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Abstract: While the current literature on algorithmic fairness has rapidly expanded over the past years, it has yet to fully
arrive in educational contexts, namely, learning analytics. In the present paper, we examine possible forms
of discrimination, as well as ways to measure and establish fairness in virtual learning environments. The
prediction of students’ course outcome is conducted on a VLE dataset and analyzed with respect to fairness.
Two measures are recommended for the prior investigation of learning data, to ensure their balance and fitness
for further data analysis.

1 INTRODUCTION

Following the outcry after the release of an article crit-
icizing racial bias in the prediction of recidivism of
criminal offenders (Larson et al., 2016), the debate on
algorithmic fairness has increased steadily over the last
years. However, even though a large number of fair-
ness measures has been developed (Verma and Rubin,
2018), these measures often only provide idealized
notions of fairness (Dwork et al., 2012; Hardt et al.,
2016) instead of tailored instructions. Furthermore,
they have mostly been tested and developed on the
same datasets1, leading to very limited coverage of the
different areas of machine learning applications.

The field of learning analytics may be defined as
the ”measurement, collection, analysis and reporting
of data about learners and their contexts, for the pur-
poses of understanding and optimizing learning and
environments in which it occurs.” (Siemens, 2013).
According to (Ebner and Ebner, 2018) and (Grandl
et al., 2017), five main goals of learning analytics
should be mentioned:

• Predictions and Interventions: predictions of
student performance are made to provide them
with adequate interventions.

• Recommendations: on the basis of analytics, rec-
ommendations for interventions are formulated.

1The most popular examples are the ProPublica (COM-
PAS) data, the Ricci dataset, the Adult Income dataset and
the German Credit dataset (Friedler et al., 2019).

• Personalization and Adaptation: based on the
learning activity, the learners are able to adapt
learning environments.

• Reflexion and Iteration: the learners should be
able to reflect on their learning process.

• Benchmarking: student performance is analyzed
in order to evaluate methods or learning content.

In order to make predictions, recommendations or
adaptations to the learning environments, it is common
for either data mining or machine learning tools to be
used on student data (Ochoa and Merceron, 2018).
However, many machine learning algorithms are used
as black-boxes and have yet to be thoroughly examined
in terms of fairness. Furthermore, the fairness of an
algorithm depends on its context, as the decision to be
made determines what possible disadvantages might
arise (Chouldechova et al., 2018; O’Neill, 2016).

A large percentage of recent contributions to ma-
jor learning analytics conferences (Learning Analytics
and Knowledge, 2019; Ochoa and Merceron, 2018)
deals with the prediction of student performance,
specifically whether a student will pass a course. The
students predicted to fail, called at-risk students, can
subsequently be provided with interventions, recom-
mendations and possibilities of adapting their learning
environment.

The fairness and validity of these algorithms is
essential because predictions of student performance
have an impact on student success (Rosenthal and Ru-
bin, 1978) and may thus perpetuate or even increase
biases in the data (O’Neill, 2016). Furthermore, a
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student being predicted a low performance and being
transferred to a low-level learning environment might
be stripped of their chances to perform well. Similarly,
a student who is challenged by the learning environ-
ment might not be able to thrive without adaptations.

In the following, we are going to review measures
and tactics of fairness regarding their suitability for
learning analytics (LA) contexts. To do so, we aim
to answer (at least in part) the following leading ques-
tions:
1. What types of discrimination may be distinguished

and measured with respect to LA?
2. How can fairness be measured in LA?
3. How can fairness be established in LA?

First, we want to review the existing fairness litera-
ture on the basis of predictions of the course outcome
of students in virtual learning environments. Using this
knowledge, we will replicate different models for stu-
dent at-risk prediction on an openly available dataset
and evaluate our research questions in light of the ex-
periment.

2 BACKGROUND

In order to derive answers to our leading questions,
we will review the current literature on ways of de-
tecting fairness as well as approaches to establishing
algorithmic fairness.

2.1 Types of Discrimination

In many cases, European and US-American law for-
bids discriminatory action (Ellis and Watson, 2012).
The US Civil Rights Act of 1964 (Brown, 2014) pro-
hibits discrimination in areas such as voting, public ac-
comodations, facilities and education. Specifically, the
Equal Employment Opportunity Commission (Davila
and Bohara, 1994) has outlined guidelines for the de-
tection of discrimination. The 80% rule represents the
permittable differences in rates of hiring, promotion
or other employment decision, between members of
certain races, sexes or ethnic groups. This is called an
adverse or disparate impact and has been picked up in
algorithmic fairness literature (Zafar et al., 2015; Cal-
mon et al., 2017). A common definition of disparate
impact (Friedler et al., 2019) for binary classification
problems given two groups is

DI =
P( Positive classification | Group 1)
P( Positive classification | Group 2)

, (1)

DI,DI−1 !
≥ 0.8. (2)

It is to be noted that even though the jurisdiction
penalizes discrimination, the attempts of defining or
detecting implicit forms of discrimination have yet to
be refined.

In current research, three types of discrimination
are often distinguished (Barocas and Selbst, 2016;
Kamishima et al., 2012):

1. Direct Discrimination/Disparate Treatment:
intentionally discriminating actions on the basis
of protected group membership. In many cases
illegal in European countries and the US (Feldman
et al., 2015).

2. Disparate Impact/Indirect Discrimination: in-
tentionally or unintentionally discriminating ac-
tions without knowledge of group membership.
Not illegal in most cases (Barocas and Selbst,
2016). A rigorous mathematical definition of
disparate impact as well as different examples
of it (redlining, negative legacy, self-fulfilling
prophecy) are listed in (Feldman et al., 2015).

3. Underestimation: Kamishima and colleagues de-
scribe a third source of discrimination, which
specifically occurs in algorithmic settings. Here,
the sample size of a learning algorithm is too small
(or unequally distributed), leading to discrimina-
tory suggestions, even if the setup of the algorithm
is otherwise fair (Kamishima et al., 2012).

All three types of discrimination could possibly
occur in a learning context. In learning analytics, di-
rect discrimination is very unlikely to appear, as this
would mean for makers of algorithms or interventions
to include rule-based decisions that disadvantage cer-
tain groups. Also, this type of discrimination would
be easily traceable and forbidden in many countries
(Ellis and Watson, 2012).

The second and third type of discrimination are
much more subtle. Machine learning algorithms have
been shown to produce outcomes with questionable
fairness (Adler et al., 2018; O’Neill, 2016). In learning
analytics, these very algorithms are used for predic-
tions, often of student performance. A simple form of
performance prediction is the binary classification of
a student course outcome (Strecht et al., 2015; Yadav
et al., 2012).

2.2 Measurements of Fairness

The debate on algorithmic fairness has proposed a
wide range of fairness measures, applicable to different
scenarios and settings (Verma and Rubin, 2018). In
order to find out which ways of measuring fairness
are applicable to learning analytics, we will review the
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current literature while splitting measures of fairness
into three categories:

1. Measurement of Balance in the Training Sets:
Calmon and colleagues (Calmon et al., 2017)
provide a probabilistic framework for the de-
tection (and removal) of bias in data. More-
over, information-theoretic measurements have
been introduced in order to measure the connec-
tion between group-affiliation and target labels
(Kamishima et al., 2012; Williamson and Menon,
2019).

2. Measurement of Fairness as an Algorithmic
Trait: In order to understand and explain the traits
of algorithms – specifically deep learning methods
– explanations have focused on the processing and
representation of the data (Gilpin et al., 2018).

3. Outcome-based Fairness Mea-
surement: Several authors
propose measures to certify fairness after
classification (Kusner et al., 2017). These
measures usually rely on a confusion matrix (see
Section 2.2.3) and are especially in line with the
Equalized Odds definition of fairness (Hardt et al.,
2016).

Since, in learning analytics, any of these settings
might be relevant, we have picked out measures of fair-
ness from each of these categories in order to compare
them. In order to set the stage for these measures of
fairness, we will introduce our basic definitions.

Given a dataset (xi,yi) ∈ X ×Y with i = 1, . . . ,D,
where the xi ∈ X represent features of instances (such
as student data in a virtual learning environment) and
yi ∈Y target labels (such a final score in a course), pre-
dictions are made to infer labels of previously unseen
instances. Often we may assume X = Rn and Y ⊆ R,
where Y is either continuous (regression problems)
or discrete (classification problems). Predictions may
be written as parametrized maps pΘ : X → Y , which
may be qualitatively investigated using loss functions
l(Θ) = l (Θ, [xi,yi]i=1,...,D), where l(Θ) measures how
well pΘ fits the data. Usually, one tries to find a predic-
tion function that minimizes the loss of a prediction.

Furthermore, there have recently been suggestions
to add measures of fairness which additionally quantify
the fairness of a prediction with respect to a (protected)
group G. Most of the published fairness measures
focused on binary classification (see Section 2.2.3).
In order to extend these measures, we will specifi-
cally include fairness measures that do not focus on
discrete classifications but instead allow continuous
labels, such as a prediction of student scores.

2.2.1 Normalized Mutual Information

The normalized mutual information as a criterion for
fairness was introduced by (Kamishima et al., 2012).
Similar measures were also introduced by (Calmon
et al., 2017; Williamson and Menon, 2019). This
measure may be used to detect whether the training set
is balanced between groups and is targeted to identify
indirect discrimination. Since the definition of mutual
information is very general, it is versatile (may be
used for discrete as well as continuous data features
and/or labels) and applicable in different variants (may
be used during, before or after the application of an
algorithm).

In the discrete case, the normalized mutual infor-
mation consists of the mutual information

MI(Y ;G) = ∑
(y,g)∈D

PY,G(y,g) log
PY,G(y,g)
PY (y)PG(g)

(3)

and a normalization term, leading to

NMI(Y ;G) = MI(Y ;G)/
√

H(Y )H(G) (4)

as the normalized mutual information, where H(·) is
an entropy function.

In practice, the probabilities P in (3) are replaced
by estimates P̂, e.g., the corresponding relative fre-
quencies in the training data or the outcomes pΘ(Y ) in
the test data.

Note that the mutual information MI(U ;V ) be-
tween two random variables U and V measures the
dependency of these variables. Following the Group
Fairness definition (Dwork et al., 2012), the label Y
is hoped to be independent of the protected group G.
Furthermore, the denominator in (4) serves as a nor-
malization, which ensures NMI ∈ [0,1], where 0 cor-
responds to independent variables, while 1 indicates
highest possible dependence. Mutual information may
be replaced by f -divergence (Komiyama and Shimao,
2017) or the Hilbert-Schmidt criterion (Pérez-Suay
et al., 2017) as different measures of distance in (4).

2.2.2 Underestimation Index

The underestimation index calculated the Hellinger
distance between two probability distributions, namely
the distributions of the outcomes of different groups
(Kamishima et al., 2012). This measure is targeted at
the third type of discrimination mentioned in Section
2.1, underestimation, and detects it as a property of the
algorithm by measuring its uncertainty.

Let P̃Y,G be an estimator for PY,G, given by an
algorithm, and let P̂Y,G be the distribution of the label
and the protected group in the training set. Then the
underestimation index is given by
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UEI(Y ;G) =

√
1− ∑

(y,g)∈D

√
P̂Y,G(y,g)P̃Y,G(y,g) ,

(5)
which is a reformulation of the Hellinger distance be-
tween P̂Y,G(y,g) and P̃Y,G(y,g).

2.2.3 Outcome-based Fairness

Many measures of fairness, mostly those built on the
Equalized Odds definition of fairness (Hardt et al.,
2016), work with elements of confusion matrices to
calculate differences between groups. These measures
fall in the third group of measures of fairness, the
outcome-based measures, and aim to detect indirect
discrimination. Since Equalized Odds requires the
group membership given the outcome to add no in-
formation to the prediction, various measures of fair-
ness for binary classification were constructed, using
true/false positives/negatives (Verma and Rubin, 2018).
In the following, we will introduce Slicing Analysis,
which generalizes previous methods and has been used
in an educational context (Gardner et al., 2019).

Assume that we have a prediction p for binary
classification and that the final step of the algorithm
consists of thresholding. Let X0(p) be the random vari-
able of the p-score of a negative instance (which may
be below or above the threshold) and X1(p) denote the
random variable of the p-score of a positive instances,
then

AUC(p;G) = P(X1(p)> X0(p)|G) (6)

=
∫ 1

0
TPR(p|G)

(
FPR−1

(p|G)(x)
)

dx (7)

denotes the area under curve, which may be used to
investigate algorithms, where

TPR(p|G) : R→ [0,1],

FPR(p|G) : R→ [0,1],

map classification thresholds of p given a group G
to their true/false positive rates. This leads us to the
fairness measure of Slicing Analysis, which is defined
as

ABROCA(p) := AUC(p;g1)−AUC(p;g2). (8)

Since the AUC value is an accuracy value, we strive
for equal performance between groups, meaning that
the ABROCA(p) value should be as close to 0 as pos-
sible.

One can also define

ROC(p|G)(x) = TPR(p|G)

(
FPR−1

(p|G)(x)
)
, (9)

which explains the name “ABROCA” as an abbre-
viation for the area between ROC curves. The area
between these curves should be as small as possible.

2.3 Establishment of Fairness

Several authors split the existing research on establish-
ing algorithmic fairness into three categories (Ruggieri
et al., 2010; Williamson and Menon, 2019; Calmon
et al., 2017; Zafar et al., 2015):

1. Fairness by Manipulation of Data (pre-
processing). In (Zemel et al., 2013),
Zemel and colleagues propose an algorithm
which creates a representation of data where group
information is obfuscated. Calmon and colleagues
(Calmon et al., 2017) provide a probabilistic
framework for the detection and removal of bias
in data. Further nameworthy contributions were
made by auditing data (Adler et al., 2018) or by
reweighing/resampling data (Kamiran and Calders,
2012).

2. In-process Fairness by Optimization (con-
straints). By using constraints, several researchers
have implemented algorithms which optimize fair-
ness as part of the learning algorithm. Zafar and
colleagues (Zafar et al., 2015) design a method
for convex margin-based classifiers (such as logis-
tic regression and SVM). In (Calders and Verwer,
2010), a naive Bayes approach is formulated, while
(Kamishima et al., 2012) defines an algorithm on
the basis of logistic regression and (Komiyama
et al., 2018) optimizes using a least squares regres-
sion. Recently, fairness optimizations using risk
measures have also been introduced (Williamson
and Menon, 2019).

3. Post-process Fairness. Several authors propose
post-process corrections (Feldman et al., 2015;
Hardt et al., 2016) after using algorithmic classifi-
cation. Calders and Verwer (Calders and Verwer,
2010) have offered a Bayesian approach for the
post-process correction of classified data.

In the following, we will examine how to establish
fairness in learning analytics, as the third of our leading
questions, and compare different algorithms, which
might be used in a learning analytics context. The pre-
and post-process correction methods ensure balances
(with respect to different metrics) in the training and
outcome data. In the case of pre-process alterations,
it is expected that these balances transfer to the clas-
sified data. It seems, therefore, that these corrections
are mostly independent of the algorithms. Whether
fairness according to a certain measure (for example
the mean difference in the case of Calders (Calders
and Verwer, 2010)) implies fairness according to a dif-
ferent measure, however, would go beyond the scope
of this paper, as we try to restrict ourselves to possible
applications in the field of learning analytics.
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Since the comparison of methods, not datasets, lies
in the focus of this paper, we focus on two in-process
fairness-optimization methods which we picked based
on the number of citations and their comparability. In
the following, we will briefly introduce these algo-
rithms.

2.3.1 Kamishima’s Prejudice Remover

Kamishima and colleagues (Kamishima et al., 2012)
approach was to include a regularization term to di-
rectly decrease prejudice within a logistic regression.
To do so, they define a regularization term

RPR(D;Θ)= ∑
(xi,gi)∈D

∑
y∈{0,1}

M[y|xi,gi,Θ] log
P̂Y (y|gi)

P̂Y (y)
,

where M is a logistic regression prediction model. This
regularizaion term is closely related to the mutual in-
formation.

2.3.2 Zafar’s Margin-based Classifier

The margin-based classifier of Zafar and colleagues is
described in detail in (Zafar et al., 2015). Similar to
Kamishima’s Prejudice Remover (Kamishima et al.,
2012), they bounded their classifier using a fairness
criterion, which was an extension of the DI measure
introduced in Section 2.1.

2.3.3 Trade-off between Fairness and
Performance

Note that many authors identify a trade-off between
fairness and performance of an algorithm (Menon and
Williamson, 2018; Komiyama et al., 2018; Friedler
et al., 2019). We would also like to verify this by us-
ing constraint-based algorithms and establishing their
accuracies.

2.4 Performance Prediction in Learning
Analytics

Understanding and improving students’ performance
plays an important role in producing work force and
innovators in the labor market (Yadav et al., 2012;
Chen et al., 2019; Shahiri et al., 2015). The university
of Porto, for example, has prioritized the modeling of
(un-)successful students in order to devise strategies
to reduce failures and understand general trends in
student performance (Strecht et al., 2015).

In order to accomodate different levels of academic
performances in an institution, data mining methods
are being used to mitigate failures and to better manage

resources (Miguéis et al., 2018). Often, predictions
are made early on, in order to have more leeway for
interventions (Baneres et al., 2019).

Shahiri et al. (Shahiri et al., 2015) have conducted
a literature review on students’ performance prediction
using data mining techniques and have summarized
typical features used in such analyses. They have
found that

1. the cumulative grade point average (CGPA) was
most frequently used as the main attribute to pre-
dict student performance. According to the authors,
the reason for this might be that the CGPA has a
tangible value for future educational and career
mobility (Shahiri et al., 2015).

2. the second most often used attributes were demo-
graphic and external assessments, extra-curricular
activities, high school background and social in-
teractions (Shahiri et al., 2015; Oladokun et al.,
2008).

Several researchers use internal factors, such as
tendencies to procrastinate (Michinov et al., 2011),
persistence (Morris et al., 2005), engagement (Ander-
son et al., 2014), or other internal factors (Angeline,
2013) as a basis for the classification. Chen et al.
(Chen et al., 2019) have conducted a feature analy-
sis of demographic, internal and external features and
have found that, among other things, gender and lo-
cation were strong predictors for poor performance
in online learning. Furthermore, Chen et al. (Chen
et al., 2019) divide the online behavior of students into
four categories: operational behaviors, cognitive be-
haviors, collaborative behaviors and problem-solving
behaviors (Peng, 2013).

2.5 Ethics in Learning Analytics

Ethical guidelines for educational research have ex-
isted for decades (Cohen et al., 2002) and include
the demands for informed consent, privacy, non-
maleficence and human dignity among other things
(Cohen et al., 2002). In recent years, with the evolu-
tion of learning analytics as an autonomous research
area, several more taylored guidelines and frameworks
have been published (Yun et al., 2019; Welsh and
McKinney, 2015; Slade and Prinsloo, 2013; Drachsler
and Greller, 2016; Sclater and Bailey, 2015) to guide
researchers to use student data ethically.

Most of these guidelines focus on research prac-
tice, on consent and transparency or data ownership
(Prinsloo and Slade, 2017; Drachsler and Greller,
2016; Ferguson et al., 2016; Sclater and Bailey, 2015;
Sclater, 2016). Also, privacy and legal responsibilies
in experimental setups are relevant (Sclater and Bailey,
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2015; Ferguson et al., 2016; Drachsler and Greller,
2016).

Recently, researchers have argued that models
and algorithms should be “sound and free from bias”
(Slade and Boroowa, 2014; Sclater and Bailey, 2015).
However, they do not go into detail as to how data or
an algorithm can be balanced or even how to check for
balance.

3 DATASETS AND METHODS

In this section, we will introduce the data used as well
as the methods for the prediction of a course outcome.

3.1 OULAD Dataset

The OULAD dataset2 is an open dataset published
by the Open University (Kuzilek et al., 2017). The
dataset contains anonymized student data from a vir-
tual learning environment (VLE) for seven courses in
the years 2013 and 2014. Furthermore, the OULAD
dataset contains data from roughly 30,000 students of
different gender, age and origin.

The first group of variables entails the demographic
data of the students. This data contains typical demo-
graphic information which might be saved in a virtual
learning environment, such as the gender, age band
and highest education of a student. Also, whether or
not a student has declared a disability is recorded. In a
first descriptive analysis, we see that the distribution of
the genders seems to be balanced, while the students
with declared disabilities vs. the ones without declared
disabilities are not balanced (see Figure 1).

The second group of features used were computed
from course-specific data and are explained in detail
in Table 1. First, a total of 25 features were generated
from the original data. In order to select the most rel-
evant features for the performance of the algorithm,
mutual information was used, yielding the most infor-
mative variables.

3.2 Algorithms for Course-outcome
Prediction

In the following, we will briefly introduce the al-
gorithms used for the course-outcome prediction of
courses in the OULAD dataset. The training and test
data were split randomly for each execution of an al-
gorithm, where the training data was chosen to have
20% of the samples and the training data to contain

2The dataset is available under https://analyse.kmi.open.
ac.uk/open dataset.
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Figure 1: Histogram of the Features for Declared Disability
and Gender.

Table 1: Variables and Virtual Learning Environment Data
Used as Features in the Classification.

Variable Explanation

CMA count of computer-marked assign-
ment submitted

TMA count of tutor-marked assignment sub-
mitted

login/day logins per day
num_of_logins total number of logins
forumng number of clicks for this resource

page type
glossary number of clicks for this resource

page type
homepage number of clicks for this resource

page type
resource number of clicks for this resource

page type

the remaining samples. The first group of algorithms
contains three types of logistic regression:

• Kamishima’s Prejudice Remover (KPR),

• Zafar’s Margin-Based Classifier (ZMBC), and

• Classical Logistic Regression (LR),

where the second algorithm may be applied to any
margin-based classifier. These algorithms, except for
the classical logistic regression, were introduced in
Section 2.3.

Further algorithms were picked by their usability
for the task at hand, the prediction of the course out-
come for students in a virtual learning environment:

• Naive Bayes (NB),

• Decision Tree Classifier (DT), and

• Multi-Layer Perceptron (MLP).
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Table 2: Different Methods of at-Risk Prediction for the OULAD Dataset and Their Fairness, When Comparing Gen-
der/disability Groups. The Methods That Were Used without Sensitive Information Are Indicated with “ns” at the End. For
Easy Comparability, the DI and NMI Values in the Training and Test Sets Were Also Added.

Gender Disability

Methods Acc DI NMI UEI ABROCA DI NMI UEI ABROCA

Training 1.05 0.0008 0.84 0.0035
Test 1.06 0.0010 0.77 0.0077

KPR 96.8 1.07 0.0017 0.0093 0.0011 0.87 0.0031 0.1945 0.0155
ZMBC 96.7 1.08 0.0020 0.0078 0.0173 0.80 0.0081 0.1954 0.0080
LR 96.7 1.08 0.0019 0.0081 0.0196 0.80 0.0081 0.1967 0.0108
NB 90.9 0.97 0.0002 0.0056 0.0322 0.67 0.0190 0.1840 0.0169
DT 96.2 1.07 0.0010 0.0006 0.0017 0.74 0.0089 0.1446 0.0018
MLP 88.7 1.08 0.0013 0.0101 0.0081 0.84 0.0053 0.2057 0.0150

LRns 95.9 0.97 0.0003 0.0046 0.0101 0.80 0.0074 0.1883 0.0115
NBns 94.9 0.93 0.0014 0.0010 0.0165 0.80 0.0057 0.1589 0.0153
DTns 94.3 1.07 0.0009 0.0003 0.0109 0.86 0.0020 0.1230 0.0399
MLPns 85.7 0.99 0.0000 0.0073 0.0085 0.80 0.0078 0.2028 0.0203

Each of these algorithms has been used (at times
in different variations) in recent publications to predict
the performance of students in learning environments
(Rüdian et al., 2018; Yadav et al., 2012; Miguéis et al.,
2018; Shahiri et al., 2015). Table 2 shows accuracy
and fairness measures for the prediction of course suc-
cess (passing) using those algorithms and comparing
fairness between genders and students with or without
declared disability.

In an attempt to test the best approach for the fair-
ness of algorithms, we will execute each of the afore-
mentioned algorithms in two variations: first while
feeding them sensitive information (gender, declared
disability) as features and subsequently while leaving
them out. We will examine the impact this has on the
accuracy as well as the fairness of these algorithms.
The results in terms of accuracy and fairness of the
algorithms without sensitive features are displayed in
the lower part of Table 2.

4 RESULTS

In the present paper, we have developed and tested
several machine learning algorithms (listed in Sec-
tion 3.2) for the prediction of course outcomes in the
OULAD dataset. Among the algorithms, there were
also constraint-based algorithms which optimized fair-
ness.

The fairness measures used to evaluate these algo-
rithms were introduced in detail in Section 2.2. They
include:

1. Acc: the accuracy of an algorithm, measured as

the rate of all correct classifications
2. DI: disparate impact
3. NMI: normalized mutual information
4. UEI: underestimation index
5. ABROCA: differences between the area under

curve
Overall, the accuracies of all algorithms (Table 2)

were high enough to compare the student performance
prediction to similar publications (Strecht et al., 2015).
Table 2 compares the fairness of training and test data
and of the different models with regard to gender. A
DI value larger than one can be interpreted as a higher
probability for male participants to pass the course
in comparison to female participants. The disparate
impact of 5–6 percentage points in favor of male partic-
ipants from the training and test set is reproduced and
slightly amplified by most algorithmic approaches.

While the gender data is rather balanced, students
with declared disability are strongly underrepresented
in the data. However, the bias against students with de-
clared disability gets reproduced but not consistently
amplified. Again, the models tend to lose accuracy
when the sensitive attribute is not used, with the excep-
tion of the Naive Bayes classifier.

When comparing the fairness measures for differ-
ent genders, most of the values of the different algo-
rithms are quite similar, except for the Naive Bayes
algorithm, which had the lowest NMI value and the
highest ABROCA value.

Moreover, it is notable that the KPR algorithm has
low NMI values, but otherwise, the constraint-based
algorithms (KPR and ZMBC) compare with the other
algorithms not only in accuracy but also in fairness.
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It is apparent that neither the accuracy of the classi-
fication nor their fairness differed much when leaving
out sensitive information.
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Figure 2: Comparison of NMI and DI Values for Different
Methods of Course-Outcome Prediction on the OULAD
Dataset.
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Figure 3: Comparison of NMI and UEI Values for Different
Methods of Course-Outcome Prediction on the OULAD
Dataset.

We can see in Figures 2 and 3 that the NMI value
is negatively correlated to the DI value,

Corr(NMI, DI) =−0.8336, (10)

pNMI, DI = 7.8 ·10−7, (11)

and that the NMI value is positively correlated to the
UEI value,

Corr(NMI, UEI) = 0.7335, (12)

pDI, UEI = 3.5 ·10−4, (13)

where pNMI, DI and pDI, UEI are the p-values to the
corresponding t-tests. This supports the validity of the
NMI value as an indicator for the shared information
of a prediction outcome and group membership.

We can not support the feasibility of the ABROCA
measure as it was found by (Gardner et al., 2019).
This measure did not show significant values for imbal-
anced group sizes nor imbalances in the group values.

As noted in Section 2.3.3, we would have expected
a trade-off between the performance (accuracy) of an
algorithm and its fairness. This was not confirmed
when comparing the values of KPR, ZMBC and regu-
lar LR. We can see that, while KPR has the smallest
NMI values, the accuracy is the highest out of all three,
though only by a thousandth.

In a natural approach to make the algorithms more
independent of the sensitive attributes, gender and dis-
ability, we have also run the algorithms without feed-
ing them these attributes as features into the algorithms.
Overall, the fairness values slightly improved, though
disparate impact could still be detected for students
with declared disabilities (for LR and NB). Further-
more, the UEI values were similarly high for students
with and without declared disabilities. Similar results
have been found by (Kamishima et al., 2012; Zafar
et al., 2015).

5 DISCUSSION

Though fairness in education is highly relevant (Slade
and Boroowa, 2014; Sclater and Bailey, 2015), not
many publications deal with fairness in learning an-
alytics, specifically in virtual learning environments
(Gardner et al., 2019; Riazy and Simbeck, 2019). In
the following, we will discuss the results of the preced-
ing section, especially in order to explore the influence
of imbalances in training data to different algorithms
in learning analytics. In summary, our results are as
follows:

1. Depending on the balance of the training set, bias
may be reproduced or amplified.

2. UEI and NMI values reliably detected imbalances.

3. The constraint-based algorithms, as well as leaving
out sensitive information, slightly improved the
fairness values.

5.1 Reproduction and Amplification of
Bias

For sensitive groups that are represented in a balanced
way in the dataset (in this case: gender), bias is re-
produced by the models. For sensitive groups that
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are underrepresented in the dataset (in this case: dis-
ability), bias is sometimes amplified and sometimes
decreased by the models. The effect of removing the
sensitive datapoints is erratic as well.

5.2 Measuring Bias

As one would expect, the underestimation index (UEI)
is generally rather low when comparing gender groups
and rather high when comparing the groups of students
who declared / did not declare a disability. Thus in our
case, the UEI was correctly able to identify imbalances
in the data. The NMI value correlated negatively with
the DI value and positively with the UEI value. This
supports its validity as a measure for informativity
of group membership. The ABROCA measure, an
initially promising fairness measure introduced in a
learning analytics context in (Gardner et al., 2019), did
not detect the disparate impact measured for students
with declared disability.

5.3 Mitigating Bias

As expected, a loss in accuracy is associated with leav-
ing out sensitive features. There was usually a loss of 1
to 3 percentage points in accuracy, except for the Naive
Bayes algorithm, where the accuracy increased by 4
percentage points. The constraint-based algorithms,
which optimized fairness, had slightly improved fair-
ness values when comparing declared disability.

6 CONCLUSION AND OUTLOOK

All in all, by following our three leading questions,
we have investigated possible ways of algorithmic dis-
crimination in learning analytics, and considered ways
to measure and mitigate them i.e., to establish fairness.

Since the prediction of student performance can
lead to interventions, recommendations or adaptation
of their learning environment, these decisions have to
be tested for their validity.

In the present paper, we have examined the
OULAD dataset, which contains real student data from
a virtual learning environment, and found a great un-
derrepresentation of students with declared disability.
This underrepresentation – in some cases – lead to
unfair classifications, meaning that students with de-
clared disabilities were predicted to fail courses with a
higher probability. This erratic behavior of the mod-
els, when a group is underrepresented, has yet to be
included in guidelines and ethical codes, to lead and
warn researchers when working with minorities. In
order to test for imbalances in the data, we suggest to

compute the UEI and NMI values. The DI measure,
with the 80%-threshold, presents an easy tool for the
determination of group differences. Its simplicity as
a group comparison makes it valuable as a marker in
order to find (un-)fair classifications. For performance
prediction in learning analytics, we suggest a prior
analysis of the data using at least the three values: DI,
NMI and UEI.

In further research, we plan to investigate possibil-
ities for the comparison of continuous values, which
might be used in predictive tasks in learning analytics.
Here, we would like to include other accuracy-based
fairness measures, such as group comparisons of mean
squared error values. Furthermore, an in-depth analy-
sis is needed, in order to explain the different behavior
of the algorithms, especially those of the outliers, such
as the Naive Bayes algorithm.
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