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Abstract: In the Internet of Things, interconnected devices communicate with each other through standardized internet
protocols to reach common goals. By doing so, they enable building complex, self-organizing applications,
such as Smart Cities, or Smart Factories. Especially in large IoT environments, newly appearing devices
as well as leaving or failing IoT devices are a great challenge. New devices need to be integrated into the
application whereas failing devices need to be dealt with. In a Smart City, newly appearing actors, for example,
smart phones or connected cars, appear and disappear all the time. Dealing with this dynamic is a great issue,
especially when done automatically. Consequently, in this paper, we introduce A Life Cycle Method for
Device Management in Dynamic IoT Environments. This method enables integrating newly appearing IoT
devices into IoT applications and, furthermore, offers means to cope with failing devices. Our approach is
evaluated through a system architecture and a corresponding prototypical implementation.

1 INTRODUCTION

The Internet of Things (IoT) is an evolving paradigm,
in which interconnected devices communicate with
each other through standardized internet protocols to
reach common goals (Vermesan and Friess, 2013).
Usually, such IoT devices are attached with sensors
and actuators to monitor the environment or influence
it (Granell et al., 2020). Famous examples for IoT
applications are Smart Homes, Smart Factories, or
Smart Cities (Harper, 2006; Lucke et al., 2008; Su
et al., 2011).

IoT environments are very dynamic, which means
that devices enter and leave these environments reg-
ularly. This, however, leads to the great challenge of
adapting to the new infrastructure. More precisely,
failing devices could lead to errors in the IoT applica-
tions or, for example, to monitoring inaccuracy due to
a decreased coverage of the environment with sensors.
In contrast, newly appearing devices can increase the
benefit of the IoT application, for example, by new
sensors and actuators, computing power or better cov-
erage of the environment. In a Smart City, e.g., newly
entering connected cars need to be considered in traf-
fic control, whereas leaving cars can be ignored.

The goal of the IoT is managing the environments
possibly autonomous with as little human interaction
as possible. When a new device enters the environ-

ment or a device leaves it, it does not make sense to
involve a human actor, such as a technician to ad-
just the application accordingly. Especially in large
scenarios, for example, in Smart Cities, the overhead
would be tremendous.

Hence, IoT applications should be able to involve
newly appearing devices or to cope with leaving or
failing devices automatically without any human in-
teraction. To solve this issue, in this paper, we intro-
duce A Life Cycle Method for Device Management in
Dynamic IoT Environments. Our approach includes
(i) a meta model to describe the behavior of an IoT
environment, (ii) a meta model to describe the struc-
ture of an IoT environment, (iii) the lifecycle method
to integrate new devices into existing environments
regarding their capabilities and the environment’s re-
quirements, and (iv) a system architecture to imple-
ment the method. Our approach is evaluated through
a prototypical implementation of this architecture.

In our approach, the goal is to keep everything as
decentralized as possible. More precisely, the num-
ber of central components should be kept as low as
possible since the vision of the IoT focusses on direct
machine-to-machine communication. Consequently,
only a single central components is required in our
approach, which copes with integrating new devices
into IoT environments. The devices, however, still
operate in a completely distributed and decentralized
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Figure 1: Motivational Scenario.

manner. Note that integrating a new device into an
environment is difficult to do decentralized, since one
must have an overview of the whole environment to
delegate an appropriate task. Hence, we decided to
handle this centrally.

The remainder of this paper is structured as fol-
lows: Section 2 describes a scenario we use to mo-
tivate our contribution. Section 3 introduces related
work that copes with the integration of IoT devices
in running IoT environments. Next, in Section 4 the
meta models are described that form the foundation
for our paper. Section 5 then describes our main con-
tribution: a lifecycle method for device management
in dynamic IoT environments. Section 6 then evalu-
ates the approach and Section 7 concludes the paper
and gives an outlook to future work.

2 MOTIVATION

In this chapter, we introduce a motivating scenario,
which serves as means to explain our approach and,
furthermore, to serve as a basis for evaluation pur-
poses. The domain of this motivating scenario is
Smart Cities. In this domain, a large number of de-
vices exist, such as Smart Cars or Smart Transporta-
tion in general, Wearables worn by pedestrians, or sta-
tionary edge servers. These devices are highly dy-
namic and heterogeneous. More precisely, a large
amount of devices enter and leave the environment
constantly. Manual registration of these devices is im-
possible due to the large amount.

The devices in our scenario intercommunicate de-
pendant on geographical proximity, user preferences,

or use cases. Furthermore, not only one IoT applica-
tion is employed in Smart Cities but many different
ones, partly using the same devices (e.g., Smart Park-
ing, Smart Transportation, Smart Grids). In this sce-
nario, we will specifically focus on automated traffic
management of Smart Cars.

The goal in such environments is making it possi-
ble for devices to interact with each other in a highly
dynamic manner. For example, when a smart car en-
ters a city with a specific service for traffic manage-
ment, this service needs information about the posi-
tion of the car in order to include it. However, usually
the car owner does not want to share his general po-
sition for privacy reasons. If the car had the appropri-
ate software and logic installed, it could preprocess
its position data to blur the position and only share
information that is required for traffic management.
Furthermore, the traffic management system gets re-
lieved since data arrives already preprocessed. The
great challenge in this scenario is integrating newly
entering cars into the traffic management application
so that the car is registered, the required software is
deployed, and the car starts sending the appropriate
data. For obvious reasons, the whole process needs to
be done fully automatically.

With the contribution of this paper, we aim at solv-
ing the following challenges of this scenario: (i) dis-
covery and registration of IoT devices, in this scenario
Smart Cars, (ii) automated deployment of software
and application logic on heterogeneous IoT devices,
(iii) data processing on the IoT devices to increase
privacy and scalability, and (iv) seamless device com-
munication according to the specific application.

The introduced scenario is depicted in Figure 1.
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In this figure, first, the smart car registers itself at the
nearest Road Side Unit, which is depicted on the mid-
dle top. In a second step, the Road Side Unit deploys
the appropriate application logic and software compo-
nents on the car. In this scenario and in the scope of
this paper, we assume that the IoT devices allow such
communication and are willing to collaborate with the
involved IoT applications.

Finally, once the appropriate application logic is
deployed, the car is able to communicate with the
other cars and Road Side Units in the Smart City ac-
cording to the specific regulations, which is the third
step in Figure 1.

3 RELATED WORK

In previous work (Del Gaudio and Hirmer, 2019), we
introduced a lightweight messaging engine to enable
device-to-device communication in the IoT. This mes-
saging engine handles information exchange between
devices in a dynamic, scalable, and robust manner.
Data processing is defined by a processing model.
Data is exchanged in the form of messages contain-
ing a header and a payload with the actual data. In this
previous work, the messaging engine still lacks mech-
anisms to cope with the dynamic we aim for in this
paper. Hence, in this paper, we plan to enhance this
messaging engine so it can cope with newly added or
failing devices and enable a more dynamic device-to-
device communication.

Seeger et al. (Seeger et al., 2019) propose an ap-
proach to process data in IoT environments in a dis-
tributed manner, which is similar to ours. They model
data processing based on choreographies (Peltz,
2003). They also introduce a concept for failure de-
tection, where devices monitor themselves to detect
failures. In contrast to our work, Seeger et al. specifi-
cally focus on device failures and their recovery in the
scope of their IoT choreographies. Newly appearing
devices, however, are not discovered and considered
automatically. Moreover, we aim at creating a more
generic approach, which is not only valid specifically
for choreographies but for all kinds of models.

Franco da Silva et al. and Hirmer et al. (Hirmer
et al., 2016; Franco da Silva et al., 2020; Franco da
Silva et al., 2019) propose the new IoT platform MBP
as well as means to map operators onto distributed
IoT devices and execute them. However, they do not
provide any mechanisms for coping with newly ap-
pearing devices or device failures.

Kodeswaran et al. (Kodeswaran et al., 2016) in-
troduce Idea – a system for efficient failure manage-
ment in smart IoT environments. The core of the Idea

approach is a central system, which provides means
for monitoring failures of sensors and, if a failure oc-
curs, a scheduling component for maintenance. The
work focuses mostly on Smart Home applications. In
contrast to Kodeswaran et al., we not only cope with
failing devices but also integrate new devices into the
IoT applications. Furthermore, our approach is more
decentralized, whereas the Idea framework describes
a central system.

Similar to Kodeswaran et al., Kapitanova et
al. (Kapitanova et al., 2012) introduce a system to
handle non-stopping failures in Smart Home environ-
ments. Failure detection is done by machine learn-
ing algorithms. In contrast, we aim at a more tradi-
tional, lightweight monitoring approach and, further-
more, we also provide means to handle newly added
devices, not only the ones that fail.

Very similar to our approach is the research area
of discovery in the IoT. Datta et al. (Datta et al.,
2015) categorize related work in the area of discov-
ery into the following areas: distributed and peer-
to-peer discovery services, centralized architectures,
CoAP-based service discovery, semantic-based dis-
covery, search engines for resource directory, and uti-
lization of ONS and DNS.

Fredj et al. (Fredj et al., 2014) propose a semantic-
based service discovery using ontologies. A semantic
model that can be used to achieve discovery in such
a manner is IoT Lite (Bermudez-Edo et al., 2016).
We use a similar, however, more lightweight approach
that introduces a meta model that represents the IoT
devices of an application that is used for discovery
purposes. By doing so, discovery can be enabled
more efficiently in contrast to working with heavy-
weight ontology models.

CoAP-based discovery mechanisms can make use
of the resource discovery (/.well-known/core) inter-
face of a CoAP server, through which provided ser-
vices of the server can be retrieved (Shelby et al.,
2014; Shelby et al., 2013). Cirani et al. (Cirani et al.,
2014) propose an architecture for peer-to-peer-based
autonomous resource and service discovery in the
IoT. The architecture utilizes a central IoT gateway
and the CoAP resource discovery interface. In our pa-
per, we decided to focus on a more generic approach
for device discovery and integration that is not specif-
ically tailored to CoAP.

In conclusion, our thorough literature review of
related work shows that even though there are already
many works focusing either on device failures or on
device discovery and integration, there is yet no com-
bined approach, which provides the flexibility, dy-
namics and genericity we aim for in this paper.
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4 METAMODELS

For heterogeneous devices being able to intercommu-
nicate, we need standards to describe applications in
terms of communication.

In this section, we introduce two meta models,
which build the foundation for our lifecycle method:
(i) a data processing model, specifying the business
logic of an IoT application (Section 4.1), and (ii) a
structural description of IoT environments, including
devices, sensors, actuators, network, and communica-
tion (Section 4.2).

These models are necessary because data process-
ing should be decoupled from the actual devices that
execute data processing operations, which leads to a
clear separation of concerns. Hence, devices can be
added, removed, and exchanged without having to
adapt the processing model. Furthermore, an appli-
cation developer can model an IoT application via the
processing model without further knowledge of the
structure of the IoT environment in which the appli-
cation will be executed. Consequently, both models
are also fully decoupled and, thus, interchangeable.
We describe details of these models in the following.

4.1 Processing Model

Interactions between devices in IoT environments can
be described by directed graphs according to the pipes
and filters pattern (Meunier, 1995), which we refer to
as the processing model in this paper. In our experi-
ence, and as shown in related works (e.g., (Del Gau-
dio and Hirmer, 2019; Franco da Silva et al., 2019)),
the pipes and filters pattern is appropriate to describe
the behavior of an IoT environment.

Nodes in the processing model, i.e., the filters, are
referred to as operations and are not bound to specific
devices. Instead, they are associated with a set of re-
quirements, making it possible to dynamically choose
the right IoT device for the operator.

We define the processing model as a tupel DF =
(O,E,R,req) with the set of operations O, the set of
directed edges E = {e = (oi,o j)|oi,o j ∈ O}, stating
that operation oi must be performed right before op-
eration o j, the set of requirements R, and the function
req : O→ P (R), which links each operation to a set
of requirements. An example for a processing model
in JSON representation looks as follows:

{
"flow_id": "TrafficLightFlow",
"flow": {
"1": {
"operation": "SendPosition",
"requirements": ["PositionSensor"],
"next_oiid": "2"

},
"2": {
"operation": "SetSignals",
"requirements": ["TrafficSignals"],
"next_oiid": "3"

},
"3": {
"operation": "StopCar",
"requirements":
["AccelerationController"],

"next_oiid": none
},

}
}

In this example, flow_id defines a unique name
for each processing model. Each sub-element of flow
represents an operation. next_oiid indicates which
operation must be executed after SendPosition and
so forth. The processing model is depicted in Fig-
ure 2. The first operation SendPosition is exe-
cuted by SmartCar1 by sending its position data to
SmartTrafficLight. It uses the data to execute
SetSignals and send the result to SmartCar2, in or-
der that it can timely react to the change of signals and
stop the car.

In the following sections, this processing models
is used to define the business logic (more precisely,
the data flow) of the IoT applications.

4.2 Structural Description of IoT
Environments

Additionally to the behavior of the IoT applica-
tions, we need a model to specify the structure
of IoT environments. This involves all included
devices and connections between them. For this
model, we propose an undirected and weighted graph
E = (D,L,C,cap,w) with a set of devices D =
{d1, . . . ,dn}, that exist in the environment, a set of
links L = {l = {di,d j}|di,d j ∈D}, stating that device
di can communicate with device d j and vice versa,
and a set of capabilities C. The function cap : D→
P (C) links each device with a set of capabilities in
order to match them with the requirements of the pro-
cessing model. The function w :→ Q associates each
link with a specific weight. The weight of a link in-
dicates the costs of delivering a message via the link.
The weight of a link can be very dynamic and must
be monitored during runtime.

The structural description needs to be changed by
devices being added and removed, which is the main
contribution of this paper. This model in JSON repre-
sentation is shown in the following example:

{
"device": {
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SmartCar2SmartCar1 SmartTrafficLight

StopCarSetSignalsSendPosition

Operation: Data Flow:

Figure 2: Traffic Light Processing Model.

"name": "SmartCar1",
"capabilities": [

"AccelerationController",
"PositionSensor",
"HighProcessingPower" ],

"address": "192.168.56.11",
"mac": "f0-f4-85-f5-41-e6-53",
"credentialGroup": "group1"

}
"device": {

"name": "SmartTrafficlight",
"capabilities": [

"TrafficSignals",
"MediumProcessingPower" ],

"address": "192.168.56.22",
"mac": "00-53-b7-ff-21-24-34",
"credentialGroup": "group1"

}
"link_1_2": {

"weight" : 2.3
"devices": [

"SmartCar1",
"SmartTrafficlight"]

}
}

5 LIFE CYCLE METHOD FOR
DEVICE MANAGEMENT

We propose a generic life cycle method with six steps
to integrate a new IoT device into an existing envi-
ronment, which is depicted in Figure 3. The lifecycle
method describes how one device can be integrated
into an existing IoT environment to work with the
other devices together. It describes the cycle terms of
entering, leaving, and reentering an IoT environment
of a single device. Furthermore, we propose a system
architecture that implements the life cycle, which is

depicted in Figure 4.
The cycle is started by the runtime agent on the de-

vice discovering the runtime management, represent-
ing our system for device integration (step 1). In the
second step, the device can register itself at an regis-
tration service by sending a registration message. The
registration service contains a database with the fol-
lowing data: (i) information about each device that is
registered, (ii) information about each operation that
can potentially be deployed and executed in the envi-
ronment, and (iii) information about which operation
is deployed on which device.

In the next step, the runtime management then de-
termines the proper set of operations to deploy on the
new device, as defined by the processing model of
the IoT application (step 3). After that, it deploys the
associated software and configure it using the desig-
nated processing models (step 4).

The next step 5 represents the data processing, i.e.,
including the new IoT device into the execution of the
running processing models of the IoT environment.
The management runtime is now only responsible for
monitoring the new device and is not involved in the
machine-to-machine coordination. Hence, decentral-
ized data processing can still be ensured, which im-
proves the robustness due to no single point of failure.
Finally, in the last step 6 of our lifecycle method, the
device is removed from the environment, either inten-
tionally or by failure.

The details of these steps are described in the fol-
lowing sections.

5.1 Step 1: Server Discovery

The first step of our lifecycle method is the server dis-
covery. In order for a device to be integrated in an
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Figure 3: Life Cycle Method.

IoT application, it must register itself at the registra-
tion component, i.e., the registration server.

We evaluated three possibilities how a device can
find the registration server in a network: (i) the ad-
dress of the registration component is preconfigured
on the device, (ii) the device sends a broadcast or
multicast message into the network hoping that the
registration server receives it and sends a response, or
(iii) the server discovery is implemented into the net-
work via a DHCP or DNS server.

We do not further consider the first solution, since
preconfiguration of devices omits the dynamicity we
aim for in this paper. For example, when a device
enters a different environment, the address of the reg-
istration server might be different than the one that is
preconfigured. Furthermore, the address of the regis-
tration server could change anytime.

The third solution requires specifically configured
DNS or DHCP servers and is, thus, also not further
regarded. Consequently, we prefer the second solu-
tion, since it can be implemented by our system itself
without any critical dependencies. The runtime agent
on the devices sends broadcast messages into the net-

work and the registration server responds on receiving
the message. If the network does not allow broadcast-
ing, the other solutions can be considered as a backup.

5.2 Step 2: Device Registration

The second step of our lifecycle method comprises
the device registration. After a new device discovered
the address of the registration server (step 1), it reg-
isters itself by sending a registration message to the
registration server. An example of such a message for
our motivating scenario is depicted in the following:

{
"device": {

"name": "SmartCar2",
"capabilities": [

"AccelerationController",
"PositionSensor",
"HighProcessingPower"

],
"address": "192.168.56.11",
"mac": "12-43-b5-ae-fd-44-35",
"credentialGroup": "group2"

},
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Figure 4: Architecture to Apply Our Lifecycle Method for Device Integration.

"options": {
"ttl": 3600

}
}

The element device defines device-specific meta-
data. name is the self-given name for the device that
does not necessarily have to be unique. The subele-
ment capabilities is used to choose appropriate
operations for the device, address defines the IP ad-
dress, mac the MAC address, and credentialGroup
is used to define the credentials to access the de-
vice, for example, via SSH. Furthermore, the element
options is used for the registration process itself,
defining important properties, such as ttl, determin-
ing the time-to-life for the registration as explained
in Section 5.5. The registration server stores the in-
formation about the device based on the registration
message. After step 2, the device is registered and
can be further processed.

5.3 Step 3: Software Determination

As the device is registered at the registration server,
the server must now determine a suitable set of opera-
tions, implementing specific business logic of an IoT
application, and deploy them on the device. This is
done in step 3 of our lifecycle method.

We determined three aspects to consider for
choosing suitable operations: (i) the capabilities of
the device in terms of sensors, actuators, and process-
ing power, (ii) the requirements of available opera-
tions in terms of sensors, actuators, and processing

power, and (iii) the specific characteristics of the en-
vironment the IoT applications are provided in.

In our architecture (cf. Figure 4), the Model Map-
ping component is responsible to map the capabilities
of the devices onto the most useful set of applications,
regarding all applications that are available.

We define the function f ul f ills(c,r) for each re-
quirement r ∈ R and each capability c ∈ C, which
evaluates to 1 if capability c fulfills requirement r.
Therefore, we define the function executableBy(o,d)
for each operation o ∈ O and each device d ∈ D as

executableBy(o,d)=


1, ∀r ∈ req(o)∃c ∈ cap(d) :

f ul f ills(c,r) = 1
0, else

(1)

stating that o is executable by d in terms that for
each of requirement d, o offers a fulfilling capability.

For a new device d, we can now seek for the subset
of operations

Od = {o ∈ O|executableBy(o,d) = 1}, (2)

which contains all operations that are executable
by d and, thus, fulfills aspects (i) and (ii).

In terms of aspect (iii), many different character-
istics must be considered when choosing which op-
eration is the most ”useful” for an environment. We
consider an operation as the most useful for an envi-
ronment if it is one that is not yet deployed on a device
at all, expanding the application’s coverage of the IoT
environment.
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Furthermore, for choosing suitable operations to
be run of the devices, we evaluated two processing
patterns that need to be handled separately:

• Parallelizable Operations:
Parallelizable operations can be scaled horizon-
tally by deploying multiple instances of them.
Hence, when deploying such operations, it needs
to be considered whether scaling is required by
the specific IoT application. Furthermore, if all
available operations are already deployed, we
only look for parallelisable operations.

• Unique Operations:
A unique operation must be unique inside the en-
vironment, for example, because all data that is
processed by the operation must be consolidated
in one instance. Unique operations must be con-
sidered separately when choosing the operations
to be deployed.

To manage the operations in the environment, we
must keep track of operations that are already run-
ning, the workload of each operation, and the utiliza-
tion of resources of the devices. The set of opera-
tions that are executed by a given device d in the
context of any processing model is determined by
executedBy(d). In order to realize this, a sophisti-
cated monitoring of the IoT environment is essential.
However, this is not the focus of this paper. Hence, we
refer to existing work in IoT monitoring, for example,
provided by (Lazarescu, 2013).

5.4 Step 4: Software Deployment and
Configuration

In the fourth step, the chosen operations need to be de-
ployed on the new device. For each operation the en-
vironment is able to perform, the associated software
components must be stored in the software repository
which is part of the registration server, as shown in
our system architecture (cf. Figure 4). These software
components can range from simple scripts to sophisti-
cated software applications, whereas only lightweight
components can be deployed onto resource-restricted
IoT hardware. This decision has already been made
in the previous step Software Determination.

The Software Deployment component of our ar-
chitecture extracts the necessary software compo-
nents from the software repository, connects to the
device, and starts installing the software and all re-
quired dependencies. This deployment step can be ei-
ther implemented manually using, for example, SSH
connections, or in a more sophisticated manner. One
approach for a more robust software deployment strat-
egy is offered by the OASIS standard TOSCA (OA-

SIS, 2013a; OASIS, 2013b). An open-source im-
plementation of TOSCA is, for example, provided
by OpenTOSCA (Binz et al., 2014). By using a
standard-based approach, such as TOSCA, the de-
ployment strategy is more future-proof than a non-
standard-based approach.

After all applications have been deployed, the
messaging engine on the devices (responsible for
machine-to-machine communication) must be config-
ured accordingly. The messaging engine needs the
operations it can perform, the section of the process-
ing model it participates in, and the node information
of devices it must interact with.

Furthermore, messaging engines on other devices
that need to interact with the new devices need the
information about the newly appeared device, more
specifically, which operations it provides and how
they can interact with it. A simpler but less scal-
able solution would be to inform each device in the
environment about the newly appeared device (for
example, through broadcasting) and, in this process,
hand over the necessary information about the new
device. However, since IoT devices often tend to be
constrained in terms of memory capacity and to min-
imize network traffic, we do not consider this simple
solution.

In our approach, to compute all relevant devices
that need to communicate with a newly added device
d, the runtime management traverses the processing
model and looks for each operation in executedBy(d).
Every device that executes a predecessor of an op-
eration in executedBy(d) must be notified about d.
Vice versa, d must be notified about each device, that
executes a successor operation of each operation in
executedBy(o). By doing so, only the devices need
to be notified, which are required to interact with the
newly added device. This reduces the network traf-
fic that would have been produced by broadcast mes-
sages and leads to a more tailored solution.

5.5 Step 5: Data Processing and
Monitoring

After deployment of the required software compo-
nents, the newly added device is ready to process data.
It can receive, process, and forward data according to
the processing models. Our system is now also able
to monitor the devices in the environment. To realize
this, each runtime agent sends health messages to the
server periodically. The frequency highly depends on
the use case, i.e., how critical device failures influence
the health of the application.

When the server receives no health message from
a device for a specified period of time, it assumes
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that the device has left the environment accidentally,
for example due to an occurring device failure. In
case the device leaves the environment voluntarily,
it deregisters itself. This will be discussed in more
depth in step 6. The time period is specified in ttl
in options in the registration message as introduced
in Section 5.2. This time period can be individual for
each device, since IoT environments tend to be highly
heterogeneous. In order to prevent unnecessary net-
work traffic, choosing the right time period in which
devices send their heartbeat messages has to be con-
sidered wisely.

Furthermore, for device health monitoring, impor-
tant metrics are the weight of links (cf. Section 4)
and the resource utilization of devices. Monitoring
information can be used to detect bottlenecks and re-
act accordingly, for example, by deploying additional
software on devices in order to scale the application.

When the data processing is interrupted because
a device is not capable of finding an appropriate re-
ceiver for data, it can perform a request to the de-
vice registration and monitoring component, which
will then respond with the address of another device
hosting the desired operation or deploy the operation
on one.

5.6 Step 6: Device Removal

There are two ways a device is removed from the en-
vironment: on purpose, for example, when a Smart
Car leaves the city area, or accidentally, for example,
when the network connection is lost or when the de-
vice’s hardware fails.

When a device leaves the environment on purpose,
e.g. when it should be exchanged, it should be able to
backup all its data on the registration server. When
a new device enters the environment that is able to
perform one of the operations the leaving device per-
formed, the registration server can initialize the new
device with the backup data. By doing so, it can be
ensured that no data is left. Of course, this data needs
to be attached with a timespan until it gets stale. Espe-
cially streaming data in the IoT get stale very quickly,
thus, loses its usefulness after a short amount of time.

When a device leaves the environment acciden-
tally, loss of data can only be prevented by persis-
tently storing all data on the device hoping that it
reenters. If this is not the case, however, all data that
was stored on the device at the time of the failure is
lost. One solution to cope with this issue are periodi-
cal backups. However, it needs to be considered that
these backups lead to a significant overhead regarding
computing and network resources. Hence, this trade-
off needs to be carefully considered for each applica-

tion separately.
After the last step of our lifecycle method, the de-

vice leaves the environment. At any time, the device
can re-enter and the whole method is re-initialized.
Note that if a device already contains the required
software components when re-entering, the method
can be significantly accelerated. Thus, it also con-
siders previous iterations.

6 PROTOTYPE AND DISCUSSION

To evaluate our concept, we implemented a prototype
of the runtime management and the runtime agent,
running on the device itself (cf. Figure 4).

The agent application is implemented in Python to
guarantee a certain degree of lightweightness because
this agent is usually deployed onto resource-limited
IoT hardware. In contrast, the runtime management
components, running in a scalable cloud environment,
is implemented in Java.

These components communicate via CoAP, a
lightweight HTTP-like protocol. In order to imple-
ment the CoAP client and server applications, we
used the Python implementation CoAPthon (Tan-
ganelli et al., 2015) for the client and the Java imple-
mentation Californium (Kovatsch et al., 2014) for the
server. Furthermore, we use MongoDB1 as database
to store information about registered devices on the
server. Furthermore, all communication payload is
serialized in JSON.

To simulate the traffic management scenario de-
scribed in Section 2, we created an IoT environ-
ment with multiple mobile and stationary devices at-
tached to an OpenStack-managed2 private cloud plat-
form running on an IBM Pureflex computing cluster
with 12 compute nodes. As IoT hardware, we used
Raspberry Pis3 attached to different sensors and actu-
ators that are hosting the agent. A virtual machine in
the private cloud is hosting the runtime management
components. Using such a flexible infrastructure en-
ables easy scaling of the runtime management com-
ponents and prevents them from becoming a single-
point-of-failure.

In order to set up our runtime management com-
ponent, a few simple steps need to be conducted, thus,
making it easy to set up in different scenarios by dif-
ferent stakeholders. First the runtime management
needs to be deployed on an application server run-
ning, e.g., on a virtual machine in the cloud or even on

1https://www.mongodb.com
2https://www.openstack.org
3https://www.raspberrypi.org
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an IoT device. Second, the runtime agent must be in-
stalled on each IoT device that is involved in the sce-
nario. Furthermore, each device needs a minor pre-
configuration to be able to share its capabilities with
the runtime management. For many IoT devices, we
recommend automating this installation and configu-
ration step, using for example, TOSCA or other well-
known deployment tools, such as Ansible4.

As mentioned before, all additional software nec-
essary for a specific scenario should be stored in the
software repository and gets installed automatically
by the runtime management according to the process-
ing model for the scenario and the devices capabilities
in step 4 of our lifecycle method.

Our prototype shows that our concept can cope
with the challenges listed in Section 2. Devices are
automatically registered when they enter the area of
our environment and connect to the Wi-Fi (i). Soft-
ware is automatically deployed on each device ac-
cording to the processing model (ii). Data is (pre-
)processed on the devices by the deployed software
and is sent to the other devices according to the pro-
cessing and structural models ((iii) and (iv)).

Modelling distributed applications with the pro-
cessing model in Section 4.1 and the environment
with the structural model in Section 4.2 decouples ap-
plication development from executing environments
and, thus, creates dynamic IoT environments with in-
terchangeable devices. Data processing can be scaled
horizontally by adding more devices to the environ-
ment, since parallelizable operations are deployed au-
tomatically and load is balanced amongst them.

7 CONCLUSION

In this paper, we present A Life Cycle Method for
Device Management in Dynamic IoT Environments.
Using this method, newly appearing devices can be
seamlessly integrated into IoT applications without
the need for manual, time-consuming steps. In ad-
dition, we introduce concepts that allow coping with
failing devices or voluntarily leaving ones. Our
lifecycle method builds on meta models, describing
data processing and the IoT infrastructure landscape.
Based on these models, newly appearing devices can
be found, registered, necessary software can be in-
stalled and they can be integrated for data processing
in an IoT application. Finally, the device can be re-
tired either voluntarily or when it fails. Even in case
of a failure, we can support IoT applications in pro-
viding a robust way of data processing so that appli-

4https://www.ansible.com/

cations do not fail when single devices do.
We implemented a prototype for our lifecycle

method in order to provide a proof-of-concept. In
the future, we aim at applying this prototype to more
complex scenarios in order to show the strengths of
our approach to an even greater extend.
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