
Teaching Software Engineering Principles in Middle Schools by
Combining Robotics and Blogging

Ilenia Fronza a, Claus Pahl b and Boris Sušanj
Free University of Bozen/Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy

Keywords: Software Engineering, End-user Software Engineering, Computational Thinking, K-12.

Abstract: In the current labor market, a large number of people engage in programming activities, even without being
trained developers. Fostering Software Engineering (SE) principles at the K-12 level can increase the quality
of the code that students will write in their future careers. Middle school students usually learn Computer
Science (CS) as part of other disciplines; thus, the challenge is achieving the CS learning objectives and foster
SE principles while fulfilling the curricular objectives. In this work, we describe a didactic module and its
assessment framework; moreover, we report the results of a classroom experience that shows the effectiveness
of the proposed approach. This work provides educators with a practical example of how to cover several
areas of technology in a way for middle school students to be engaged and to spark future interest. The results
encourage us to work on the development of the next modules dedicated to middle schools.

1 INTRODUCTION

The number of unqualified people (i.e., end-users)
who produce software in the labor market is consid-
erable (Burnett and Myers, 2014) and includes secre-
taries, accountants, teachers, or anyone else who finds
themselves writing programs to support their work
(Ko et al., 2011). In 2015, among 26 million U.S. on-
line job postings, there were as many as 7 million job
openings in occupations that valued coding as a tech-
nical skill (Burning Glass Technologies, 2016). In
2017, Gartner Inc. predicted that by 2022, citizen de-
velopers (i.e., non-professional developers who build
applications for use by other people) would be build-
ing more than a third of all web/mobile employee-
facing apps delivered in organizations with mature
citizen development initiatives (Gartner Inc., 2017).

One of the well-known issues of end-user-
produced software is its overall low quality (Burnett,
2009), which is mainly explained by the lack of Soft-
ware Engineering (SE) training (Scheubrein, 2003).
To address this issue, End-User Software Engineer-
ing (EUSE) provides end-users with the knowledge of
basic SE principles (Barricelli et al., 2019). A limited
effort has been spent so far to facilitate the acquisition
of software quality notions and SE principles (Mon-

a https://orcid.org/0000-0003-0224-2452
b https://orcid.org/0000-0002-9049-212X

teiro et al., 2017). In particular, there is a need to
focus on middle schools to reach the highest number
of students before they choose their careers. This en-
deavor sets several challenges. For example, the goal
is not turning students into professional software en-
gineers through ad-hoc activities (Burnett and Myers,
2014). Indeed, middle school students, in general, do
not perceive the usefulness of SE principles. More-
over, in many contexts (including the one considered
in this work) Computer Science (CS) is taught as part
of other disciplines, which hinders the reservation of
time for content that does not directly contribute to
achieving the curricular objectives.

Based on these considerations, we propose a di-
dactic module (for first-year middle school) that aims
at achieving the CS learning objectives (through ed-
ucational robotics) and foster SE principles, while
guaranteeing the achievement of the curricular objec-
tives. The proposed activities (and assessment frame-
work) have been designed based on the learning ob-
jectives listed in a recent proposal of a core informat-
ics curriculum (Forlizzi et al., 2018). To evaluate the
effectiveness of the proposed module, we performed a
classroom experience involving 11 students. The re-
sults show the effectiveness of the proposed module
and encourage us to work on the development of the
next modules for middle schools.

The remaining part of the paper is organized as
follows. Section 2 describes the state of the art of

350
Fronza, I., Pahl, C. and Sušanj, B.
Teaching Software Engineering Principles in Middle Schools by Combining Robotics and Blogging.
DOI: 10.5220/0009341303500357
In Proceedings of the 12th International Conference on Computer Supported Education (CSEDU 2020) - Volume 1, pages 350-357
ISBN: 978-989-758-417-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



EUSE in K-12; Section 3 describes the rationale of
the proposed module, and Section 4 details its struc-
ture and assessment framework. Section 5 describes
the classroom experience, and Section 6 reports its re-
sults. Section 7 discusses our results and draws con-
clusions from this work, also proposing possible di-
rections for future work.

2 STATE OF THE ART

In the last two decades, researchers proposed several
approaches to support end-users in modifying or cre-
ating software artifacts to solve their professional or
personal problems (Barricelli et al., 2019). In par-
ticular, the fields of End-User Programming (EUP),
End-User Development (EUD), and End-User Soft-
ware Engineering (EUSE) have been very active in
this direction (Barricelli et al., 2019). In particular,
EUSE focuses on systematic and disciplined activi-
ties to improve the quality of end-user-produced code
(Barricelli et al., 2019; Burnett and Myers, 2014).

The large number of activities fostering coding
and computational thinking at different levels of ed-
ucation contribute to increasing the number of end-
users. Some students will pursue a CS career; many
of them will write some code to support their work.
Thus, there is a need to reach all the students before
they choose their careers. Indeed, in 2000, M. Shaw
indicated the need for treating software development
from an engineering point of view to all students who
learn software development, and not only to prospec-
tive software engineers (Shaw, 2000). Bollin et al. in-
dicated SE as a valuable means to start exercising, at
the K-12 level, a set of skills that are valuable in the
labor market (Bollin et al., 2016). Rico and Sayani
recommended introducing Agile methods as early as
possible (Rico and Sayani, 2009). Few EUSE studies
focus on K-12, where Agile methods are an excellent
candidate (Fronza et al., 2019a). The existing studies
focused on proposing a mentoring methodology on
Agile (Meerbaum-Salant and Hazzan, 2010), achiev-
ing greater flexibility in development projects using
Agile (Kastl et al., 2016), and understanding how
to foster Agile in different contexts, including non-
vocational (Fronza and Zanon, 2015; Fronza et al.,
2016) and middle schools (Fronza et al., 2017). With
this vision at hand, we explored further the possibil-
ity of fostering Agile principles in middle schools,
while pursuing CS and curricular learning objectives.
Following the EUSE guidelines (Burnett and Myers,
2014), we avoid introducing additional lectures on the
topic.

3 RATIONALE

In the last years, a range of activities has been pro-
posed to foster programming skills at different lev-
els of education (Bocconi et al., 2016). Neverthe-
less, limited effort has been spent to explore the pos-
sibility of facilitating the acquisition of software qual-
ity notions and Software Engineering (SE) principles
(Monteiro et al., 2017; Fronza et al., 2017).

In this work, we focus on middle schools to reach
the highest number of students before they choose
their future careers. Middle school students, includ-
ing those considered in this work, usually learn CS
as part of other disciplines. Therefore, the challenge
is achieving the CS learning objectives and foster SE
principles while also fulfilling the curricular learning
objectives. Our long-term goal is providing schools
with a set of progressive modules for this purpose.
Our Research Questions are:
RQ1: Is it possible, in first-year middle school, to

achieve CS learning objectives and foster SE
principles, while fulfilling the existing curric-
ular learning objectives?

RQ2: Is this approach effective?
We describe a first-year module that we have de-

signed for this purpose. The module comprises a
robotics project combined with an existing curricu-
lar activity, which is blogging. Together with a group
of school teachers, we selected blogging to achieve
the following curricular objectives: 1) create simple
websites or blogs, 2) access the Internet with confi-
dence, and 3) respect the copyright rules. Moreover,
blogging is transversal to many disciplines (e.g., Lan-
guages); thus, it provides an example to students of
their potential to use technology in any professional
path of their choice. Blogging also taps into students’
interests and engages them to learn the technical part,
even if they are not particularly interested in it (Spires
et al., 2012). Finally, this choice allows us to pro-
mote a competent/responsible use of devices through
a Bring Your Own Device (BYOD) strategy by using
smartphones to collect material for the blog.

We aim at providing students with the first expe-
rience of the entire SE process, from initial customer
inception to product release. Therefore, our module
consists in a didactic transposition (i.e., the process
by which professional content (scientist, scholar, or
expert knowledge) becomes school content, by adapt-
ing and shaping the professional knowledge to fit the
school environment (Chevallard and Gilman, 1991;
Hazzan et al., 2010)) of eXtreme Programming (XP).
This approach fits the EUSE goal, which is foster-
ing SE principles without turning students into pro-
fessional software engineers (Burnett, 2009).

Teaching Software Engineering Principles in Middle Schools by Combining Robotics and Blogging

351



When teaching SE to undergraduates, it is essen-
tial to apply suitable practices according to students’
goals instead of fulfilling the complete implemen-
tation of methods (Schneider and Johnston, 2005).
Since teaching to even younger students, we followed
this advice and selected a set of XP practices, which
correspond to a set of Agile principles and are recom-
mended to be adopted together (Fronza et al., 2019a;
Kastl et al., 2016):

• incremental development, through small releases,
frequent testing, and user stories;

• customer involvement, by having the instructor
playing this role;

• change, through regular system releases, test-first,
refactoring, and continuous integration.

We limited the difficulty of the programming task
to let students focus more on the SE process (Fronza
and Pahl, 2019). The triviality of the programming
task supports our goal of starting a progressive set of
activities, during which the didactic transposition of
the Agile methods becomes closer and closer to the
professional setting, also by increasing the difficulty
of the programming task.

4 STRUCTURE OF THE MODULE

The proposed didactic module consists of the follow-
ing four parts and covers a total of 20 hours, spread
over ten weeks by having two hours per week:

1. introduction and team creation (4 hours);

2. blogs: introduction, Wordpress tutorial, first posts
(6 hours);

3. unplugged introduction to robotics (4 hours);

4. robotics project (6 hours).

Module and assessment framework have been de-
signed based on the learning objectives listed in a re-
cent proposal of a core informatics curriculum (Forl-
izzi et al., 2018). Since we aimed at creating a pro-
gression of activities for middle schools, for the first
year we selected from this proposal a subset of objec-
tives of four areas (Table 1). Moreover, based on our
research questions, we defined the Area of SE.

For assessment, under consideration of the un-
derlying principles of Project-Based Learning (PBL)
(Romeike and Göttel, 2012), we did not hand out
tests, and we preferred critique and revision, sup-
ported by observation, interview, and code inspec-
tions (Fronza et al., 2017).

4.1 Introduction and Team Creation

We distribute a questionnaire to collect data about par-
ticipants’ backgrounds and habits; then, we open a
discussion on the topic “what is a robot?”, by show-
ing pictures of different robots (e.g., humanoid and
grass-cutter). Afterward, teams are formed. Work-
ing in teams is an essential task to master for soft-
ware engineers (Zucconi, 1995), as it allows to ex-
change experiences and brings powerful opportunities
for personal development. In particular, Agile teaches
us that good products come from good teams (Mar-
tin, 2003). However, being part of an ineffective team
may lead to extreme frustration and resentment (Oak-
ley et al., 2004). Thus, we take the following steps
to facilitate team building (Oakley et al., 2004): 1)
instructors form teams, based on their knowledge of
students’ characteristics, trying to form teams whose
members are diverse in ability level; 2) teams agree
on a team name and logo.

4.2 Blogs: Introduction, Wordpress
Tutorial, First Posts

We provide basic notions on the following topics:
• Basic architectural and functional concepts of the

Internet and the Web.
• Basic architectural and functional concepts of

computer-based systems and devices distinguish-
ing between hardware and software.

• Copyright issues when publishing on-
line, with Google Image Search (https:
//images.google.com) as an example to retrieve
Creative Commons-licensed photos.

• Internet safety and the importance of protecting a
blog by using a password and avoiding the publi-
cation of personal information.
Afterward, each team finds a blog online and de-

scribes it to the others. Each presentation is used
to find some common characteristics of blogs. Fi-
nally, we provide a tutorial on Wordpress (https://
en.wordpress.com). Table 2 details the assessment
framework.

4.3 Unplugged Introduction to Robotics

During this part, participants work on unplugged ac-
tivities, which get documented in the blog. Table 3
shows the assessment framework.
Coding Game (http://bit.ly/2XqiQTl). Four groups
compete in a board game to reach specific points of
the board, which requires to decide shared conven-
tions for directions.

CSEDU 2020 - 12th International Conference on Computer Supported Education

352



Table 1: Learning Objectives (Forlizzi et al., 2018) and Parts of the Module in Which They Are Pursued.

Area of Algorithms
id Knowledge and skills P2 P3 P4
A1 To detect the potential ambiguities hidden in the description of an algorithm when

natural language is used
A2 To describe an algorithm according to the capabilities of the automatic executors
A3 To write algorithms, even based on conventional notations, to describe simple pro-

cesses inspired from the everyday life
A4 To detect/describe the conditions under which a process may terminate

Area of Programming
P1 To try small/simple changes in a program to understand and modify its behavior,

identify and fix its flaws
P2 To write programs that use selections
P3 To trace the progress of computation

Area of Digital Awareness
DA1 To understand the main architectural/functional concepts of the Internet and the Web
DA2 To understand the main architectural/functional concepts of computer-based systems

and devices, distinguishing between hardware and software
DA3 To connect computer-based devices with each other and with peripheral devices
DA4 To recognize the value of personal data (not only sensitive data) and be aware of

issues related to identity on the network
Area of Digital Creativity
DC1 To experiment during the creation of digital content various digital tools and multiple

processing methods, so as to express themselves at their best
DC2 To choose the most appropriate digital tools for their expressive goals
DC3 To select and organize digital content for an effective presentation
Area of Software Engineering
SE1 To develop the solution in smaller portions at a time (i.e., incremental development)
SE2 To take advantage of a customer’s feedback (i.e., customer involvement)
SE3 To be able to manage changes to requirements (i.e., change)

Table 2: Assessment in Part 2 (Ids Are Defined in Table 1).

id Assessment criteria
DA1 Ability to summarize in the blog the main

architectural and functional concepts of the
Internet and the Web

DA2 Ability to summarize in the blog the
main architectural/functional concepts of
computer-based systems and devices dis-
tinguishing hardware and software

DA3 Ability to connect a robot/mobile phone
via USB to the PC

DA4 Ability to ask relevant questions while us-
ing the Web, and basic awareness of some
risks related to it

Tell Me How You Make Toast (http://bit.ly/
2V9kKK7). Each student sketches a diagram of how
to make toast, one step per post-it. Then, the solutions
are combined in one single solution. The take-away
message is about the importance of working together
and identifying small steps to solve a problem.

4.4 Robotics Project

After providing each team with a robot and
a laptop, we introduce the programming en-
vironment (Studuino: https://www.artec-kk.co.jp/
studuino/). Afterward, under consideration of the
PBL principles, the same challenge is given to all the
teams: build a robot that can draw the boundary lines
of a football field. We chose this challenge for two
main reasons: 1) geometric figures are a topic of first-
year middle school; and 2) it does not require to use
lights, sound, or sensors, which keeps the program-
ming task to a basic level by avoiding conditions and
input management. The modularity of the robot sup-
ports this choice, i.e., participants build an elementary
robot that does not include sensors.

Teams write on a post-it each step to achieve
the goal, and solve each task (e.g., “let the robot
move forward”) during one iteration; when one step
is complete, each team can show the current version
(i.e., small releases) to the customer to get feedback.
Teams are encouraged to frequently test and complete

Teaching Software Engineering Principles in Middle Schools by Combining Robotics and Blogging

353



Table 3: Assessment in Part 3 (Ids Are Defined in Table 1).

id Assessment criteria
A1 Ability to define/follow a common set of

conventions during the coding game, and
to ask for clarification when some instruc-
tions are ambiguous

A2 Ability to adapt the description of an algo-
rithm depending on the executor (i.e., peers
during the coding game and the Tell Me
How You Make Toast activity)

A3 Ability to define an algorithm to solve a
real life example (i.e., preparing a toast)

A4 To describe the conditions to terminate the
processes of the coding game and of the
preparation of a toast

DC1 Ability to add effects to pictures when
needed, and to write texts for the blog us-
ing various fonts and colors

DC2 Ability to identify the correct tool for each
activity (e.g., writing, coding, etc.)

DC3 Overall quality of the blog
SE3 Ability to integrate changes to the solution

a task before starting the next one. At the beginning
(and end) of each meeting, teams have a 5-minute
stand-up meeting to recap: what have we done so far?
What are we going to do today (next time)? Besides
supporting the SE process (Section 3), these meetings
serve to collect data for the blog, which is also done
during the iterations by using smartphones (i.e., pic-
tures, videos, short notes). Table 4 illustrates the as-
sessment framework.

5 CLASSROOM EXPERIENCE

We performed a classroom experience involving 11
middle school students (7 M and 4 F); German was
the mother-tongue of four students, and Italian of
the other seven. The school teacher formed three
teams (two teams of four and one of three students)
and one/two German mother-tongue speakers were
assigned to each team. The activities could be docu-
mented either in German or Italian, to make this mod-
ule transversal to Languages.

Ten students (7 M and 3 F) completed the ini-
tial questionnaire. According to their answers, nine
of them own both a computer and a smartphone, and
seven use computers more frequently, mostly for in-
ternet browsing (eight respondents), writing text and
preparing presentations (six), and listening to music
(four). Smartphones are mostly used for listening to
music (ten), internet browsing (ten), playing (eight),
social networks/chats (seven). In most of the cases

Table 4: Assessment in Part 4 (Ids Are Defined in Table 1).

id Assessment criteria
A2 Ability to adapt the description of an algo-

rithm depending on the executor (i.e., the
robot)

A4 Understand that the robot needs to stop
when the entire square has been drawn

P1 Ability to describe the effect of small
changes while programming the robot

P2 Ability to explain the presence of selection
in the developed code

P3 Ability to tell what part of the code is being
executed by the robot

DA3 Ability to connect a robot/mobile phone
via USB to the PC

DA4 Ability to ask relevant questions while us-
ing the Web, and basic awareness of some
risks related to it

DC1 Ability to add effects to pictures when
needed, and to write texts for the blog us-
ing various fonts and colors

DC2 Ability to identify the correct tool for each
activity (e.g., writing, coding, etc.)

DC3 Overall quality of the blog
SE1 Ability to organize small releases, based on

user stories, and to test frequently to obtain
a working prototype

SE2 Ability to listen to a customer’s feedback
and use it during the following iteration

SE3 Ability to integrate changes to the solution

(seven), parents decide how long per day students
can use a computer, and check what they are doing
(seven); six students also enjoy showing to their par-
ents what they have been doing. Parents represent the
primary source of help (nine), but only six students
enjoy using a computer together with their parents,
usually for internet browsing. Four students defined a
robot as “a non-living-being created by technology”;
one student even defined it as “a person who could
help with activities and research”. This strong associ-
ation of robots with humanoids is also evident when
students draw a robot: all the drawings represent hu-
manoids (Figure 1 shows an example). When asked,
“what do you think you should do to create a robot?”,
only two participants mentioned programming, while
all the others focused on the building aspect.

6 RESULTS

Figure 2 summarizes the assessment results, which
show the effectiveness of the proposed approach
(RQ2).

CSEDU 2020 - 12th International Conference on Computer Supported Education

354



Area of Algorithms. The assessment of this area
takes place during Part 3 and Part 4. During the Tell
Me How You Make Toast exercise, one of the three
teams provided a precise solution (objective A3 in Ta-
ble 1) immediately because they were already aware
of the need of being precise without taking some steps
for granted (A2), such as “plug the toaster into a
power outlet”. The other two teams presented cor-
rect (A3) but less precise solutions; however, they ac-
tively participated in the discussion during the review
of the results and, in the end, demonstrated a satisfac-
tory comprehension of the principles behind it (A2).
In Part 4, all the teams understood that the algorithm
needed to be even more precise than in Part 2, since a
robot was going to execute it (A2). The message was
that, for example, we could avoid telling a person to
cut the bread to prepare a toast, while a robot can not
guess omitted instructions.

As expected, the first part of the Coding Game
generated misunderstandings due to the lack of clear
conventions. Thus, the teams dedicated a large part
of the game to successfully decide a shared set of
conventions (A1) including, for example, the point of
view taken for each instruction: when executing an
arrow to the right, do we consider the right side of the
pawn or of who is moving it? After finding an agree-
ment on a set of shared rules, all the teams completed
the game correctly (A2, A3), and all the participants
were actively engaged in the activity. All the partici-
pants could identify end-conditions (A4) both during
unplugged exercises (e.g., the toast is ready) and dur-
ing the robotics project (i.e., the square is complete).
Therefore, we achieved two-thirds of our objectives.

Area of Programming. All the teams delivered a
simple yet working solution. The code is slightly
different for the three teams: one team created a se-
quence of instructions; the second team found the re-
peat block and, after some explanations, refactored

Figure 1: One Answer to the Question “draw a Robot”.

the solution using a repeat four times. The third team
also refactored the solution, but just inserted a repeat
three times after drawing the first side of the square.
None of the solutions implement a selection (P2). Fa-
vored also by the linearity of the solution, all the stu-
dents could explain the robot behavior expected after
a change in the code (P1). Moreover, they could tell
what part of the code was executed by the robot (P3).
Therefore, we achieved half of our objectives.

Figure 2: Summary of the Assessment Results.

Area of Digital Awareness. While populating the
blog, all the participants demonstrated an excellent
ability to connect different devices (DA3), for exam-
ple, to transfer pictures. During Part 2, all the partici-
pants showed a good understanding of the provided
notions about the Web, the Internet, and PC hard-
ware, but summarizing these notions in a blog post
was challenging for most of them. However, after an
additional explanation, the participants could success-
fully write their posts (DA1, DA2). All the partici-
pants were already conscious of some internet secu-
rity issues. Therefore, we introduced the concept of
privacy and data tracking, and a short explanation of
how e-mails and URLs work. During a group dis-
cussion to review these concepts, all the participants
demonstrated a good yet basic understanding (DA4).
Area of Digital Creativity. All the participants could
easily choose the software they needed to complete
different tasks (DC2), such as writing posts and mod-
ifying pictures. Even though the blog structure im-
posed some restrictions, the final result shows a good
level of creativity, especially in the choice of fonts,
colors, and size (DC1). The presentation in the blog
can be considered adequate, and the quality is accept-
able (DC3) when considering that this was the very
first blogging experience for all the participants.
Area of Software Engineering. All the participants
got a first understanding of the XP practices, as they
started (SE1) using their post-its (user stories) to

Teaching Software Engineering Principles in Middle Schools by Combining Robotics and Blogging

355



guide the production process and decide when a pro-
totype (small releases and testing) was ready for the
meeting with the on-site customer. Moreover, all the
teams took advantage of the customer’s feedback to
improve the solution (SE2). However, we frequently
had to solicit the teams to stop working with the
robot to dedicate some time to other activities, such
as stand-up meetings. Most of the time, reminding
them that stand-up meetings represented an excellent
chance to prepare some material for the blog worked
as a motivating factor.

All the teams demonstrated an excellent ability to
integrate changes to the solution. Thanks to the block-
based programming environment, they integrated the
new features on top of the existing ones (Fronza et al.,
2019a) by making frequently sure that the changes did
not negatively affect or break the existing code (SE3).

The proposed activity covered a limited number of
hours, and the assigned task was rather trivial. These
characteristics certainly did not recreate a real profes-
sional environment but supported our goal of start-
ing a progressive set of activities, during which the
didactic transposition of the Agile methods becomes
closer and closer to the professional setting, also by
increasing the difficulty of the programming task. Un-
der consideration of this idea, we consider the results
of this experience as an indicator that students reacted
positively to this first time they were exposed to a SE
approach. Indeed, although we did not provide addi-
tional lectures on SE, students adapted to the new or-
ganization of the work process, by taking advantage
of frequent iterations and customer’s feedback.
Curricular Objectives. As part of the curricular ob-
jectives, teachers had to ensure that students achieved
the ability to: 1) create simple websites or blogs, 2)
access the Internet with confidence, and 3) respect the
Copyright rules. At the end of the module, the school
teachers confirmed that all the participants achieved
these objectives at the desired level.

7 CONCLUSION AND FUTURE
WORK

This paper provides educators with a practical exam-
ple of how to cover several areas of technology in a
way for middle school students to be engaged and to
spark future interest. Specifically, it shows how it is
possible to achieve the CS learning objectives and fos-
ter SE principles while fulfilling the existing curricu-
lar objectives (RQ1). Even though the proposed activ-
ities have been designed by taking into account spe-
cific context factors, the fundamental design princi-
ples can generalize to other contexts. Indeed, the pro-

posed module does not introduce additional SE lec-
tures, which is crucial to middle schools, where stu-
dents would not perceive these additional lectures as
useful. Moreover, we considered a context in which
CS is taught as part of other disciplines, which hap-
pens frequently and hinders the reservation of time
for other content that does not directly contribute to
achieving the curricular learning objectives. Finally,
the considered learning objectives (Table 1) can be
reasonably present in other curricula.

The proposed assessment framework has been ap-
plied to analyze the outcome of the first classroom ex-
perience, and the obtained results show the effective-
ness of the approach (RQ2). Further experiments are
needed to generalize these results by involving other
groups of participants. Moreover, the possible effect
of language should be analyzed: in this experience,
the official language was Italian, which could have
increased the difficulty for German mother-tongue
speakers. Additionally, the possible effects of partici-
pants’ backgrounds should also be inspected.

The results of this paper are encouraging for work-
ing on the development of our next modules dedicated
to middle schools, to progressively cover all the ob-
jectives included in the reference document for the
informatics curriculum. Moreover, the proposed Area
of Software Engineering (and its assessment frame-
work) needs to be further extended by including more
practices to support the development process.

This work, together with our previous ones
(Fronza and Pahl, 2019; Fronza et al., 2019b), shows
that it is possible to foster SE principles in K-12 with
no or minimum programming tasks. It remains to be
explored whether and how these activities will help
to improve code quality when students write code to
solve non-trivial tasks. Finally, performing a class-
room experience next year with the same group of stu-
dents would allow us to test for retention, and check
if students are improving towards the achievement of
the final objectives of the middle school curriculum.

REFERENCES

Barricelli, B. R., Cassano, F., Fogli, D., and Piccinno, A.
(2019). End-user development, end-user program-
ming and end-user software engineering: A system-
atic mapping study. Journal of Systems and Software,
149:101–137.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A.,
Engelhardt, K., et al. (2016). Developing computa-
tional thinking in compulsory education-implications
for policy and practice. Technical report, Joint Re-
search Centre (Seville site).

Bollin, A., Pasterk, S., Antonitsch, P., and Sabitzer, B.

CSEDU 2020 - 12th International Conference on Computer Supported Education

356



(2016). Software engineering in primary and sec-
ondary schools-informatics education is more than
programming. In Software Engineering Education
and Training (CSEET), 2016 IEEE 29th International
Conference on, pages 132–136. IEEE.

Burnett, M. (2009). What is end-user software engineering
and why does it matter? In International Symposium
on End User Development, pages 15–28. Springer.

Burnett, M. M. and Myers, B. A. (2014). Future of end-user
software engineering: beyond the silos. In Proceed-
ings of the on Future of Software Engineering, pages
201–211. ACM.

Burning Glass Technologies (2016). Beyond point and
click: the expanding demand for coding skill. https:
//bit.ly/2YYL60A. Accessed 18 Feb. 2020.

Chevallard, Y. and Gilman, C. (1991). La transposición
didáctica: del saber sabio al saber enseñado, volume
1997. Aique Buenos Aires.

Forlizzi, L., Lodi, M., Lonati, V., Mirolo, C., Monga, M.,
Montresor, A., Morpurgo, A., and Nardelli, E. (2018).
A core informatics curriculum for italian compulsory
education. In International Conference on Informat-
ics in Schools: Situation, Evolution, and Perspectives,
pages 141–153. Springer.

Fronza, I., El Ioini, N., and Corral, L. (2016). Blending
mobile programming and liberal education in a social-
economic high school. In Proceedings - International
Conference on Mobile Software Engineering and Sys-
tems, MOBILESoft 2016, pages 123–126.

Fronza, I., El Ioini, N., Pahl, C., and Corral, L. (2019a).
Bringing the Benefits of Agile Techniques Inside
the Classroom: A Practical Guide, pages 133–152.
Springer Singapore, Singapore.

Fronza, I., Ioini, N. E., and Corral, L. (2017). Teach-
ing computational thinking using agile software en-
gineering methods: A framework for middle schools.
ACM Transactions on Computing Education (TOCE),
17(4):19.

Fronza, I. and Pahl, C. (2019). Teaching software engineer-
ing principles in non-vocational schools. In Proceed-
ings of the 11th International Conference on Com-
puter Supported Education (CSEDU), pages 252–261.

Fronza, I., Pahl, C., and Susanj, B. (2019b). A didac-
tic module to teach software engineering principles
in middle schools. In Proceedings of the 20th An-
nual SIG Conference on Information Technology Ed-
ucation, SIGITE ’19, pages 168–168, New York, NY,
USA. ACM.

Fronza, I. and Zanon, P. (2015). Introduction of computa-
tional thinking in a hotel management school [intro-
duzione del computational thinking in un istituto al-
berghiero]. Mondo Digitale, 14(58):28–34.

Gartner Inc. (2017). Market Guide for Rapid Mobile App
Development Tools.

Hazzan, O., Dubinsky, Y., and Meerbaum-Salant, O.
(2010). Didactic transposition in computer science ed-
ucation. ACM Inroads, 1(4):33–37.

Kastl, P., Kiesmüller, U., and Romeike, R. (2016). Start-
ing out with projects: Experiences with agile software
development in high schools. In Proceedings of the

11th Workshop in Primary and Secondary Computing
Education, pages 60–65. ACM.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Bur-
nett, M., Erwig, M., Scaffidi, C., Lawrance, J., Lieber-
man, H., Myers, B., et al. (2011). The state of the art
in end-user software engineering. ACM Computing
Surveys (CSUR), 43(3):21.

Martin, R. C. (2003). Agile Software Development: Prin-
ciples, Patterns, and Practices. Prentice Hall PTR,
Upper Saddle River, NJ, USA.

Meerbaum-Salant, O. and Hazzan, O. (2010). An agile
constructionist mentoring methodology for software
projects in the high school. ACM Transactions on
Computing Education, 9(4):n4.

Monteiro, I. T., de Castro Salgado, L. C., Mota, M. P., Sam-
paio, A. L., and de Souza, C. S. (2017). Signifying
software engineering to computational thinking learn-
ers with agentsheets and polifacets. Journal of Visual
Languages & Computing, 40:91–112.

Oakley, B., Felder, R. M., Brent, R., and Elhajj, I. (2004).
Turning student groups into effective teams. Journal
of student centered learning, 2(1):9–34.

Rico, D. F. and Sayani, H. H. (2009). Use of agile meth-
ods in software engineering education. In 2009 Agile
Conference, pages 174–179. IEEE.

Romeike, R. and Göttel, T. (2012). Agile projects in high
school computing education: emphasizing a learners’
perspective. In Proceedings of the 7th Workshop in
Primary and Secondary Computing Education, pages
48–57. ACM.

Scheubrein, R. (2003). Elements of end-user software
engineering. INFORMS Transactions on Education,
4(1):37–47.

Schneider, J.-G. and Johnston, L. (2005). eXtreme
Programming- helpful or harmful in educating un-
dergraduates? Journal of Systems and Software,
74(2):121–132.

Shaw, M. (2000). Software engineering education: a
roadmap. In Proceedings of the Conference on the Fu-
ture of Software Engineering, pages 371–380. ACM.

Spires, H. A., Hervey, L. G., Morris, G., and Stelpflug,
C. (2012). Energizing project-based inquiry: Middle-
grade students read, write, and create videos. Journal
of Adolescent & Adult Literacy, 55(6):483–493.

Zucconi, L. (1995). Essential knowledge for the practis-
ing software engineer and the responsibilities of uni-
versity and industry for her education. In Confer-
ence on Software Engineering Education, pages 3–13.
Springer.

Teaching Software Engineering Principles in Middle Schools by Combining Robotics and Blogging

357


