures that use gateways,
proxies, and application layer firewalls, ELS allows
and encourages unbroken encrypted traffic between
requester and service provider. The entity endpoints
can directly authenticate each other and create an
encrypted communication path from one
authenticated entity to the other. This is in line with
the idea of a zero trust architecture (ZTA). Security
relies not on a secure network but on secure
authentication and authorization by and at the
endpoints.

ELS separates authentication from access and
privilege. This separation runs counter to the
common approach of using single sign-on (SSO) for
both. The SSO approach simplifies the process, but
it is a single point of failure. With ELS, a separate
Security Assertion Markup Language (SAML) token
is used for access and privilege, which is provided
when requester attributes satisfy access rules.

ELS attempts to automate much of the access
process. By defining access rules up front and
maintaining attributes of all entities in the enterprise,
access is quick to be granted and removed. As soon
as the relevant rules or attributes change, access is
dynamically recomputed to allow or deny access
accordingly. This removes the current lag in gaining
access and eliminates lingering access, which is the
cause of many security problems.

ELS includes asynchronous messaging and
content management solutions, as well as web-based
requests. These solutions both rely on digital
signatures by endpoints with PKI credentials. In
these cases, the content is signed at the time of
creation, but it might persist for long periods of time.
Messages are typically consumed quickly, but their
asynchronous nature means timeouts are much
longer, if they exist, than with synchronous web
traffic.

The main ELS issues for PKI are web-based
authentication and digital signatures for content and
messages.

3 NAMING ISSUES

PKI certificates are most meaningful if they use
meaningful names. Naming of entities in an
enterprise is therefore a critical first step in
establishing a secure PKI. Typically, the certificate
contains a name field and several attribute fields.
The distinguished name (DN) encompasses both the
name field and attributes, such as employee number
or other unique identifiers, and satisfies the primary
naming requirements of being unique and
meaningful. First and last names are used as part of
the DN to provide an immediate way for people to
recognize each other. The additional information
includes a unique identifier, which makes every DN
unique within the enterprise.

If the enterprise has internal structure, this may
be represented as additional fields in the DN. An
employee’s name and division may be included in
the DN, along with the organization name and
location. This helps to identify the individual by
defining the scope of activities or where they work.

A decision needs to be made about which
information is in the certificate and which
information is retrieved from other sources based on
the DN or other information in the certificate. For
simplicity, the PKI certificate should contain only
information relevant to establish the identity of an
individual. Remaining attributes should be stored in
authoritative content stores (ACSs) based on the DN
as in the PKI certificate.

It is important that each ACS is the authoritative
source of the attributes that it provides. It may be
duplicated for performance, ease of use, or other
reasons, but the duplicates must point back to the
original source, and any updates to attributes are
only authoritative when the single authoritative
source is updated.

Text-based names require special consideration
when they contain multiple parts. The X.509
standard (X.509, 1999-2012) addresses this issue
through the format of the certificate, which includes
separate identified fields with designated types and
lengths. The DN itself has a type and length, and the
components of it also have their own type and
length. This prevents ambiguities that can arise
through the use of simple text-based names.

However, the DN is often represented and used
in text instead of its binary X.509 format. A one-to-
one correspondence between X.509 format and other
formats is necessary to preserve uniqueness. This
often involves limiting the allowed content of the
attribute fields to prevent ambiguities between
delimiters and content.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

92

4 NAME USE ISSUES

Establishing unique names and authoritative
attribute stores is not enough for a viable PKI. The
entities in the enterprise must actually use the
certificates, data sources, and other PKI services
effectively.

For a single enterprise with its own PKI, this is
fairly simple. However, when interacting with the
web or other partner enterprises with their own PKIs
and trusted root CAs, name use can get more
complicated.

For example, the U.S. Department of Defense
(DoD) hosts its own set of root CAs and
intermediate CAs. The root CAs sign the certificate
of each intermediate CA, which may directly issue
user certificates or continue the chain further to
more intermediate CAs. The process of user
authentication requires tracking this chain of CAs
back to a trusted root CA, as shown for Alice and
Bob on the left side of Figure 1. Chaining Alice’s
certificate to the trusted DoD root CA validates that
the her identity can be trusted.

However, an interesting problem occurs when
working with partner organizations. For example,
the U.S. Department of Veterans Affairs (VA) has
many current and former members of DoD, but it
has its own root CA, which is issued by a non-DoD
entity. If DoD and VA collaborate, VA users and
servers are part of a separate PKI. The first step is to
establish trust between these two PKIs. This allows
the DoD to trust certificates issued by the VA CA.

A potential problem arises, however, if the VA
creates a certificate with a DN that matches one
within the DoD PKI, as shown by the duplicate
certificate for Alice on the right of Figure 1. The
problem is that the DoD trusts the VA CA and will
trust the VA certificate, but the DN on the VA
certificate matches a possibly different entity’s
account within the DoD. As a result, someone with
such a VA DN would be able to access all the DoD
resources that the corresponding DoD entity has
access to.

An alternative situation is a rogue intermediate
CA in either organization. A rogue intermediate CA
could intentionally issue credentials with targeted
DoD DNs in an attempt to access those entities’
resources within DoD. For example, DoD CA #2
could issue Bob an additional credential with Alice’s
DN to provide Bob unauthorized access to Alice’s
resources.

Figure 1: Name confusion across PKIs.

This highlights the importance of not only
checking the full DN, but also the CA chain that the
DN is part of. A DoD-style DN that is issued by the
VA is highly suspect, and at the very least such a
credential should be flagged and denied normal DoD
access. Such measures could also be taken within
DoD to protect identities from rogue internal
intermediate CAs. More details of federation
approaches based on trust levels is provided in
(Foltz and Simpson, 2016c).

5 KEY GENERATION AND
DISTRIBUTION ISSUES

There are two types of private keys in a typical PKI
instantiation. The first is a signature or identification
key, which is used for authentication or digital
signatures. This is generated on secure hardware and
has no copies or duplicates. The hardware protects
the key from export so that there is only one copy in
existence. This is useful for managing identities and
non-repudiation. The entity associated with the
private key is provided the only copy of the private
key.

The second type of key is used for decryption,
and this is typically archived so that encrypted data
can be retrieved if the original decryption key is lost,
destroyed, or expired. Generation and distribution
for decryption keys is less secure than for identity or
signature keys because the decryption keys have
additional copies. Decryption keys can be generated
in hardware and transmitted in encrypted form to
other secure hardware, or they can be generated in or
copied to software.

Public Key Infrastructure Issues for Enterprise Level Security

93

Identity and signature keys must have a single
copy in order to preserve non-repudiation. This is
generated in secure hardware and never leaves the
hardware. The hardware provides an interface to use
the key but does not provide a method for extraction.
The Trusted Platform Module (TPM) is an approach
that uses hardware-based key management (Trusted
Computing Group, 2016), but current user key
management solutions typically use portable
external key stores, such as smart cards or
USB/FireWire devices.

The challenge for modern systems is how to
generate and use such keys on a mobile device.
External hardware key stores, such as smart cards or
USB/FireWire devices are convenient and secure for
generation, but using them with mobile devices can
be difficult. Integrated key storage and use within
the device is more convenient.

The first thing needed for device-level key
management is trusted hardware that is inseparable
from the device itself. This hardware generates
random key pairs and prevents the private key from
being extracted. It makes the public key available.
The private key can be used through a defined
interface, such as PKCS11 for signature or
authentication (Oasis, 2015). Such a hardware
module is much like an attached smart card or USB
stick with private key operations, except it is
embedded inside the device. It is independent from
the normal processor, and its internal structures are
not made available except through defined
interfaces.

As part of a PKI, such keys need certificates,
which could be loaded into the hardware module or
kept in normal storage. The challenge for the
enterprise CA is to validate that keys are generated
in such a secure hardware module. Smartcard or
USB stick credentials are installed onto known
custom hardware at manufacture time. Generating
keys on a mobile device after a user has taken
possession means that the state of the hardware is
uncertain. For example, a malicious user may
generate keys in software and claim that they were
generated in hardware. This could be from a
desktop, an application on the same mobile device,
or a custom-built or compromised mobile device
specifically designed to mimic the behavior of a
normal phone while actually making private keys
available. Alternatively, a hostile entity could
manufacture devices designed to compromise the
keys of users. If the device manufacturer is not
trusted, it is not possible to have a trusted PKI with
device-based keys.

With a trusted vendor, there are measures to stop
fake devices. The vendor first registers each phone
using an embedded public key that is installed at
manufacturing time. This is a permanent feature of
the trusted hardware and, hence, the device. The
enterprise, when issuing mobile devices, validates
that all such devices are listed in the vendor’s
registry and validates each device by performing a
private key operation with the device.

The next step is to ensure that the public key
presented for a certificate was generated on that
device. This requires hardware support with a special
operation. This is a signed assertion of key generation
by the trusted hardware. It certifies that the secure
hardware generated the provided public key and
associated private key by providing a signature using
the permanent embedded hardware key. The only way
to generate such a signed statement is when the
hardware generates and returns a new key.

This hardware operation ties the public key to a
known device and allows hardware-based
bootstrapping for further PKI development.

The public key associated with the device-based
user credential is unique. As a result, the key
generation process, which produced a device-
permanent-key signature of the user credential
public key, can be used with the registry of devices
to confirm which device a user request is coming
from. Combining this information with an attestation
report from the device certifying that the device is in
a valid state, the result is strong assurance that the
user request is coming from the proper user on a
device in a valid state.

An alternative approach would be to embed
device information in the user credential. If the
device public key is embedded in the user credential,
a server can extract this and use it to verify a signed
attestation report from the device.

The choice of whether to embed information in
user credentials or provide a registry is up to the
organization. Either solution provides a way to bind
a user to a device for a given request by using the
device-based user credential’s unique public key.
This process enables the enterprise to leverage the
convenience of credentials embedded within mobile
devices while preserving the hardware security
properties associated with smartcards and other
custom hardware key stores.

6 DIGITAL SIGNATURE ISSUES

When an entity signs digital content, it is intended to
mean “I approved this content.” However, digital

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

94

signatures in their raw form leave a lot of implicit
real-world information out. For example:

• When was the content approved?

• For how long is the approval valid?

• For how long is the digital signature valid?

• What happens at credential expiration?

• What if the signing credential is revoked?

• What happens for role-based signatures when
roles change?

These issues are not specific to digital signatures,
but they are issues that can be more precisely
addressed with a digital signature solution; thus
agreement on which solutions to implement and how
to implement them is important.

6.1 Time of Signature

The issue of when content is approved has a simple
solution, which involves explicitly noting the date
and time in the signed content. However, relying on
the signing party to provide the date allows the
possibility to pre-date or post-date documents.

To address this, a trusted third party validates the
time of the signature. This can be implemented as an
enterprise time service, and this service simply takes
content, appends a time stamp, and signs the
combined result. The original signer can then sign
the combined (content + time stamp + time service
signature) data to prove that the signature was done
after the time in the combined data. The time service
must be trusted to provide the proper date and time,
and its issuing CA must be trusted by the receiver.
To provide proof of signature before a certain time
instead of after, the signed content can be presented
to the time service for signature. For a time window,
the time service can be called both before and after
the original signer’s signature is applied. This
bounds the time of signature within the window
between the two times.

For a multi-signature document, each signature
can provide its own time window, a single window
can be applied to the full set of signatures, or any
combination of time stamps can be used throughout
the signature process, depending on the desired level
of granularity. Also, individual copies of the
document can be signed by individual members with
or without their own time stamps, and then the
combination of document and all time stamped
signatures can be time stamped upon aggregation.
This might be desirable if the order of signatures is
not important and parallelization is desired in the

signature process due to time or communication
constraints.

For signatures after a certain time, the time
service need not sign the content of a document.
Instead it could periodically provide a signed
statement of the current time. Inclusion of this
signed statement of time in the original signed
content would be one way to show a signature
occurred after a given time. However, this could not
be used to show that a signature was performed
before a given time.

6.2 Explicit Signature Validity

The validity time window of the signature is
sometimes shorter than that of the credential. For
example, a temporary authorization letter would
likely expire while the signing credential is valid. In
this case, the validity window can be included in the
content to be signed. Because this is set by the
original signer, no additional signatures are needed.
This would generally apply to policy documents that
are to be used to guide actions. Renewals are
possible, but they would require a new signature.

Another issue is if the certificate associated with
a document signature is revoked. The time of the
signature may be available, but the time of
revocation may not be provided in a validity check,
and just the current status is reported. This raises the
question of whether the document and its signature
should be considered valid. Additional information
may be of use in making this determination:

• When the revocation happened

• When the certificate first became invalid
(looking retroactively)

Figure 2: Credential compromise timeline.

The revocation time may be enough information
to determine validity. This assumes that a valid
certificate is actually valid and that the only factor in
determining the validity of the signature is
determining the validity of the certificate at the time
the signature was performed. The issue with this
approach is that revocations typically occur after

Public Key Infrastructure Issues for Enterprise Level Security

95

some sort of problem is discovered with the
certificate, its associated key, or the entity it refers
to. This provides a time period between the start of
the problem and its discovery and eventual
revocation action. An attacker could use such a time
period to create unauthorized signatures that the
enterprise would accept as valid.

 As part of the revocation process, it may be
possible to determine the point at which the
credential was first considered invalid, which could
be significantly before the revocation. For example,
in the case of a missing or lost credential, the report
might come in a week or so after the user last saw
the credential. In this case, the validity window
should end at the last time the user had possession of
the credential, because any further use would be by
someone else and not valid. In the case of a
discovered insider attack, the certificate might be
considered invalid at a much earlier time, depending
on when the person was deemed to have turned
against the organization. Figure 2 illustrates the
different events on a timeline.

Implementing this requires the technical
capability to record and make available the
revocation time and validity time. It also requires the
process of determining the validity time as a part of
revocation. It requires the Online Certificate Status
Protocol (OCSP) or a related protocol to allow
queries and responses about the validity and
revocation times. A simple modification would be to
add a time to the OCSP request, which essentially
asks, “Was certificate C valid at time T?” instead of
just “Is certificate C valid?”

6.3 Signature Renewal

Signature renewal is generally used when a signing
credential becomes invalid. This includes expiration
or revocation. It may also involve changing roles
and permissions for role-based signatures, where the
position and authority, not the actual identity of the
individual, is what matters. The signature by
someone who changes roles may still be treated as
valid, or it may be considered no longer valid. Also,
the new person assuming the role may wish to
explicitly invalidate previous signed documents even
if they would otherwise be considered valid.
Implementing such policies requires central services
that maintain a list of signatures, their types,
properties, and ties into a database of roles and their
history. This builds on the basic PKI functions.

6.4 Signature Updates

Expiration is an issue when the signature outlives
the signature certificate. Because cryptography can
be broken, credentials are periodically replaced. At
replacement key length may increase because
existing techniques to break keys improve as
computational capabilities increase. The
cryptographic algorithms themselves may be
changed as well.

Longer-term signatures can be broken if the
underlying credentials are broken, so there is a
natural limit on how long a signature is valid.
Instead of simply indicating the validity period for
the signature, more complicated measures must be
taken so that old signatures are refreshed at a
sufficient rate to prevent cryptographic or other
attacks that are enabled by long periods of use.

 Signatures provide a strong guarantee of identity
at a particular time, but maintaining this over time is
more difficult. It is generally not possible to
construct a practical and scalable security measure
that will survive for more than a few years, because
technology advances and allows prior security
measures to be broken more quickly each year. For
this reason, central maintenance of official
signatures may be required to maintain security over
time. An automatic or manual re-signing may
provide sufficient security, along with a history of
all prior signatures.

The goal is to refresh old signatures using new
keys or new technology before they become too old
to be trusted as valid. Signed time stamps on the
original and refreshed content are required to
establish a proper chain of security from original
signed content through to the current version. This
would use the trusted time service mentioned above
with a sequence such as the following:

Original signature:

1. Original content is time stamped (time
service adds time and signature)

2. Time stamped content is signed by original
signer

3. Signed content is time stamped a second
time

Signature refresh:

1. Original triple-signed content (date, signer,
date) is re-time stamped

2. Re-time stamped content is signed by
same or new entity using updated
keys/technology

3. Re-signed content is time stamped again

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

96

Further signature refreshing follows the same
process as above. With this process, it is possible
that invalid signatures exist for expired credentials,
especially ones with broken cryptographic methods.
It is important to monitor such aging signatures and
generate new signatures while the current ones are
still valid and secure.

The length of the signature chain grows over
time, and it provides a verifiable history of the
approval of the content. In addition, signed records
of certificate revocations, role assignments, and
other issues mentioned above must be maintained in
order to tie the signatures to the real-world.

7 ELS SOLUTION FOR PKI

The ELS solution attempts to address the issues
discussed. It starts with DNs for all users,
established by a central authority. These include the
name and unique identifying number in the CN and
organizational information in other fields of the DN.
The DNs are used in X.509 certificates that are
issued after a full background check, proper
authorization, and secure forms of identification are
presented in-person at a credential issuing station.
Certificates and associated keys are stored on
smartcards for use with laptops or desktop machines.

For mobile devices, only approved vendor
devices are supported, and they are enrolled in a
device management system. The devices generate
keys in a secure hardware enclave that is separate
from the main processing unit and only provides
defined interfaces for standard cryptographic
operations involving the private key. A factory-
installed and registered public/private key pair is
used for attestation reports that certify the status of
the device and its software. It also certifies the
creation of a new public/private key pair in
hardware.

Servers are provided a “security handler,” which
is code to be executed upon receipt of an incoming
request prior to application code. The security
handler examines the user credential, and for mobile
device credentials, it performs hardware validation
of the associated device where the credential is
stored, based on a registration of devices.

A time server provides two interfaces. One
provides a signed statement of the current time.
Another provides a signed statement that the given
content provided by the user was received at the
current time. This provides the ability to prove that a
document was signed within a certain time window.

Validity windows for signed statements are
provided by the signing entities. If the validity
exceeds the credential validity, it must be renewed at
expiration to remain valid. This may be by the
original signer or by an authorized individual at the
time of expiration. Formal signed documents are
stored as official records and retain the full history
of signatures.

One of the intentions for such a signature
process is to allow automated enforcement of policy
through PKI. If a valid signed statement (such as an
XML structure) exists, then certain automated
functions proceed; if not, they halt and produce alert
messages.

In ELS, two-way, end-to-end PKI-based
authentication is used for all web-based
communication. The identity validation checks the
full DN as well as the chain to a trusted root CA, and
it validates that the DN values of each certificate in
the chain are consistent with the issuing CA for that
certificate. OCSP is used for certificate validation,
and certificate revocation lists (CRLs) are
periodically updated for backup to support
operations when OCSP services fail or time out.

The web-based authentication portion of the ELS
PKI solution has been subjected to two rounds of
penetration testing. Other portions are currently in
development, such as the mobile device credential
management strategy and the higher granularity
signature approaches. Current mobile device
technology provides some native hardware
capabilities for key management, but full integration
into a working PKI on managed devices often
requires work-arounds that use software instead of
just hardware (Apple, 2019) (Samsung, 2019).

This work is part of a body of work for high-
assurance enterprise computing using web services.

8 CONCLUSIONS AND FUTURE
WORK

PKI is an integral part of the ELS solution for
enterprise security. It forms the basis for many
higher level security functions, such as
authentication, authorization, and content integrity.
This paper examines some of the challenges and
shortcomings when using PKI and provides methods
to use and extend the core PKI functionality to
provide desired enterprise functionality.

Future work includes the extension of signature
revocation and validity times to normal business use.
For example, if signatures by certain individuals are

Public Key Infrastructure Issues for Enterprise Level Security

97

only to be considered valid if executed during their
working hours or their shift hours, then a service can
be invoked to determine for a given signature time
whether the signer is authorized to sign. This is
important when signature credentials are associated
with the person’s role or location. Another variant is
to disable credentials when the owner is known to be
on vacation, traveling, or otherwise in a position
without the credentials. Such irregular intervals
could be handled in a way similar to normal business
hours using an external server to manage schedules.

The signature refreshing process, where the
number of signatures grows over time and each
signature encapsulates the prior ones, bears some
resemblance to a blockchain approach, such as that
used by Bitcoin (Bitcoin, 2019). The Bitcoin
blockchain has a similar problem that current
hashing and public key algorithms used for
transactions may be compromised later, and
algorithms and key sizes may change in the future.
This suggests that a blockchain may provide a
natural solution to the central signature repository.
However, the Bitcoin blockchain is decentralized
and requires vast computing resources to maintain,
and such a solution is not desirable for an enterprise.
Various private blockchain technologies attempt to
resolve this issue, but by making the blockchain
private, they give control to a central authority and
negate many of the features of the public blockchain.
Also, although many signatures are intended for
broad audiences, some are not, and a blockchain
approach that does not encrypt the content
appropriately is not an appropriate solution for
general digital signatures. Hence, current blockchain
technologies offer an approach that parallels some of
the concepts of digital signatures, and further work
in this area might provide a viable approach.

REFERENCES

Apple, “iOS Security, iOS 12.1”, November 2018,
https://www.apple.com/business/site/docs/iOS_Securit
y_Guide.pdf

Bitcoin, “Blockchain,” Bitcoin Developer Documentation,
available at https://bitcoin.org/en/blockchain-guide,
accessed December 9, 2019.

Cooper, D., et al., “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile”, May 2018. Available at
https://tools.ietf.org/html/rfc5280, accessed December
9, 2019.

Entrust Datacard, “What is PKI?” available at
https://www.entrustdatacard.com/pages/what-is-pki,
accessed November 27, 2019.

Foltz, K. and Simpson, W., 2017. Enterprise Level
Security with Homomorphic Encryption. In
Proceedings of 19th International Conference on
Enterprise Information Systems (ICEIS 2017), Porto,
Portugal, April 26–29, 2017.

Foltz, K. and Simpson, W. R. 2016. “The Virtual
Application Data Center.” In: Proceedings of
Information Security Solutions Europe (ISSE) 2016.
Paris, France.

Foltz, K. and Simpson, W. R. 2016. “Enterprise Level
Security – Basic Security Model.” In: Proceedings of
the 20th World Multi-Conference on Systemics,
Cybernetics and Informatics: WMSCI, Volume I,
WMSCI 2016. Orlando, FL.

Foltz, K. and Simpson, W. R. 2016. “Federation for a
Secure Enterprise.” In: Proceedings of The Twenty-
first International Command and Control Research
and Technology Symposium (ICCRTS 2016). London,
UK.

Oasis, “PKCS #11 Cryptographic Token Interface Base
Specification Version 2.40,” Oasis Standard, April 14,
2015. Available at http://docs.oasis-open.org/pkcs11/
pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.doc,
accessed December 9, 2019.

Samsung, “KNOX Platform Security”, Samsung
Developers website, Available at https://developer.
samsung.com/tech-insights/knox/platform-security

Simpson, W. R. 2016. Enterprise Level Security –
Securing Information Systems in an Uncertain World.
Boca Raton, FL: CRC Press, p. 397.

Trias, Eric D., et al. 2016. “Enterprise Level Security”,
Proceedings of the 35th MILCOM conference, DOI:
10.1109/MILCOM.2016.7795297 pp. 31-36,
http://ieeexplore.ieee.org/document/7795297/.

Trusted Computing Group, “TPM 2.0 Library
Specification”, September 29, 2016. https://trustedcom
putinggroup.org/resource/tpm-library-specification/

X.509 Standards
a) DoDI 8520.2, Public Key Infrastructure (PKI) and

Public Key (PK) Enabling, 24 May 2011
b) JTF-GNO CTO 06-02, Tasks for Phase I of PKI

Implementation, 17 January 2006
c) X.509 Certificate Policy for the United States

Department of Defense, Version 9.0, 9 February
2005

d) FPKI-Prof Federal PKI X.509 Certificate and CRL
Extensions Profile, Version 6, 12 October 2005

e) RFC Internet X.509 Public Key Infrastructure:
Certification Path Building, 2005

f) Public Key Cryptography Standard, PKCS #1
v2.2: RSA Cryptography Standard, RSA
Laboratories, Oct 27, 2012

g) PKCS#12 format PKCS #12 v1.0: Personal
Information Exchange Syntax Standard, RSA
Laboratories, June 1999.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

98

