
A Practical Methodology to Learn
Computer Architecture, Assembly Language, and Operating System

Hiroaki Fukuda1, Paul Leger2 and Ismael Figueroa3

1Department of Computer Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto, Tokyo, Japan
2Escuela de Ingenierı́a Civil, Universidad Católica del Norte, Coquimbo, Chile

3Ingenierı́a en Información y Control de Gestión, Universidad de Valparaı́so, Valparaı́so, Chile

Keywords: Educational Methodology, Operating System, Virtual Machine, Assembly Language, Computer Architecture.

Abstract: System-level details, such as assembly language and operating systems, are important to develop/debug em-
bedded systems and analyze malware. Therefore it is recommended to teach every topic of these subjects.
However, their learning cost has been significantly increased due to current system complexities. To solve
this problem, several visualization techniques have been proposed to help students in their learning process.
However, observing only the computer system behaviors may be insufficient to apply it to real systems due to
the lack of practical experiences and a comprehensive understanding of system-level details. To address these
issues, we propose a novel methodology where students implement a virtual machine instead of using exist-
ing ones. This virtual machine needs to execute binary programs that can be run on a real operating system.
Through implementing this virtual machine, students improve by experience their understanding of computer
architecture, assembly languages, instruction sets, and the role of operating systems. We also provide MMVM
that is a virtual machine implementation reference, and can execute the binary programs while showing the
internal states of CPU (registers & flags) to users (students) to support their implementation. Finally, this
paper reports the education results applying this methodology to 15 students that consist of 3rd-year students
and 1st year of master students.

1 INTRODUCTION

For computer science students (shortly students),
systems-level details such as computer architecture,
assembly languages, and operating systems are still
important. However, it is difficult to spend enough
time to learn these details due to increasing their
complexities and/or appearing on new topics such as
Cloud Computing (Armbrust et al., 2010) and Ar-
tifical Intelligence (AI) (Russell and Norvig, 2009).
Thereby students mainly learn these details from text-
books, acquiring abstract knowledge without any ex-
perience. As a result, there might be a big gap when
students face real problems (e.g., debugging embed-
ded systems, analyzing computer viruses by binary
dump). Some researchers propose visualize within
computers such as stored values in registers, mem-
ories, and how the stored values will be changed as
a program is executed on the computer (Zeng et al.,
2009). Visualization techniques are useful because
students can understand the inside behavior of com-
puter systems; however, two learning issues appear.

The first one is the lack of experience. Even though
students understand the correct behavior, they have
not learned real skills but knowledge, therefore they
may fail with programming and debugging tasks in
practice. The second one is the lack of comprehen-
sive understanding. Due to the increase in complex-
ities and specialties of each subject, giving adequate
exercises is also difficult. Even though implement-
ing an operating system helps students to understand
the difference, it is too difficult because students need
to know other subjects such as assembly languages,
hardware (e.g., CPU) and a binary format.

To solve the previous two learning issues, we pro-
pose a novel methodology that is based on the con-
struction of a virtual machine. In this methodology,
we give students a set of exercises (binary programs)
that will lead to a virtual machine implementation in-
stead of using existing ones. The virtual machine
will execute binary programs that can be run on cer-
tain hardware and an operating system. Implement-
ing this virtual machine requires students to emulate
existing hardware (e.g., CPU and memory) and un-

Fukuda, H., Leger, P. and Figueroa, I.
A Practical Methodology to Learn Computer Architecture, Assembly Language, and Operating System.
DOI: 10.5220/0009319503330340
In Proceedings of the 12th International Conference on Computer Supported Education (CSEDU 2020) - Volume 1, pages 333-340
ISBN: 978-989-758-417-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

333

Our methdology

Visualization

Implement from scratch

Extreme Abstract

Extreme Technical

Figure 1: The position of our methodology between abstract
and technical.

derstand instruction sets in addition to assembly lan-
guages. Besides, we assume these binary programs
are executed on userland, meaning that the virtual ma-
chine needs to emulate system calls that are usually
provided by an operating system. With this method-
ology, students can learn systems-level details with
experiences and connections among mainly computer
architecture, assembly language and operating sys-
tems. For this methodology, we provide a tool called
MMVM that can execute binary programs and show
the internal states (registers & flags) to users (i.e., stu-
dents) to support a virtual machine implementation.
Students can start from small binary programs that
have only limited instruction sets and system calls to
large programs that have many instruction sets and
system calls with a step-by-step manner. As shown
in Figure 1, our methodology is located in the mid-
dle between abstract and technical learning. On the
one hand, our methodology offers students to imple-
ment their virtual machines instead of just observing
behavior (abstract learning). On the other hand, the
implementation of a virtual machine is simple using
MMVM because students do not need to implement a
complete operating system or virtual machine (techni-
cal learning). We show the educational results apply-
ing this methodology to 15 students as a preliminary
evaluation.

The rest of this paper is organized as follows. Sec-
tion 2 explains the overview of our methodology. Sec-
tion 3 provides learning processes in our methodology
with a tool (MMVM). Section 4 gives a preliminary
evaluation and Section 5 describes related work. Fi-
nally, Section 6 gives the conclusion and future work.

2 METHODOLOGY OVERVIEW

This section explains our methodology where stu-
dents can learn systems-level details in practice.

As we can see in Figure 2-(i), a set of source code
will be compiled and assembled by a compiler and
an assembler, generating a binary program. This bi-

binarybinary

Hardware

Operating System

Hardware

Operating System

Virtual Machine(MMVM)binary

Source code

binarybinarybinary

compile/assemble

resource access

system call

instructions

instructions

system call

resource access

system call instructions

register

system call

memory

(i) (ii)

binarybinarybinary

Figure 2: Connections among binaries to be executed, Vir-
tual Machine and Operating System in our methodology.

nary program consists of instruction sets and system
calls provide by a certain CPU and an operating sys-
tem. Thereby the program is executed on the CPU di-
rectly and uses system resources via system calls. In
our methodology, as shown in Figure 2-(ii), we offer
to execute the program on their virtual machines that
need to emulate an architecture and instruction sets of
the original CPU, and also system calls of the orig-
inal operating system (i.e., both are shown in Figure
2-(i)). In our methodology, students have to imple-
ment their virtual machines, which is corresponding
to Virtual Machine in Figure 2-(ii), resulting in par-
tial learning about computer architecture, instruction
sets, assembly languages, and operating system be-
cause their virtual machines have to emulate this be-
havior. We also give MMVM which can execute the
binaries with showing internal states to support stu-
dents’ implementation.

There have been two categories to learn system-
level details: 1) preparing simulators that provide
simplified execution environments (CPU and/or pro-
gramming languages) of a program, and 2) using real
systems. Each category has advantages and disadvan-
tages. Using simulators makes learning easier; how-
ever, simulators are imitations, which demotivate stu-
dents to learn (Gondow et al., 2010). In contrast,
using real systems is difficult; however real systems
motivate students to learn, and knowledge and expe-
riences will be widely applicable. Considering these
advantages and disadvantages, we have chosen using
a real system (Gondow et al., 2010) such as real in-
struction sets, an assembly language, and an operat-
ing system. Taking these points into account, we have
selected a CPU (computer architecture) and the cor-
responding operating system. Next, we explain both
selections.

CSEDU 2020 - 12th International Conference on Computer Supported Education

334

2.1 CPU Selection

A variety of CPUs for computers are currently avail-
able including a series of x86 from Intel, a series of
CPUs from AMD and ARM. On the one hand, the
mainstream of usage in current computers is 64-bit
computing, implying a difficult to learn for students
from the beginning. On the other hand, we can also
choose 8-bit old CPUs for the sake of education; how-
ever, the acquired knowledge might be useless when
students face problems related to current CPU archi-
tectures. As a conclusion of this selection, we choose
the 8086 16-bit CPU from Intel because of the follow-
ing reasons. Firstly, a majority of people use a series
of x86 CPUs then this trend continue until x86 64.
Therefore we think the acquired knowledge and ex-
periences of 8086 can be a base for students to learn
about current CPUs such as x86 64 and ARM. Sec-
ondly, we consider the bit length of CPUs is important
because: a) values consist of many bits (e.g., 64bit) is
difficult to trace when we find and fix bugs in imple-
mentations of emulators, and b) 8bit CPUs such as
8080 has a limited number of instructions, meaning
that knowledge from 8080 is not enough to apply cur-
rent CPUs.

2.2 Operating System Selection

As requirements for the selection of an operating sys-
tem in our methodology, we identify three. Firstly, as
students need to implement virtual machines that em-
ulate the system calls, they should refer source code to
emulate each system call correctly; meaning that a set
of source code for a certain operating system needs
to be open access. Secondly, the size and complexity
of an operating system need to be small and simple
enough to understand its behavior. Finally, hopefully,
the acquired knowledge and experiences, via reading
source code, can be a base for students to tackle cur-
rent and industrial operating systems.

Based on operating system requirements, we
thought that UNIX V6 could fulfill these requirements
because it is considered as an origin of BSD Unix
and its total lines of code are around 10,000. Besides,
we can refer to the book (John Lions, 1977) that ex-
plains pieces of code in detail. Unfortunately, UNIX
V6 was designed for PDP 11, therefore it cannot run
on 8086 that we choose as a CPU. As a consequence,
we chose the minix2 operating system (Tanenbaum
and Woodhull, 2005). As an explanation, minix2 is
designed for multiple CPUs including 8086 and it can
be considered as an operating system for education,
meaning that it is open source and lines of kernel
code is around 30,000. In addition, minix2 follows

Displacement Semantics of Instruction Sets

System Call

Computer Architecture

Format of Instruction Sets

Binary Format

Assembly Language

Disassembler Virtual Machine

Step1 Step2
MMVM

+
Compiler

Source

 Code executable

binary

Subject to be learned

Students implement

Figure 3: Learning Process.

>mmvm /minix2/usr/local/bin/cc ./1.c a.out

passed to cccc is executed by mmvm generated

Figure 4: The usage example of MMVM.

the POSIX, meaning that the kind and behavior of its
system calls are the same as current operating systems
that follow POSIX.

3 LEARNING PROCESSES

This section explains how students can learn system-
level details using our methodology as shown in Fig-
ure 3. We divide the entire educational processes
into two steps: Step1) disassembler implementation
and Step2) virtual machine implementation. This is
because the disassembler implementation is almost a
subset and simplified version of a virtual machine im-
plementation. As Figure 3 shows, each step gives
detailed subjects related to system-level details such
as Binary Format, Assembly Languages, and Sys-
tem Call. Besides, in this methodology, we use two
kinds of documents: 8086 16Bit Microprocessor (In-
tel, 1990), and Intel 64/IA-32 Architecture Software
Developer’s Manual (Intel, 2018). This is to confirm
the available instruction sets and compile source code
using MMVM to the minix2’s binary, and thus, ob-
serving the correct internal states. Figure 4 shows
how to use MMVM and compile source code. As
MMVM can run binaries for minix2, we use cc dis-
tributed by minix2 as binary to compile source code.

3.1 Disassembler Implementation

When students start implementing their disassembler,
they should learn the file format such as Executable
and Linkable Format (ELF) (Committee, 1995) be-
cause they have to run binary programs which can be
run on minix2. Since minix2 adopted a.out as a ex-
ecutable file format, students need to understand the
a.out format, then extract text (i.e., executable code)
from the binary program. As shown in Figure 5, the
a.out format consists of a header of 32 bytes of length,
text and data, whose lengths are recorded as 4 bytes in
the header respectively. Therefore students start from
analyzing the header. We think this process is suit-
able because this task only requires the knowledge of

A Practical Methodology to Learn Computer Architecture, Assembly Language, and Operating System

335

header text data

32 bytes any bytes any bytes

Figure 5: The binary format of a program in minix2.

the a.out format shown in Figure 5; however students
have to analyze binary, resulting in a good introduc-
tion to handle binaries directly. Since almost all stu-
dents have never analyzed binary programs manually,
they may think to analyzing binary programs seems
to be difficult. Therefore extracting text from an a.out
format can break their way of thinking.

After extracting the text part, students start ana-
lyzing text part using the document (Intel, 1990). As
we will explain in the next section, students can start
from a small binary program. In addition, students
can see the disassemble result using MMVM with an
option (see Listing 6), implying students can easily
find their mistakes comparing each result.

Compared to virtual machine implementation,
disassembler implementation is easier because the re-
sult is always the same if the input binary program is
the same. Therefore students can complete their dis-
assembler implementation. When students finish this
implementation, we can consider that students under-
stand how to read binary such as displacement and
variable-length operators following the specification,
which is an initial step for virtual machine implemen-
tation.

3.2 Virtual Machine Implementation

The virtual machine implementation is an extension
of the disassembler implementation because it also
requires analyzing the binary file formatted by a.out
to extract text and data. In addition to the tasks
required by disassembler implementation, students
need to prepare registers, flags, memories and extract
data from the binary program. Since 8086 CPU con-
sists of 14 registers including the flag register and
program counter, the virtual machine must prepare
them. Besides, the virtual machine should also allo-
cate memories to store programs and data, the size of
which is 0x10000 because 8086 is 16 bit CPU, mean-
ing that a register can represent from 0x0000 to 0xffff.

We show an example implementation of a virtual
machine in Listing 1. In Listing 1, we define nec-
essary registers (Line1) and keep memories for text
and data (Line2). The run represents the execution of
CPU, then fetch and decode in Line 6 returns an op-
erator by fetching and decoding an instruction from
memory. The opcode represents a kind of operator,
therefore the behavior of each operator is defined us-
ing switch-case statements.

1 unsigned short AX, BX. . .

2 unsigned char memory[0x10000] = {0};

3

4 void run () {
5 while(true) {
6 opcode = fetch and decode()

7 switch(opcode) {
8 case 0x20: / / interrupt
9 system call (BX) ; / / emulate system calls

10 case 0x88: / / mov instruction
11

12 }}}

Listing 1: An example of virtual machine implementation.

3.2.1 Instruction Sets

After loading the text and data on corresponding
memory, the virtual machine starts executing the bi-
nary program. Since an instruction cycle (i.e., fetch-
decode-execute cycle) is the most basic operational
process of a computer, the virtual machine has to em-
ulate this cycle. In this instruction cycle, the emu-
lations of fetch and decode have been done partially
in the disassemble implementation. Therefore stu-
dents can start virtual machine implementation with-
out much stress. The virtual machine generally con-
sists of an infinite loop that involves a large switch-case
branches. Each case corresponds to each instruction,
therefore students will implement each instruction’s
behavior referring to the document (Intel, 2018). Dur-
ing this implementation, students can check the cor-
rect behavior of each instruction using an option in
the MMVM execution, showing all values stored in
registers at every execution step. Thereby, students
can find and fix their mistakes easily. Note that stu-
dents do not need to implement all instructions at a
time but implement requisite instructions involved in
the binary program to be executed.

1 typedef struct {
2 int m source; / / caller information
3 int m type; / / kind of system calls
4 union {
5 mess 1 mm1;

6 mess 2 mm2;

7 mess 3 mm3;

8 mess 4 mm4;

9 mess 5 mm5;

10 mess 6 mm6;

11 } m u; / / for arguments
12 } Message;

Listing 2: The definition of struct message.

3.2.2 System Calls

As the binary programs that are executed by a vir-
tual machine contain system calls to use system re-
sources such as I/O, students have to interrupt and

CSEDU 2020 - 12th International Conference on Computer Supported Education

336

capture system call invocations and provides corre-
sponding results to the program. The 0xcd instruction
represents an interruption in 8086 and 0x20 represents
the interruption for system calls in minix2. There-
fore the 0xcd20 represents the system call interrup-
tion in the current environment (e.g., minix2 running
on 8086). In minix2, arguments of a system call are
passed to the kernel using message structure defined
in ”/usr/include/minix/type.h” as shown in Listing 2. Then
the address of the message is stored in bx register.
Thereby we can access all requisite information using
message. After a system call ends, its result is stored
in ax register, restarting the interrupted program exe-
cution. To sum up, implementing system calls needs
the following steps:

1. Find the 0xcd20 instruction.

2. Detect system calls and its arguments using
message the address of which is stored in bx reg-
ister.

3. Emulate the corresponding system call behavior.

4. Store the execution result in ax register.

5. Restart the program.

Note that, system calls supported by minix2 fol-
low POSIX (Oracle Corporation and/or its affiliates,
2010); therefore we can easily find out the behavior
from documents and/or using them in current operat-
ing systems that follow POSIX.

4 PRELIMINARY EVALUATION
IN EDUCATION

This section discusses our experience using our edu-
cational methodology with MMVM in under/graduate
students in Shibaura Institute of Technology in Japan.

4.1 Educational Methodology Details

We have applied our methodology to 15 students: 10
from 3rd-year of undergraduate and 5 from 1st year of
master. Although students’ skills vary, all students at
least passed one programming course and can use one
programming language. Besides, we do not require
any special knowledge and skills about low-level de-
tails such as binary data, assembly language, and ma-
chine instruction sets. In this methodology, we firstly
give two simple assembly code for students to get
used to binary programs and disassembling. Listing 3
shows the simplest assembly code that we prepare.
Apart from the data section (i.e., after 6 line), this
program has only 4 lines. Besides, Listing 4 shows
the corresponding disassemble result. As we can see

in this figure, the disassemble result from line 1 to 4
easily seems to be corresponding to from line 1 to 4
in Figure 3. Moreover, observing the disassembled
result without any document, it can intuitively imag-
ine that bb is corresponding to mov bx, and the next
two bytes should be flipped (1000→ 0010) and might
be the second arguments of mov instruction.

1 mov bx, #message

2 int 0x20

3 mov bx, #exit

4 int 0x20

5

6 . sect .data

7 message: .data2 1, 4, 1, 6, 0, hello , 0, 0

8 exit : .data2 1, 1, 0, 0, 0, 0, 0, 0

9 hello : . ascii ”hello\n”

Listing 3: The first test code written by assembly language.

After having intuition from the disassembled re-
sult, students start to implement their disassemblers
that will show the same result of MMVM from the
same input binary program. We think that students
who finish implementing this disassembler correctly
(which just accepts only two kinds of binary programs
that we provide) have understood the a.out format by
analyzing its header, and the basic structure of a disas-
sembler such as an infinite loop and switch-case state-
ments.

1 0000: bb0000 mov bx, 0000

2 0003: cd20 int 20

3 0005: bb1000 mov bx, 0010

4 0008: cd20 int 20

Listing 4: The disassemble result of Listing 3 using
MMVM.

4.1.1 Disassembler Implementation

After disassembling the previous two simple binary
programs, students start from Step1 shown in Fig-
ure 3.

We give the document (Intel, 1990) and explana-
tions on how to interpret it. Although the document
seems to be difficult at a glance for students, they are
ready to read it because they have had experiences of
a simple disassembler implementation, helping stu-
dents understanding. We teach several important ele-
ments such as byte order, byte/word instructions, dis-
placement, and effective address. For the practical
disassembler and virtual machine implementation, we
prepare six kinds of source code (from 1.c to 6.c) writ-
ten in C language, and nm (nm.c) provided by the
source tree of minix2 (we reuse these pieces of code
in virtual machine implementation). For example, al-
though Listing 5 shows the source code of 1.c output

A Practical Methodology to Learn Computer Architecture, Assembly Language, and Operating System

337

of which is the same as Listing 3, the disassemble re-
sult shown in Listing 6 reaches 114 lines and students
have to understand the issues that we teach (e.g., byte
order and/or effective address). Although the diffi-
culty will much increase compared to the former dis-
assembler, students can follow these difficulties in a
step-by-step manner.

4.1.2 Virtual Machine Implementation

We assume that students who can complete a disas-
sembler implementation understand how to divide a
sequence of byte data (binary) into instruction sets
and their arguments, meaning that they are ready to
start Step2 in Figure 3. The basic structure of a virtual
machine is similar to that of a disassembler (i.e., an
infinite loop and switch-case structure), therefore stu-
dents can reuse and extend their disassemblers for vir-
tual machine implementation.

Virtual machine implementation also starts from
executing the simplest binary program. Figure 7
shows the execution result of Figure 3 using MMVM
with -m option. As we can see in Listing 7, this pro-
gram ends only 7 steps that consists of two instruc-
tions (mov and int) and two system calls (write and exit).

For executing this binary program, we need to
implement the behavior of the two instructions, and
two system calls referring documents and results of
MMVM with -m option. For example in Figure 7, the
value of bx register is changed from line 6 to line 7,
and mov instruction is executed with 0x0010 at line 6.
We can intuitively imagine what’s happened in exe-
cuting mov instruction, confirm its semantics using the
document (Intel, 2018), resulting in the correct im-
plementation. As for the system call implementation,
we will refer the document of POSIX system calls for
confirming the correct behavior, and message struc-
ture for receiving requisite arguments for each system
call.

4.2 Educational Result and Discussion

We summarize the result of the preliminary evalu-
ation in Table 1 that consists of the name of pro-
grams (Name), the number of disassemble result (Dis-
asm), number of execution steps (Execution), the
number of kinds of executed system calls (System
Call) and the number of students who have completed
each task (Disassembler and Virtual Machine). We
applied this methodology to two cases: (1) 10 stu-
dents from 3rd-year who would join our laboratory,
(2) 5 students from a master course class. We men-
tion the positive and negative results respectively as
follows.

main() {
write (1 , ”hello\n” , 6);

}

Listing 5: The source code of 1.c.

1 0000: 31ed xor bp, bp

2 0002: 89e3 mov bx, sp

3 0004: 8b07 mov ax, [bx]

4 0006: 8d5702 lea dx, [bx+2]

5 0009: 8d4f04 lea cx, [bx+4]

6 000c: 01c1 add cx, ax

7 (continue)

Listing 6: The disassemble result of 1.c using MMVM.

1 AX BX CX DX SP BP SI DI FLAGS IP
2 0000 0000 0000 0000 ffdc 0000 0000 0000 −−−−00: bb0000 mov bx,0000
3 0000 0000 0000 0000 ffdc 0000 0000 0000 −−−−03: cd20 int 20
4 <write (1 , 0x0020 , 6) hello
5 => 6>
6 0000 0000 0000 0000 ffdc 0000 0000 0000 −−−−05: bb1000 mov bx,0010
7 0000 0010 0000 0000 ffdc 0000 0000 0000 −−−−08: cd20 int 20
8 <exi t(0)>

Listing 7: The execution result of Listing 3 using MMVM
with -m.

As positive results, as shown in Table 1, all stu-
dents have completed disassembler and virtual ma-
chine implementations for almost all given programs
except for nm.c. In case (1), we did not measure
time students consumes1 because we wanted to con-
firm whether this educational methodology could be
applied to students or not. Also in case (1), one stu-
dent completed executing nm.c while the rest of the
students failed it. However, we thought this method-
ology could be applicable for systems-level education
for students because at least all students could exe-
cute until 6.c. In case (2), due to the result of the case
(1), we applied this method to a master course class
that consists of 14 classes each class of which reserves
100 minutes. The 5 master students took this class,
then 4 students completed executing all given pro-
grams within 14 classes. In each case, we observed
the progress of each student, then we found that stu-
dents made several misunderstanding and wrong im-
plementation the kinds of which varied, for example
displacement, effective address, sign-extended in dis-
assembler implementation and flag register, relative
address and the role of a stack in virtual machine
implementation. At that time students focused on
the difference of the results between their own dis-
assembler/virtual machine and MMVM, they needed
to consider the reason and refer documents, source
code and sometimes implemented a small test pro-
gram if needed. We think these iterative processes
change their shallow knowledge to deep knowledge
with experiences. Besides, we think they understood

1In fact, it varies from several days to a month.

CSEDU 2020 - 12th International Conference on Computer Supported Education

338

Table 1: The number of students who complete each program.

Program Complete number of Students
Name Disasm (Step1) Execution (Step2) System Call (Step2) Disassembler Virtual Machine

1.s 4 4 2 15 15
2.s 5 5 2 15 15
1.c 140 140 2 15 15
2.c 148 152 2 15 15
3.c 1,929 1,014 4 15 15
4.c 1,933 1,665 4 15 15
5.c 1,945 1,896 4 15 15
6.c 177 597 2 15 15

nm.c 2,912 553,722 7 15 5

systems-level details comprehensively with experi-
ences because a function call should be emulated by
instruction sets while a system call should be emu-
lated by students in a virtual machine implementation,
which are different clearly.

As negative results, 10 students could not com-
plete executing nm.c. We think this is because the ex-
ecution step of nm (553,722, see Table 1) is much dif-
ferent from other programs. Therefore it was difficult
to find their mistakes only using MMVM with an op-
tion. In other words, the main reason might be the dif-
ference in programming skills because the program-
ming skills of master students are better than 3rd-year
students in general. We need to extend MMVM for
students to find their mistakes easily.

5 RELATED WORK

There have been several types of research and edu-
cational software systems for teaching systems-level
details. We divide them into two categories: operating
systems and computer architecture.

Operating System. In articles like (Atkin and Sirer,
2002; Black, 2009; Brylow, 2008), we can find pro-
posals that teach details of an operating system. These
proposals generally offer students to implement an
operating system from scratch or modify an educa-
tional operating system. Students can learn the main
roles of an operating system such as process manage-
ment, semaphore, system calls, and file systems with
experiences. (Dall and Nieh, 2014) gives a tool to
review the source code of operating systems for stu-
dents to learn existing operating systems. These pro-
posals can give experiences to learn operating systems
partially such as scheduler, file systems; however
these works sometimes might not produce good ed-
ucational results because students can refer the com-
plete code, meaning that they can copy and paste
without much consideration, leading to shallow un-
derstanding. Besides, implementing operating system

from scratch is too difficult because students have to
understand specifications of hardware such as CPU
and BIOS. Instead, implementing virtual machine in
our methodology is not so difficult because we do not
need to use physical hardware and the structure of a
virtual machine implementation is simple. Moreover,
students can use MMVM to see the internal state of
the correct implementation.

Computer Architecture. Proposals found in arti-
cles (Skrien, 2001; Warford and Okelberry, 2007) are
CPU simulators that allow students to create or mod-
ify the architectures being studied. Students can de-
sign their architecture and write machine language
or assembly language programs and run them on the
CPU. However, students cannot learn the connection
between hardware (e.g., CPU) and software (e.g., op-
erating system) because they focus on studying the
architecture of the CPU. Besides, we cannot use the
knowledge directly in practice because the CPUs are
enough simplified for learning. In article (Black and
Komala, 2011), the authors provide a graphical com-
puter simulator for educations. Unlike other teaching
simulators, the proposed simulator faithfully models
a complete personal computer including i386 proces-
sor, memories, I/O ports interrupts, timers and a se-
rial port. Students can execute any programs that ex-
pected to run on x86 processor including an operating
system and confirm the values stored in memories and
registers. Although students can learn the real CPU
architecture (i.e., x86), they can only confirm the val-
ues being changed as a program is being executed.
However the knowledge between hardware and soft-
ware is still shallow because they can only observe to
be changed inside the CPU.

6 CONCLUSIONS

Due to appearing new topics in computer science, and
increasing complexities in hardware and software, the
learning process about systems-level details such as

A Practical Methodology to Learn Computer Architecture, Assembly Language, and Operating System

339

computer architecture, programming language, and
operating system becomes difficult. To overcome the
previous difficulty, we propose a methodology for stu-
dents to learn systems-level details with a tool called
MMVM. Unlikely existing researches and software
systems, our methodology is based on the implemen-
tation of a virtual machine instead of using existing
ones. We conducted a preliminary evaluation in terms
of learning in which we offer 15 under/graduate stu-
dents to implement a virtual machine. As a result,
we found two observations. Firstly, all students could
implement a disassembler for all programs, the kinds
of them varies from just invoking printf to using func-
tions, arguments and control statements (e.g., for, if)
and system calls, generating various kinds of 8086’s
instruction. Secondly, all students could execute 8 of
9 programs in the virtual machine and only one stu-
dent executed all of them. Through these observa-
tions, we realized that students could learn system-
level details such as assembly language, computer ar-
chitecture, and operating systems as real skills. This
is because if they did not understand these details,
they could not finish to implement a disassembler and
a virtual machine. Thereby we can claim that our
methodology could address the two problems men-
tioned in this paper: lack of experiences and compre-
hensive understanding in system-level details, leading
to improving students’ knowledge and skills.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2010). A view of cloud
computing. Commun. ACM, 53(4):50–58.

Atkin, B. and Sirer, E. G. (2002). Portos: An educational
operating system for the post-pc environment. In Pro-
ceedings of the 33rd SIGCSE Technical Symposium
on Computer Science Education, SIGCSE ’02, pages
116–120, New York, NY, USA. ACM.

Black, M. D. (2009). Build an operating system from
scratch: A project for an introductory operating sys-
tems course. In Proceedings of the 40th ACM Tech-
nical Symposium on Computer Science Education,
SIGCSE ’09, pages 448–452, New York, NY, USA.
ACM.

Black, M. D. and Komala, P. (2011). A full system x86
simulator for teaching computer organization. In
Proceedings of the 42Nd ACM Technical Symposium
on Computer Science Education, SIGCSE ’11, pages
365–370, New York, NY, USA. ACM.

Brylow, D. (2008). An experimental laboratory environ-
ment for teaching embedded operating systems. In
Proceedings of the 39th SIGCSE Technical Sympo-
sium on Computer Science Education, SIGCSE ’08,
pages 192–196, New York, NY, USA. ACM.

Committee, T. (1995). Tool interface standard (tis) exe-
cutable and linking format (elf) specification version
1.2.

Dall, C. and Nieh, J. (2014). Teaching operating systems
using code review. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Educa-
tion, SIGCSE ’14, pages 549–554, New York, NY,
USA. ACM.

Gondow, K., Fukuyasu, N., and Arahori, Y. (2010). Mieru-
compiler: Integrated visualization tool with ”horizon-
tal slicing” for educational compilers. In Proceedings
of the 41st ACM Technical Symposium on Computer
Science Education, SIGCSE ’10, pages 7–11, New
York, NY, USA. ACM.

Intel (1990). 8086 16-bit microprocessor. http://www.ece.
cmu.edu/∼ece740/f11/lib/exe/fetch.php?media=wiki:
8086-datasheet.pdf.

Intel (2018). Intel 64 and ia-32 architecture soft-
ware developer’s manual. https://software.
intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf.

John Lions (1977). Lions’ Commentary on Unix 6th Edi-
tion. Peer to Peer Communications/ Annabook.

Oracle Corporation and/or its affiliates (2010). Posix system
calls. https://docs.oracle.com/cd/E19048-01/chorus4/
806-3328/index.html.

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A
Modern Approach. Prentice Hall Press, Upper Saddle
River, NJ, USA, 3rd edition.

Skrien, D. (2001). Cpu sim 3.1: A tool for simulating com-
puter architectures for computer organization classes.
J. Educ. Resour. Comput., 1(4):46–59.

Tanenbaum, A. S. and Woodhull, A. S. (2005). Operat-
ing Systems Design and Implementation (3rd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Warford, J. S. and Okelberry, R. (2007). Pep8cpu: A pro-
grammable simulator for a central processing unit. In
Proceedings of the 38th SIGCSE Technical Sympo-
sium on Computer Science Education, SIGCSE ’07,
pages 288–292, New York, NY, USA. ACM.

Zeng, H., Yourst, M., Ghose, K., and Ponomarev, D. (2009).
Mptlsim: A cycle-accurate, full-system simulator for
x86-64 multicore architectures with coherent caches.
SIGARCH Comput. Archit. News, 37(2):2–9.

CSEDU 2020 - 12th International Conference on Computer Supported Education

340

