Online Automatic Characteristics Discovery of Faulty Application Transactions in the Cloud

Shay Horovitz1,a Yair Arian2,b and Noam Peretz2,c

1School of Computer Science, College of Management Academic Studies, Israel
2Huawei, China

Keywords: Application Faults, Transaction, Cloud, Insights, Online.

Abstract: Performance debugging and fault isolation in distributed cloud applications is difficult and complex. Existing Application Performance Management (APM) solutions allow manual investigation across a huge space of metrics, topology, functions, service calls, attributes and values - a frustrating resource and time demanding task. It would be beneficial if one could gain explainable insights about a faulty transaction whether due to an error or performance degradation, such as specific attributes and/or url patterns that are correlated with the problem and can characterize it. Yet, this is a challenging task as demanding resources of storage, memory and processing are required and insights are expected to be discovered as soon as the problem occurs. As cloud resources are limited and expensive, supporting a large number of applications having many transaction types is impractical. We present Perceptor – an Online Automatic Characteristics Discovery of Faulty Application Transactions in the Cloud. Perceptor discerns attributes and/or values correlated with transaction error or performance degradation events. It does so with minimal resource consumption by using sketch structures and performs in streaming mode. Over an extensive set of experiments in the cloud, with various applications and transactions, Perceptor discovered non-trivial relevant fault properties validated by an expert.

1 INTRODUCTION

Cloud application performance degradation and fault debugging is a challenging task becoming more widely spread with the migration of applications to the cloud. Even when transaction trace data is available there are many transactions and attributes making it difficult to discern the attributes and the values related to a problem. In the current state of debugging large scale distributed system, there are tools like PinPoint (Chen et al., 2002) and other APM tools that present application topology, monitor the application in real-time, and install APM agents without requiring code modification by using instrumentation. The instrumentation data collection can be implemented using a tracing mechanism (Leavitt, 2014). For application developers, traces contain valuable information that may explain the reason for a transaction failure or performance degradation.

In Figure 1 a simple web application is presented. OpenTracing agents track the trace of each transaction and report it using for example the Zipkin format. The Publish-Subscribe (Yongguo et al., 2019) platform assembles and distributes the transaction data in streaming mode. Perceptor - an insights engine, receives per transaction trace data from which it extracts insights. The insights produced by Perceptor are displayed to the user to help in the debugging process. In the figure, the rows with green bullets display parameter values typical of the normal (no faults) traffic, while the red contain the same parameters but with values typical of faulty transactions. For instance, the URL parameter values in the \textit{buy} transaction have a range [1001-1991] in the Normal traffic while in faulty traffic the range is [1-531]. Other insight types include certain SQL query structure or parameter values that may be linked with database performance issues or HTTP specific status codes and user-agent values that may be related to transaction errors. Such insights on the correlation between certain values and errors or performance issues are essential in order to narrow down the potential causes. Yet, a cloud service may contain millions of customers or applications, each may con-
tain tens of transaction types, where each transaction trace may have tens of spans (trace data structure) and each span contains tens of Key:Value attributes, thus it would be challenging to manually track for the attribute values that may link to a certain problem. A Zipkin trace is denoted here as a Call Chain, with annotations as Key:Value attributes. For example, `CPU_QUEUE_LENGTH_AVG` represents the average CPU queue length with a value of 0.8.

Traversing through all of the above instrumented data and extracting values that are related to the transaction faults is tedious. This challenge calls for an automatic solution that would scan all call-chain data and filter only the key-value pairs that are highly correlated with problems. Perceptor is designed for automating the discovery of insights that characterize the faulty transaction call-chain attribute values. Perceptor analyses call chain data (attribute value pairs) of each transaction and compares the presence and value of each attribute under normal transaction operation (denoted "good" transaction) with the values under faulty conditions (denoted "bad" transaction)—such as errors or performance degradation. It does so online in streaming mode by employing an efficient data structure for accumulating statistics on each attribute using a collection of sketch data structures (Count Min Sketch, histogram, Linear Counting) for minimal memory footprint. The attributes in the Call Chain, to name a few, include HTTP Url, Tier Name, Host Name, Service Instance, Method Name, Response Code, HTTP Status Code etc. For each transaction, its key-value pairs are aggregated in a sketch data structure. Perceptor deduces insights by comparing counts of an attribute that differ between the "bad" sketch and the "good" sketch in a statistically significant amount.

Call chain terminology is discussed in (Leavitt, 2014; OpenTracing, 2020). In Figure 2 an example of a call chain is displayed where a request is sent to a Web Service with a specific trace id of 27046b00, traversing through the other services. Each service method belongs to a specific span. The RPC spans between services contain timestamped events (a.k.a logs or annotations) such as Client Sent (CS), Server Received (SR), Server Sent (SS) and Client Received (CR). Additional Key-Value information under each span is regarded as Tags or binary annotations, such as message/payload size, HTTP method or status code, and Service type. With Perceptor, a call chain as displayed in Figure 3 is enriched with insights on the difference between good and bad transactions. The following is a list of call chain attributes according to hierarchical order of invocation: Tier, Tier to Tier, Instance, Instance to Instance, Method, Method-to-Method, Categorical Binary Annotation Attribute, Numerical Attribute, Categorical Annotation feature. Figure 4 lists examples of Insight types that Perceptor is able to automatically discover.
Figure 4: Table of Insight Types.

The remainder of the paper is organized as follows. In section 2 we review related work. In section 3 we describe the data structures used for automatic discovery of Insights in streaming mode. In section 4 the details of the Insights auto-discovery process are presented. Sections 5 and 6 provide extensions for CMS Error Reduction and for Numerical attribute treatment. In section 7 we present experimental results and in section 8 the conclusions.

2 RELATED WORK

In order to track for errors or performance degradation of applications, Application Performance Management (APM) products are used, mainly focused on application mapping and transaction profiling. Application mapping is concerned with metric level real-time discovery and visualization of all the interactions of an application with the underlying infrastructure. Transaction profiling distinguishes unique transactions and tracks the unique flow and code execution of a single business transaction across the underlying distributed application infrastructure. Yet, both of these features do not currently allow to automatically find transaction-level attributes that are correlated with faults or with performance degradation.

Existing methods for fault isolation in APM include topology based tools that provide visualization of service dependency e.g., Dynatrace, Stackify, AppDynamics and Kieker (Brunnert et al., 2015). These allow the user to narrow the search for signals of a problem on the tier level. At a deeper level Code-level diagnostics such as AppDynamics diagnostics (Diagonstics, 2020) allow the user to diagnose down to an individual line of code. YTrace (Kanuparthy et al., 2016), an End-to-end Performance Diagnosis in Large Cloud and Content Providers is another example of a tool that aims at troubleshooting and fixing performance problems after the problems occur. It requires the system to deliver near real time, actionable insights as to the signs of performance problems. However, in all these diagnostic tools the user has to manually look for the cause of a problem rather than have an automatic tool that discovers the insights linked to the problem without any user intervention.

Error profiling is another set of tools that provides information about attribute values that differentiate between errors and non-errors. For each call the attributes and their values are provided using APM monitoring capabilities and instrumentation. Industrial solutions such as New Relic (NewRelic, 2020) take advantage of this data to provide insight as to possible attributes or values related to a problem. However, current approaches require the user to provide the list of suspected attributes that relate to the debugged problem. In addition, they also require a manual configuration of thresholds for the values of these attributes in order to check whether the values below or above the thresholds are related to the problem at hand. Currently, error profiling is limited to metrics or requires custom defined attributes.

All existing methods lack automatic insight discovery at the level of call-chain attributes and values that allows deeper understanding of the problem, without having the user pre-configure where the insight might be found.

Large-Scale complex distributed systems need a special tracing infrastructure to gather timing data needed to troubleshoot latency problems and faults. Understanding system behavior requires observing related activities across many different programs and machines. Dapper (Sigelman et al., 2010) by Google and its derivation Zipkin (Leavitt, 2014) provide a distributed tracing system for micro-service architectures that manages both the collection and lookup of tracing data. Pinpoint (Chen et al., 2002) provides the runtime tracing needed by Zipkin using instrumentation. It traces requests as they travel through a system and is agnostic to application-level knowledge. Pivot-Tracing (Mace et al., 2018) is a dynamic instrumentation framework that enables operators to iteratively install new queries during the diagnosis process. Canopy (Kaldor et al., 2017) is Facebook tracing system constructing and sampling performance traces by propagating identifiers through the system. Finally, the Open Tracing Project (Open-Tracing, 2020) is an open tracing standard for distributed applications with micro-services.
3 DATA STRUCTURES FOR INSIGHT DISCOVERY

The Insights discovery method of comparing attributes and values between “good” transactions and “bad” transactions requires the handling of many attributes and their values per each transaction per each application per each user. This makes it very expensive to store and analyze the data in batch mode and requires a low memory footprint and a scalable solution. In addition, it is desirable to have the insights as close as possible to the time of fault. Therefore, an online streaming solution is preferable to a batch mode solution.

A Decision Tree (Salzberg, 1994) solution provides explainable rules for the user, with optional efficient versions such as Hoeffding Decision Tree (Bifet et al., 2017). Yet, the disadvantages include large space, instability, and overfitting.

An alternative solution could be having a key value store of counters – where each attribute key has 2 counters – one for bad transactions and one for good transactions. Yet, this solution will be expensive in memory, as for example a value may represent a timestamp of a business transaction or a product id in a large online retail service.

A hash table is a good alternative due to the control over memory – in particular for large cardinality cases, yet an even more space efficient alternative is a Count Min Sketch (CMS) (Cormode, 2008) where unlike a hash table uses only sub-linear space, at the expense of over-counting some events due to collisions. Perceptor utilizes the CMS structure for aggregating statistics on each feature: value pair and can provide an insight without the lead time required by a batch solution. For each transaction we maintain a data structure storing the minimum necessary data to detect insights online.

A sketch is maintained storing counts of feature: value pairs for the good call chains and a separate sketch is maintained for the bad call chains (per transaction type). Counts are compared between the bad and the good sketches to detect feature: value pairs that differ between the sketches. For each attribute: value pair there are k counters each having a different hash function and therefore a different hash value for the pair. Each counter is in a separate hash “table”, a row of size m. Since we aggregated many attribute: value pairs in the same table, collisions may arise and therefore the redundancy of several hash functions and hash “tables” are needed. When adding an attribute: value pair to the matrix, k hashes are calculated for the pair (in the range $[1 : m]$) and the counters at those k locations are incremented by 1. To extract the counter value of an attribute: value pair, the minimum counter from all the k hashed locations is chosen. The reason is that collisions can cause some of the counters to have a greater value than the true count.

Perceptor maintains a separate CMS matrix for the good and for the bad transaction instances (per transaction). It then looks for an insight by comparing counters between the bad sketch and the good sketch in real time when the attribute: value pair is inserted into the CMS. Since most transactions are good, the good sketch will usually have enough statistics while the bad sketch may have only rare events. Therefore, when the attributes of the bad transaction are inserted into the bad sketch, the counters of the attribute can be compared to their value in the good sketch at that moment and an insight can be produced if no such value exists in the good sketch. It is also possible to compare the “good” and “bad” counters of an attribute: value when inserting the pair for a good transaction. An additional case for an insight is when the “bad” counter is significantly higher than corresponding “good” counter. Wilk’s theorem (Wilks, 1938) can be used to quantify the statistical significance as in the coin tossing example in reference (WilkTheorem, 2020).

Comparing a “good” attribute: value pair to the corresponding entry in the “bad” sketch is more subtle. For example, HTTP status code 200 OK is likely to appear in the good sketch and not in the bad sketch. Yet, this attribute: value does not provide any useful insight as to the cause of the faulty transaction behavior. For some attributes such as topological attributes (Tier, Instance, method, etc.) if the attribute exists in the good sketch and does not appear in the bad sketch, an insight can be derived as to missing services and methods in the bad transactions.

The use of CMS is memory efficient especially for long strings since the hashed value can be either a short or a long taking only up to 4 bytes for the attribute: value pair. In addition, all the attributes of a transaction can be stored in the same CMS data structure. In principle the attributes of several transactions can be stored in the same CMS table by hashing the combination transaction: attribute: value. This requires a larger hash table but is more efficient since some transactions may have less attributes resulting in a waste of memory with a dedicated CMS per transaction.

Features having many distinct values can pollute the CMS data structure and therefore should be detected and their value range limited. We detect such features using a Linear Counting (Whang et al., 1990) count-distinct algorithm discussed in section 5.
use the same algorithm to detect when the CMS data structure has been polluted so that we can either expand it or limit new attributes and values from using the data structure. This is necessary in order to limit the amount of FP and FN in practical applications (see section 5 for CMS sizing).

4 INSIGHTS AUTO-DISCOVERY PROCESS

We describe the steps taken in Perceptor to discover Insights for application transactions.

In Figure 5, the process of insights discovery is depicted. The first step is Data Collection, Tracing and collecting call chain data from agents as in Zipkin (Leavitt, 2014) collection of span data. Zipkin is a distributed tracing system which helps gather data needed to troubleshoot latency problems in microservice architectures. It manages both the collection and lookup of this data.

The next step is Data Distribution, the call chain streaming data from all agents is collected and distributed per application per transaction using for example a Publish-Subscribe system (Yongguo et al., 2019). The data is then normalized by eliminating duplicates, arranging the data according to time, and breaking the call chains and spans into feature:value pairs in the Featurizer.

The call chain data is then sent to the Cache Manager as well as to the Insight Detector. The reason we need a Cache Manager is that we do not know if the transaction is good or bad until span 0 is complete (with the final response of the transaction). Only when the transaction is complete we can insert the attribute:value pairs of the call chain to the right sketch, to the “bad” sketch or to the “good” sketch. On the other hand the Insight Detector does not have to wait for span 0 completion. It compares the bad sketch with the good sketch so it has to look up the counters in both sketches anyway. The Insight Detector does not insert attributes into the CMS (Cormode, 2008), this is the role of the Count Manager. Instead, the Insight Detector utilizes the attribute:value pairs to look up their counts in the hash tables. It compares the counts between the bad and the good sketches for the specific attribute:value pair.

The features passed to the Insight Detector are ranked according to the progress in the call chain so that instances appearing earlier in time are ranked higher. In addition, concurrent features are ranked according to their order, for example, a missing method is ranked higher than its attributes. The ranking prevents a flood of Insights since as in the last example when the missing method produces an Insight, all lower ranked attributes under this method are disregarded.

The Count Manager receives transactions that are labeled good or bad and inserts all attributes of a transaction into the right sketch counting the frequency of each feature:value pair. However, there is a problem of discovering Insights in streaming mode, for example, discovering problems that show up in the last minute. To overcome this problem, the Count Manager maintains a rotating window of for example 10 minutes with each minute having its own CMS counters. Together with the Sketch Aggregator the streaming mode insights of the last minute can be discovered. The Sketch Aggregator aggregates counters to a larger time interval depending on the desired window size. For example, when each sketch spans one minute, aggregation is done by adding sketch matrices of several minutes to a single aggregated sketch. Since the per minute sketch and the per window size sketch are of the same size, it is possible every minute to add the new one minute sketch to the aggregated sketch and at the same time subtract the oldest one minute sketch from the aggregated sketch. With this mechanism a memory-efficient history of window size duration for the good and bad transactions can be maintained up-to-date and insights can be drawn as they occur. The Insights Detector, upon each feature:value pair arrival checks for an insight in the aggregated sketch.

The insights are then sent to the Insight Aggregator whose role is to consolidate them to a few distinct insights since each attribute:value pair may produce the same insight several times per each transaction instance. The distinct insights are sent to the Insight Presentation service and it presents them to the user via a User Interface.

5 CMS ERROR REDUCTION

The sketch data structure is a two-dimensional array of w columns and d rows that are chosen by setting $w = \lceil e/\epsilon \rceil$ and $d = \lceil 1/\delta \rceil$, where the error in answering a query is within an additive factor of ϵ with probability $1 - \delta$ and e is Euler’s number (Cormode, 2008). The use of CMS is dynamic in our case, and therefore we cannot tell in advance if transactions may have too many attributes or if attributes may have too many distinct values. As new values are added to the sketch more collisions occur, and the gap between our approximated counts using the minimum value of the counters, and the true count grows larger. If the number of distinct attributes and values becomes too
large they may pollute the sketch making the initial chosen parameters w and d not reflect the current error and probability of answering a query. Therefore, count-distinct data structures (Whang et al., 1990) are used to limit the extreme cases from polluting the sketch.

The count-distinct problem is a cardinality estimation problem where the number of distinct elements in a data stream with repeated elements is calculated using an efficient time and space algorithm. The HyperLogLog (Flajolet et al., 2007) (based on the original Flajolet–Martin algorithm (Durand and Flajolet, 2003)) is a very efficient algorithm for estimating the cardinality of a multiset. However we have used the Linear Counting (LC) (Whang et al., 1990) algorithm as it is better for small cardinalities. The memory required by the algorithm is very low, one bit per each distinct value.

The count-distinct algorithm has been used in two cases: to track and control the size of the sketch and to track the range of values of an attribute. In the first case, since the algorithm provides an estimate of the current number of occupied CMS cells, we can control the use of the sketch when the number of distinct values is of the order of w, by either enlarging the sketch or by limiting insertions of new attribute: value pairs to the sketch. The count-distinct algorithm enables the auto-scaling of the CMS, with one bit per each cell of the sketch.

In the second case, the count-distinct algorithm is used to track the range of values of a categorical attribute taking several values. Even though the sketch data structure is very efficient for long strings, a single attribute may pollute the whole sketch which is common to all the attributes of the transaction. It is possible to limit the number of distinct values of each attribute to a small number (e.g. 24) and since 24 bits take only 3 bytes of memory, it is possible with a few bytes per attribute to track each categorical variable. When a polluting attribute is detected, it can be limited to the maximum distinct values allowed, and any new values are not inserted into the sketch. The new values are detected by having a minimum counter value of 0 in the sketch.

6 NUMERICAL ATTRIBUTES

Attributes taking numerical values such as a User Id, pose a problem to the CMS, each transaction instance may have a different value for the attribute. For such attributes the range of values typical of bad transactions versus the range for the good transactions can provide a valuable insight linking to the cause of a fault.

As depicted in Figure 5, a histogram is used to derive insights from numerical attributes. Two histograms are maintained, one for the “good” transactions and one for the “bad” transactions where each numerical attribute can be added to a per-minute histogram. The per-minute-based Histograms are aggregated to a ten minute histogram and the ten minute histograms are compared between the good transactions and the bad transactions. A High Dynamic Range (HDR) (HdrHistogram, 2020) histogram may be used to save memory, its sub-ranges have a log
scale width and the accuracy of the aggregated values is fixed in terms of the number of significant digits.

7 EXPERIMENTAL RESULTS

We have performed all experiments of the proposed method on several applications in the Cloud, among them providing sample insights for an online store application with 7 micro-services.

In Figure 6 an Insight discovered for a URL parameter range is displayed where the range of the parameter differs between the bad (red) and the good (green) transaction instances. This is an example of a numerical attribute where we have used an HDR (HdrHistogram, 2020) histogram to find the ranges of the attribute.

In Figure 7, we display two instances of the call chain for the BuyProduct transaction of Figure 6, one instance from the good transactions (green) and one instance from the bad transactions (bad). For each micro-service the duration of the spans for the two instances is displayed on the right side of the figure. The bad transaction has a degraded execution time of around 840ms while the good transaction execution time is around 60ms.

In Figure 8 an Insight for a categorical attribute in an SQL SELECT sent from the Persistence to the MySQL database is displayed. The SELECT command with the red dot does not appear in the good transactions. The “bad” transactions here signify a slow transaction relative to the good transactions.

In Figure 9 we depict an insight for a categorical attribute where a bad transaction is one that returns an error. The breakdown this time is according to the tier and the attributes with the Insight are colored gray. The insight found is that the attribute Response Code has a value 500 that does not appear in the good transaction instances.

In Figure 10 more information is provided for the above Status Code insight. It can be seen on the left that for the good transactions (in a green rectangle) there were 0 instances where the status code was 500 (out of 160332 good transactions). On the other hand the bad transactions (in red rectangle) had 8813 instances with status code 500 out of a total of 371113 bad transaction instances. The other insight presented in Figure 10 is a Structural Insight for the same transaction and the same test. The method com.netflix.hystrix.command$3.call (in blue rectangle) was executed for 35252 instances of the
bad transactions but was never executed in the good transactions.

8 CONCLUSIONS

The method we have developed can be used for Cloud PaaS debugging and performance analysis, fault analysis and root cause analysis. It can be used online in streaming mode and is efficient in both memory and speed. It is possible to adjust the method to reduce False Positives by requiring that an insight be restricted to an attribute:value pair appearing in the “bad” transactions and not appearing in the “good” transactions. This is very desirable in practical applications where customers lose trust in alerting systems due to many False Positives.

Perceptor can find Insights of various types including structural attributes such as micro-services, methods, instances not visited by good transactions versus bad transactions or the opposite. Attributes can be categorical taking a small set of discrete values including strings, or numerical attributes taking a large set of values such as UserId. Call-chain data on which Perceptor relies as input is rich with useful information and makes Perceptor a major help in performance debugging and in isolating faults.

REFERENCES

