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Abstract: This paper proposes a real-time spatial-temporal context approach for BEV object detection and classification 

using LiDAR point-clouds. Current state-of-art BEV object-detection approaches focused mainly on single-

frame point-clouds while the temporal factor is rarely exploited.  In current approach, we aggregate 3D 

LiDAR point clouds over time to produce a 4D tensor, which is then fed to a one-shot fully convolutional 

detector to predict oriented 3D object bounding-box information along with object class.  Four different 

techniques are evaluated to incorporate the temporal dimension; a) joint training b) CLSTM c) non-local 

context network (NLCN) d) spatial-temporal context network (STCN). The experiments are conducted on 

large-scale Argoverse dataset and results shows that by using NLCN and STCN, mAP accuracy is increased 

by a large margin over single frame 3D object detector and YOLO4D 3D object detection with our approach 

running at a speed of 28fps. 

1 INTRODUCTION 

An autonomous vehicle is an intelligent 

transportation which must operate safely, accurately 

observe its environment to make robust decisions and 

navigate in a complex traffic environment. A typical 

autonomous system is divided into subtasks (J. 

Levinson et al., 2011) perception, prediction, planning 

and control.  Perception is in charge of estimating all 

actor’s positions and motions, given the current and 

past evidences. Prediction on the other hand, tackles 

the problem of estimating the future positions of all 

actors as well as their intentions (e.g., changing lanes, 

parking). Finally, motion planning takes the output 

from previous stacks and generates a safe trajectory 

for the self-driving vehicle to execute via a control 

system.  

3D object detection is a fundamental task in 

perception systems. Recent approaches to 3D object 

detection exploit different data sources. Camera 

based approaches utilize either monocular (X. Chen et 

al., 2016) or stereo images monocular (X. Chen et al., 

2017), fisheye cameras or depth cameras. These 

camera-based approaches have drawbacks such as 

limited fields of view, difficult in operating under 

low-contrast conditions and inability to determine 

precise distances within the surrounding outdoor 

environment. On the other hand, LiDAR sensors, 

which use reflected laser pulses to scan the area 

around a vehicle, can overcome such limitations. 

LiDAR scanner data is used to create a 360-degree 

point cloud, which solves the limited field of view 

problem experienced in camera-based systems, and 

LiDAR data is more robust to changes in weather and 

illumination issues in indoor and outdoor 

environments. Thus, they are generally considered as 

more important sensors than cameras for autonomous 

vehicles driving safety and are adopted by nearly all 

auto-makers today (Baidu 2017, Google’s waymo 

2017, What it Was Like 2017 and Volvo 2018).   

Compared to images, Lidar point clouds are 

sparse with a varying density, highly unordered, noisy 

due to imperfect reflections and echoes. Also LiDAR 

point cloud lack colour and texture features that 

characterize the object classes as in the case of 2D 

camera perspective images. Such complexity, in 

addition to the dynamic nature of the environment, 

motivates us to incorporate the temporal factor in 

addition to the spatial features of the input 3D LiDAR 

point clouds. 

Real-time performance is much essential in 

autonomous driving systems. While deep-learning 
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has a well-known success story in camera-based 

computer vision. In this context, literature survey 

tackles the problem of real-time performance using 

Single shot detectors, like YOLO (Redmon, J et al., 

2016) and SSD (Liu, W et al.,2016). 

3D object detection using LiDAR point clouds are 

mainly divided into two types: 3D voxel grids and 2D 

projections. A 3D voxel grid transforms the point 

cloud into a regularly spaced 3D grid called voxels, 

and from each voxel cell we can compute statistics 

and apply 3D convolutions to extract high-order 

representation from the voxel grid (M. Engelcke et al., 

2017). However, point clouds are sparse by nature, the 

voxel grid are also sparse, less compact and require 

huge computation. As a result, typical systems ((M. 

Engelcke et al., 2017, B. Li,) et al., 2016) only run at 1-

2 FPS. On the other hand, 2D projection based 

techniques projects the point cloud onto a plane, 

which is then discretized into a 2D image based 

representation where 2D convolutions are applied. 

These 2D projection based representations are more 

compact, but they bring information loss during 

projection and discretization. In addition to 

computation efficiency, BEV representation also has 

other advantages i.e. it eases the problem of object 

detection as objects do not overlap with each other 

and thus the network can exploit priors about the 

physical dimensions of objects. 

In our framework, we use single-shot detection 

based architecture to detect objects on LiDAR’s 

BEV. 

1.1 Related Work 

Most of the works on 3D object detection using 

LIDAR BEV representation relies on single point 

cloud PIXOR (Yang, B et al., 2018), Complex YOLO 

(M. Simon et al., 2018), YOLO3D (Ali, W et al., 2018). 

These LiDAR 3D point clouds object detection 

methods do not take the advantage of temporal 

information to produce more accurate 3D bounding 

boxes. Recently, Fast and Furious (Luo W et 

al.,2018), IntentNet (S. Casas et al., 2018), Neural 

motion planner (Wenyuan Zeng et al., 2019) 

incorporates the time with 3D voxels using 2D, 3D 

convolutions and adopts a multi-task learning like 

tracking, motion forecasting and motion planning. To 

our knowledge YOLO4D (El Sallab., 2018) is the only 

technique where they incorporated temporal 

information from successive point clouds.  

In this paper, we exploit temporal information 

from successive point clouds using spatial-temporal 

model to augment context information for BEV based 

3D object detection. 

1.2 Contribution 

In this paper, we propose a spatial-temporal context 

based 3D object detector that operates on sequence of 

3D point clouds.  Our approach is a single-stage 3D 

object detector that exploits the 2D BEV 

representation in an efficient way since it is 

computationally less expensive as compared with 3D 

voxel grids, and also preserves the metric space which 

allows our model to explore priors about the size and 

shape of the object categories. Our detector outputs 

accurate oriented bounding boxes in real-world 

dimension in bird’s eye view. The main contributions 

of this paper are: 

a) Non-local context network (NLCN), a novel 

approach to augment the CNN backbone features for 

BEV object detection by a context representation 

computed using non-local relations between feature 

maps to capture global appearance and motion 

information. This approach has led to significant 

improvements by 4.4mAP over single-frame BEV 

object detector and by 1.1mAP over YOLO4D BEV 

object detector on Argoverse dataset (M. Chang et al., 

2019). 

b) Spatial-temporal context network (STCN), a novel 

approach of generating context representation for 

BEV object detector by applying 2D convolutions on 

a stack of BEV images (Super image) to capture local 

spatial-temporal information and using 3D 

convolutions on local spatial-temporal feature maps 

to capture global temporal interactions (long-range 

temporal dynamics). This approach led to significant 

improvements by 6.9mAP over single-frame 3D 

object detector and by 3.5mAP over YOLO4D 3D 

object detector on Argoverse dataset (M. Chang et al., 

2019). 

The rest of the paper is organized as follows; first, 

we discuss the single frame based 3D object 

detection, followed by the spatial-temporal 

approaches to encode context information from 

temporal point cloud sequences. Finally, we present 

our experimental results and evaluate different 

techniques on  Argoverse dataset (M. Chang et al., 

2019). 

2 SPATIO-TEMPORAL 3D 

OBJECT DETECTION 

In this section, the approach for spatial-temporal BEV 

object detection is described. The main motivation 

behind our work is to exploit not only the spatial but 

also the temporal information in the input LIDAR 
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sequences for more accurate object detection.  For 

encoding temporal sequences, we experimented with 

four different approaches. These approaches model 

the temporal information in different ways.  

As shown in Fig. (1), BEV maps are generated 

from a LIDAR point-clouds(PC’s) and each BEV 

maps were given to CNN backbone network (a 

combination of few convolutional and maxpool 

layers) to extract feature maps. To encode long-range 

temporal information, successive BEV maps were 

given to context generation block which employs four 

different approaches to encode temporal information. 

Backbone feature maps are concatenated with spatial-

temporal feature maps and it will be fed to header- 

network which consists of fewer convolutional layers 

followed with classification and regression branches 

to handle both object recognition and localization. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Spatial-temporal 3D object detection. 

2.1 Input Representation 

3D point clouds are highly unstructured, and thus 

standard convolutions cannot be directly applied 

since they assume that the input lies on a grid. One 

option is to use voxelization to form a 3D voxel grid 

and then we can use 3D convolution to extract 3D 

feature. However, this can be very expensive in 

computation as we have to slide the 3D convolution 

kernel along three dimensions. Instead, we can 

represent the scene from the BEV alone.  

 

Figure 2: Velodyne FOV range estimation in X and Y 

directions on argoverse datasets. 

By reducing the degrees of freedom from three to 

two, we don’t lose information in point cloud as we 

can still keep the height information as channels 

along the third dimension.  

In addition to computation efficiency, BEV 

representation also has other advantages. It eases the 

problem of object detection as objects do not overlap 

with each other (compared with front-view 

representation) and thus the network can exploit 

priors about the physical dimensions of objects. 

In current approach, we estimate the velodyne 

FOV range for 3D object detection in BEV on 

argoverse dataset based on statistics of graphs shown 

in Fig. (2). 

 

𝑃𝜆_𝑎𝑟𝑔𝑜 =

{
 

 
𝑃 = [𝑥, 𝑦, 𝑧]𝑇,

∀𝑥 ∈ [−51.2𝑚, 51.2𝑚],
𝑦 ∈ [−51.2𝑚, 51.2𝑚],

𝑧 ∈ [−2.1𝑚, 1.5𝑚] }
 

 
           (1) 

 

We follow the design put by [13] to get single 

birds-eye-view RGB-map. 

2.2 Single Frame 3D Object Detection  

Single-frame 3D object detection network is a one-

shot fully convolutional detector which mainly 

consists of backbone network for feature extraction 

and a header network for object recognition and 

localization as shown in Fig. (3). In our framework, 

we combined classification-bounding box prediction 

directly by predicting objects in each cell of the 

feature maps and the corrections on anchor boxes.  

 

Figure 3: Single point-cloud based object detection 

framework. 

Network details for single point-cloud based 

object detection is as shown in Fig. (4). 

2.2.1 Backbone Network 

Backbone network consists of seven convolutional 

blocks, and each conv2D layers with filter number 

{16, 32, 64, 128, 256, 512 and 1024}, kernel filter 

sizes of 3x3 and stride 1.  After each of the first six 

convolutional blocks, a maxpool layer with kernel 

filter size 2x2 and stride 2 is incorporated. Multi-scale 
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features are generated by resizing and concatenating 

feature maps from different scales. The total down 

sampling rate of the network is 32. 

2.2.2 Header Network 

The header network is a multi-task network that 

handles both object recognition and localization. 

Similar to feature pyramid network (T.-Y. Lin et al., 

2017), we predict oriented bounding boxes at two 

scales as shown in Fig. (4). At each scale we use three 

anchors at each location with predefined sizes, aspect 

ratios, and orientations. Anchors are calculated by 

taking the mean 3D box dimensions for each object 

class in argoverse dataset, and use these average box 

dimensions as our anchors. 

 

Figure 4: Architecture of single frame based object 

detection framework. 

From the backbone network, we add few more 

CNN layers and only the last CNN layers predicts a 

3D-tensor encoding oriented bounding-boxes, one 

confidence score and 𝑁  classes thus producing a 

tensor of size 𝑀𝑥𝑀𝑥[3𝑥(4 + 2 + 1 + 𝑁)] where 𝑀 

is the feature map size. The classification branch 

outputs a score for each anchor indicating the 

probability of a vehicle at each anchor’s location 

associated scale. The regression branch predicts 

regression targets (𝑡𝑥, 𝑡𝑦, 𝑡𝑤 , 𝑡ℎ, cos(𝑏𝜙) , sin(𝑏𝜙)) 

for each anchor associated scale. 

2.2.3 Loss-function Calculation 

The loss function is similar to complex-YOLO (M. 

Simon et al., 2018) which consists of two parts. The 

first part of the loss function is simply a sum of 

squared errors similar to YOLO 2D (Redmon, J et al., 

2016), while the second part is built on the Euler 

regression logic and is defined to be the difference 

between the complex numbers of prediction and 

ground truth. 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑌𝑂𝐿𝑂 + 𝐿𝐸𝑢𝑙𝑒𝑟  

𝐿𝐸𝑢𝑙𝑒𝑟 = 𝜆𝑐𝑜𝑜𝑟𝑑∑∑𝐿𝑜𝑏𝑗[(𝑡ℛ − 𝑡ℛ̂)
2 + (𝑡ℑ − 𝑡ℑ̂)

2]

𝐵
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   (2)    

 

2.3 Multi-frame 3D Object Detection  

In this section, the approach for spatial-temporal 3D 

object detection is described. The main intuition 

behind our work is to leverage not only the spatial but 

also the temporal information in LiDAR input 

sequences for more accurate object detection.  For 

encoding temporal sequences, we adopted four 

different approaches: joint training, CLSTM 

(YOLO4D), NLCN and STCN. These approaches 

encode the temporal information in different ways.  

2.3.1 Joint Training 

In this technique, point-cloud frames are jointly 

trained with single-shot fully convolutional detector.  

Each BEV maps are processed through single-

frame object detection network but total loss is 

combined on the last stage and it is computed as given 

in Equation. (3). Here the network weights of CNN 

backbone network on each BEV maps are shared 

during training thus reducing number of learnable 

parameters. During the training process, it is up to the 

network to learn the temporal information from the 

input joint training scheme without encoding hidden 

state through recurrent layers.  

 
𝐿𝑡𝑜𝑡𝑎𝑙 = (𝐿𝑌𝑂𝐿𝑂 + 𝐿𝐸𝑢𝑙𝑒𝑟)1 + (𝐿𝑌𝑂𝐿𝑂 + 𝐿𝐸𝑢𝑙𝑒𝑟)2 

+(𝐿𝑌𝑂𝐿𝑂 + 𝐿𝐸𝑢𝑙𝑒𝑟)3 + (𝐿𝑌𝑂𝐿𝑂 + 𝐿𝐸𝑢𝑙𝑒𝑟)4                 (3) 
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Figure 5: Joint training of successive point-clouds. 

Architecture for joint training on successive 

point-clouds is as shown below in Figure (3). 

2.3.2 Temporal Aggregation using CLSTM 

In this architecture (El Sallab., 2018), a CLSTM (S. 

Xingjian et al., 2015) layer is injected directly into 

single-frame object detection architecture between 

the feature-extraction stage and header-network. 

CLSTM allows the network to learn both spatial and 

temporal information thus enhancing context 

information for 3D object detection. The network is 

trained on the successive point-clouds, thereby 

leading to a model that is capable of detecting objects 

in temporal streams of input point-clouds. This 

architecture maps an input frame 𝐼 and the previous 

state 𝑠𝑡−1 to a list of oriented bounding boxes D, and 

current state  𝑠𝑡 as shown in Equation. (4). 

 

(𝐼𝑡 , 𝑠𝑡−1)
𝑦𝑖𝑒𝑙𝑑𝑠
→   (𝐷𝑡 , 𝑠𝑡)                      (4) 

  

Where the state 𝑠𝑡 is used as input for the next 

time step predictions.  The loss in this case is the same 

as in Equation. (2), however, the optimization is back-

propagated through time via the injected CLSTM 

layer to maintain the temporal information.  

 

Figure 6: Joint training of successive point-clouds. 

2.3.3 Temporal Aggregation using  
Non-Local Context Network (NLCN) 

Usage of non-local layer (Xiaolong Wang et al., 2018) 
is commonly used in video action recognition but it is 
rarely exploited in BEV object detection. Hence to 
embed temporal characteristics on BEV maps, the 
non-local layer is introduced into the context CNN 

block which is as shown in Figure (7). The most 
distinguishing part of non-local neural networks is 
that it captures global dependencies by exploiting 
both appearance and motion features which has a 
significant impact in static/dynamic object detection.  
Given an input feature tensor 𝑋 ∈ ℜ𝐶𝑥𝑁𝑥𝐻𝑥𝑊  
obtained from a sequence of  𝑁 feature maps of 
size 𝐶𝑥𝐻𝑥𝑊, we desire to exchange information 
between features across all spatial locations and 
frames. 

 

Figure 7: Non-local context network (NLCN). 

Let 𝑥𝑖 ∈ 𝑅
𝐶 sampled from 𝑋, the corresponding 

output 𝑦𝑖 ∈ 𝑅
𝐶 of non-local operation can be 

formulated as follow: 
 

𝑦𝑖 =
1

∑ 𝑒
𝜃(𝑥𝑖)

𝑇
∅(𝑥𝑗)

∀𝑗

∑ 𝑒𝜃(𝑥𝑖)
𝑇∅(𝑥𝑗)𝑔(𝑥𝑗)∀𝑗       (5) 

 

Here, 𝑖, 𝑗 = [1,𝑁𝐻𝑊] indexes all locations across 

a feature map and all frames. We first project 𝑥 to a 

lower dimensional embedding space 𝑅𝐶
′
 by using 

linear transformation functions 𝜃, ∅, 𝑔 (1 × 1 × 1 

convolution). Then, the response of each location 𝑥𝑖 
is computed by the weighted average of all positions 

𝑥𝑗 by using Embedded Gaussian instantiation. The 

overall non-local layer is finally formulated as 𝑍 =
𝑊𝑍Y+X, where the output of nonlocal operation is 

added to the original feature tensor 𝑋 with a 

transformation 𝑊𝑍 (1×1×1convolution) that maps 𝑌  

to the original feature space 𝑅𝐶 . The intuition behind 

the non-local operation is that when extracting 
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features at a specific location in a specific time, the 

network should consider the spatial and temporal 

dependency within a sequence by attending on the 

non-local context.  

In our architecture, we embed two non-local 

layers after the Residual 3rd and 4th blocks of SE-

ResNext (J. Hu et al., 2017) module. In the training 

phase, we don't initialize the weights of SE-ResNext 

2D convolution model from the ImageNet pre-trained 

model. 

2.3.4 Temporal Aggregation using  
Spatial-Temporal Context Network 
(STCN) 

To model long range temporal dynamics, we generate 

a super-image by stacking 𝑁 BEV frames in the 

channel dimension to form a tensor of 

size 1𝑥3𝑁𝑥𝐻𝑥𝑊. This super-image not only contains 

local spatial appearance information represented by 

individual point-cloud but also local temporal 

dependency among these successive video frames.   

 

Figure 8: Spatial-temporal context network (STCN). 

In order to jointly model the local spatial-temporal 

relationship, we leverage 2D convolution (whose 

input channel size is 3N) on each of the super-images. 

Specifically, the local spatial-temporal correlation is 

modelled by 2D convolutional kernels inside the 

Conv1, Res2, and Res3 blocks of SE-ResNext-50 as 

shown in Fig. (8). In our current setting, N is set to 4.  

Temporal Block:  2D convolution on the super-

images generates local spatial-temporal feature maps. 

Building the global spatial-temporal representation of 

the super-images is essential for understanding the 

context from successive point clouds. Specifically, 

we choose to insert two temporal blocks after the 

Residual 3rd and Residual 4th blocks of SE-ResNext 

(J. Hu et al., 2017) module. The temporal modelling 

blocks are designed to capture the long-range 

temporal dynamics inside a sequence of point clouds 

and they can be easily implemented by incorporating 

the architecture Conv3d-BN3d-ReLU. Applying two 

temporal convolutions on the local spatial-temporal 

feature maps after residual 3𝑟𝑑 (Res3) and 4𝑡ℎ blocks 

(Res4) introduces very limited extra computation cost 

but is effective to capture global spatial-temporal 

correlation progressively. In the temporal modelling 

blocks, weights of Conv3d layers are initially set 

to 1 (3𝑥𝐶𝑖)
⁄ , where 𝐶𝑖 denotes input channel size, and 

biases are set to 0.  BN3d is initialized to be an 

identity mapping. In the training phase, we don't 

initialize the weights of SE-ResNext 2D convolution 

model from the ImageNet pre-trained model. 

3 EXPERIMENTS 

Here we conduct two types of experiments here. We 

compare our spatial-temporal multi-frame object 

detection with state-of-the-art 3D object detectors on 

new large-scale argoverse (M. Chang et al., 2019) 

dataset for autonomous driving. Second, we conduct 

experiments on two aspects: network architecture 

timing analysis and learnable parameter count. 

3.1 Multi-frame Object Detection on 
Argoverse Dataset 

3.1.1 Implementation Details 

We set the region of interest for the point cloud 

to [−51.2,51.2] ∗ [−51.2,51.2] meters and do BEV 

projection with a discretization resolution of 0.1 

meter. We set the height range to [−2.5, 1] meters in 

LIDAR.  As a result, our input representation has the 

dimension of 968*968*3. We use data augmentation 

of rotation between [−20, 20] degrees along the Z 

axis, global scaling along X, Y and Z dimensions with 

range to [0.95, 1.5] along with random flip along X 

axis during training. Network was trained from 

scratch without using any pre-trained model weights. 

The detection network is trained using Adam 

optimizer (Diederik P. Kingma et al., 2015) a learning 

rate of 1e-4 and a weight decay of 1e-4 for 300 epochs 

with a batch size of 4 on single RTX2080Ti GPU. 
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3.1.2 Evaluation Results 

We compare mean average precision (mAP) at 

different IoU levels as a measure of accuracy. To the 

best of our knowledge, (El Sallab., 2018) is the only 

previous work which performs detection using 

temporal LiDAR point clouds. As shown in Table 1, 

our NLCN and STCN model accuracy outperforms 

both single- frame and CLSTM based 3D object 

detector (El Sallab., 2018) at all the IoU levels (0.5, 0.6, 

and 0.7).   

Table 1: Ablation study of network performance on IoU 

thresholds. 

Model AP@0.5IO

U 

AP@0.6IO

U 

AP@0.7IO

U 

Single-

frame 
.752 .723 .595 

Joint 

model 

.759 .716 .561 

CLST

M 

.786 .74 .579 

NLCN .796 .747 .633 

STCN .821 .758 .641 

 

Also we show detailed timing analysis, FLOPS 

and learnable parameter count of each network 

architectures in Table 2. The computation of input 

representation and final NMS are both processed on 

CPU in Python. The network time is measured on a 

RTX-2080Ti GPU averaged over 100 sequential 

frames. 

Table 2: Ablation study of network timing analysis and 

learnable parameter count. 

Model Learnable 

params 

FLOPS 

(in GMAC) 

Speed  

(in ms) 

Single-

frame 

 

8.67M 14.69 

 

16 

Joint 

model 

8.68M 62.46 74 

CLSTM 9.89M 24.67 27 

NLCN 15.15M 31.86 59.5 

STCN 12.13M 27.74 36 

 

From the Table (1) and (2), we get the following 

observations: (1) NLCN model outperforms by 

4.4mAP over single-frame 3D object detector and by 

1.1mAP over YOLO4D 3D object detector. (2) STCN 

model outperforms by 6.9mAP over single-frame 3D 

object detector and by 3.5mAP over YOLO4D 3D 

object detector. (3) STCN outperform NLCN model 

by 2.5mAP @0.5IoU with less number of learnable 

parameters at a speed of 36ms. 

4 CONCLUSIONS 

In this paper, we introduce NLCN and STCN 

temporal context models that is able to tackle the 

tasks of BEV based object detection in the context of 

self-driving cars. This models not only leverages 

spatial information from current point cloud but also 

extract temporal feature from successive point clouds 

thereby enriching context information for the 

detection of 3D objects on LiDAR point clouds. By 

exploiting temporal information, our both the models 

NLCN and STCN outperforms single-frame object 

detection and CLSTM object detector by a large-

margin. In the future, we plan to exploit HD maps and 

do End-to-End learning system of perception module 

in autonomous driving system. 
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