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Abstract: Portfolio optimization using loan is formulated as a chance constrained problem in which the borrowing money
from loan can be invested in risk assets. The chance constrained problem is proven to a convex optimization
problem. The low interest rate of loan benefits borrowers. On the other hand, the high interest rate of loan
doesn’t benefits lenders because such a loan is not often used. For deciding a proper interest rate of loan that
benefits both borrowers and lenders, a new method is proposed. Experimental results show that the loan is
used completely to improve the efficient frontier if the interest rate is decided by the proposed method.

1 INTRODUCTION

Portfolio optimization is the process of determining
the best proportion of investment in different assets
according to some objective. The objective typically
maximizes factors such as expected return, and mini-
mizes costs like financial risk. Portfolio optimization
is one of the most challenging problems in the field
of finance. Therefore, a large number of works about
portfolio optimization have been reported (Mokhtar
et al., 2014; Mansini et al., 2014). In these works,
portfolio optimization has been discussed both in a
deterministic and in a stochastic domain, either in a
single period or in a multi-period framework.

In our previous work (Tagawa, 2019), portfolio
optimization using bank deposit and loan has been
formulated as a chance constrained problem in which
a non-risk asset called bank deposit is included in a
portfolio and the borrowing money from loan can be
invested in risk assets. It has been also proven that
the chance constrained problem is a multimodal opti-
mization problem having multiple optimal solutions.
Therefore, for solving the optimization problem, an
optimization method based on Differential Evolution
(DE) (Price et al., 2005) has been proposed.

The effect of the loan on portfolio optimization
has been also studied independently (Tagawa, 2020).
Portfolio optimization using only loan has been for-
mulated as a chance constrained problem. It has been
also proven that the chance constrained problem is
a convex optimization problem. Therefore, for solv-
ing the convex optimization problem, an interior point

method (Horst and Pardalos, 1995) has been used.
Experimental results show that the efficient frontier
is improved if the loan is used. Consequently, the low
interest rate of loan benefits borrowers. On the other
hand, the high interest rate of loan does not benefits
lenders because such a loan is not often used.

In this paper, portfolio optimization using loan is
studied more intensively. Specifically, a proper in-
terest rate of loan that benefits both borrowers and
lenders is considered. Then, a new method to decide
a proper interest rate of loan from an acceptable risk
is proposed. Experimental results show that the loan
is used completely to improve the efficient frontier if
the interest rate is decided by the proposed method.

The remainder of this paper is organized as fol-
lows. Section 2 explains conventional models for
portfolio optimization. Section 3 formulates a new
portfolio optimization problem using loan. Section 4
proposes a new method to decide a proper interest rate
of loan. Section 5 shows the results of numerical ex-
periments and discusses about them. Finally, Section
6 concludes this paper and mentions future work.

2 RELATED WORK

2.1 Definition of Portfolio

Let xi ∈ ℜ, i = 1, · · · , n be the proportion of i-asset
normalized by owned capital invested in n assets. A
portfolio is defined as xxx = (x1, · · · , xn) ∈ ℜn. Since
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we consider a long-only portfolio in a single period,
the portfolio xxx ∈ ℜn is constrained as

x1 + x2 + · · ·+ xn = 1 (1)
where 0 ≤ xi, i = 1, · · · , n.

The unit investment in the i-asset provides return
ξi ∈ ℜ over a single period operation. Each of asset
returns ξi ∈ ℜ, i = 1, · · · , n is modeled by a random
variable following a normal distribution as

ξi ∼ Normal(µi, σ2
i ). (2)

Incidentally, it is known that Normal distribution
can represent a fairly accurate model of asset returns
for portfolio optimization (Ruppert, 2011).

Let ρi j be the correlation coefficient between ξi
and ξ j, i ̸= j. As well as the mean µi and the standard
deviation σi in (2), ρi j is estimated statistically from
historical data (Rubio et al., 2012). In recent years,
an Artificial Intelligence (AI) method based on deep
learning is also reported to predict the future returns
of assets from market data (Obeidat et al., 2018).

The vector ξξξ = (ξ1, · · · , ξn) of random returns in
(2) follows a multivariable normal distribution as

ξξξ ∼ Normal(µµµ,CCC) (3)
where the mean is given as µµµ = (µ1, · · · , µn) ∈ ℜn.

In order to derive the covariance matrix CCC in (3), a
matrix DDD is defined by using σi in (2) as

DDD =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

 . (4)

From the correlation coefficient ρi j between ξi and
ξ j, a coefficient matrix RRR is also defined as

RRR =


1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n
...

...
. . .

...
ρn1 ρn2 · · · 1

 . (5)

From DDD in (4) and RRR in (5), CCC is obtained as
CCC = DDDRRRDDD. (6)

The return of a portfolio xxx ∈ ℜn is defined as

r(xxx, ξξξ) =
n

∑
i=1

ξi xi = ξξξxxxT . (7)

According to the reproductive property of normal
distribution (Ash, 2008), the return in (7) also follows
a normal distribution as

r(xxx, ξξξ)∼ Normal(µr(xxx), σ2(xxx)) (8)
where the mean and the variance are given as

µr(xxx) =
n

∑
i=1

µi xi = µµµxxxT (9)

σ2(xxx) = xxxCCC xxxT . (10)

2.2 Portfolio Optimization

By using the portfolio stated above, we explain basic
models used to formulate portfolio optimization.

2.2.1 Markowitz’s Model

In Markowitz’s model (Markowitz, 1952), the risk of
a portfolio xxx ∈ ℜn is evaluated by the variance σ2(xxx)
shown in (10). Then, the risk is minimized keeping
an expected return µr(xxx) larger than γ ∈ ℜ as

min σ2(xxx) = xxxCCC xxxT

sub. to µr(xxx) = µµµxxxT ≥ γ,
x1 + x2 + · · ·+ xn = 1,
0 ≤ xi, i = 1, · · · , n.

(11)

2.2.2 Roy’s Model

In Roy’s model (Roy, 1952), the risk of portfolio is
evaluated by the probability that the return r(xxx, ξξξ) in
(7) falls bellow a desired value γ ∈ ℜ. In order to
minimize the risk α ∈ (0, 1), portfolio optimization is
formulated as a chance constrained problem:

min α
sub. to Pr(r(xxx, ξξξ)≤ γ)≤ α,

x1 + x2 + · · ·+ xn = 1,
0 ≤ xi, i = 1, · · · , n.

(12)

where Pr(A) is the probability that event A occurs.

2.2.3 Kataoka’s Model

Contrary to Roy’s model in (12), Kataoka’s model
(Kataoka, 1963) maximizes the desired value γ ∈ ℜ
of the return r(xxx, ξξξ) for an acceptable risk α∈ (0, 0.5)
given by a probability. Then, portfolio optimization is
also formulated as a chance constrained problem:

max γ
sub. to Pr(r(xxx, ξξξ)≤ γ)≤ α,

x1 + x2 + · · ·+ xn = 1,
0 ≤ xi, i = 1, · · · , n.

(13)

2.3 Extended Models

There is a trade-off relationship between return and
risk. Therefore, by using a risk aversion indicator λ ∈
[0, 1], Efficient Frontier model (Chang et al., 2000)
modifies Markowitz’s model defined in (11) as min λσ2(xxx)− (1−λ)µr(xxx)

sub. to x1 + x2 + · · ·+ xn = 1,
0 ≤ xi, i = 1, · · · , n.

(14)
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By changing the value of λ ∈ [0, 1] in (14), we can
obtain the efficient frontier. The efficient frontier is a
continuous curve illustrating the trade-off between the
expected return (mean) and the risk (variance).

Genetic Algorithm (GA), Tabu Search (TS), and
Simulated Annealing (SA) have been applied to a
portfolio optimization problem based on the efficient
frontier model (Chang et al., 2000). Artificial Bee
Colony (ABC) algorithm has been also proposed for
solving a portfolio optimization problem based on the
efficient frontier model (Strumberger et al., 2018).

Portfolio optimization can be also formulated as a
multi-objective optimization problem as

min σ2(xxx) = xxxCCC xxxT

max µr(xxx) = µµµxxxT

sub. to x1 + x2 + · · ·+ xn = 1,
0 ≤ xi, i = 1, · · · , n.

(15)

In order to obtain the efficient frontier for multi-
objective portfolio optimization problems, several
Multi-Objective Evolutionary Algorithms (MOEAs)
have been used successfully (Anagnostopoulos and
Mamanis, 2010; Ponsich et al., 2013).

Cardinality constraints restrict a portfolio to have
a specified number of assets. Specifically, several
assets to be invested in have to be selected from a
list of many assets. Thus, portfolio optimization in-
cluding cardinality constraints is usually formulated
as a mixed integer problem (Konno and Yamamoto,
2005). Furthermore, the number of assets has been
minimized by a multi-objective portfolio optimization
problem (Anagnostopoulos and Mamanis, 2010).

Portfolio optimization is often formulated based
on multiple periods. In order to evaluate the total
return over multiple periods, a risk function called
Mean Absolute Deviation (MAD) has been proposed
(Konno and Yamazaki, 1995). Conditional Value-at-
Risk (CVaR) has been also used to formulate portfolio
optimization considering the return expected through
multiple periods (Angelelli et al., 2008).

In the multi-period framework, transaction costs
have to be paid for any assets. Therefore, a portfolio
optimization problem considering the costs for selling
and buying assets to change the structure of portfolio
between periods has been formulated and solved by
using an extended GA (Aranha and Iba, 2007).

Currently, portfolio optimization is extended in
various ways. For example, Goal Programming (GP)
models have been proposed to compose a portfolio
of international mutual funds (Tamiz et al., 2013). A
deep learning network has been used to predict the
composite index of stock market (Pang et al., 2018).
The latest technology of AI has been also introduced
into portfolio optimization (Obeidat et al., 2018).

3 PROBLEM FORMULATION

Portfolio Optimization Problem using Loan (POPL)
is an extended version of Kataoka’s Model in (13).
The loan can be introduced into any models shown in
(11) to (13). Actually, Markowitz’s Model in (11) is
the most popular one. However, by using Kataoka’s
Model, we can decide the interest rate of loan from an
acceptable risk α ∈ (0, 0.5) given in advance.

3.1 Portfolio Including Loan

The borrowing money from loan is invested in risk
assets. Let x0 ∈ ℜ be the proportion of loan used for
a portfolio xxx ∈ ℜn. Let M ∈ ℜ, M > 0 be the upper
limit of the loan, which is specified by a multiple of
owned capital. If the loan is not used, the proportion
of loan is x0 = 0. On the other hand, if the loan is used
up to the limit, the proportion of loan is x0 = −M.
Therefore, the constraints of POPL are(

x0 + x1 + x2 + · · ·+ xn = 1,
−M ≤ x0 ≤ 0, 0 ≤ xi, i = 1, · · · , n.

(16)

From the first constraint in (16), the proportion of
loan x0 ∈ ℜ used for a portfolio xxx ∈ ℜn is

x0 = 1−1lxxxT (17)

where 1l ∈ ℜn is a vector defined as 1l = (1, · · · , 1).
Let L ∈ ℜ be the interest rate of loan. The interest

rate L ∈ ℜ, L ≥ 0 is a constant value. Considering the
proportion of loan x0 ≤ 0 and L ≥ 0, the return r(xxx, ξξξ)
of a portfolio xxx ∈ ℜn defined in (7) is revised as

g(xxx, ξξξ) = r(xxx, ξξξ)+Lx0

= ξξξxxxT +L(1−1lxxxT )

= (ξξξ−L1l)xxxT +L.
(18)

According to the reproductive property of normal
distribution (Ash, 2008), the return of POPL in (18)
also follows a normal distribution as

g(xxx, ξξξ)∼ Normal(µg(xxx), σ2(xxx)) (19)

where the mean is given as

µg(xxx) = (µµµ−L1l)xxxT +L. (20)

The variance σ2(xxx) in (19) is given by (10).

3.2 Portfolio Optimization using Loan

As stated above, POPL is formulated as an extended
version of Kataoka’s Model in (13). An acceptable
risk α ∈ (0, 0.5) is given in advance. Therefore, from
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Figure 1: Feasible region of POPL.

(16) and (18), POPL is also formulated as a chance
constrained problem:

max γ
sub. to Pr(g(xxx, ξξξ)≤ γ)≤ α,

x1 + x2 + · · ·+ xn ≤ M+1,
x1 + x2 + · · ·+ xn ≥ 1,
0 ≤ xi, i = 1, · · · , n

(21)

where the proportion of loan x0 ∈ [−M, 0] does not
appear in (21) because it has been eliminated from
the constraints in (16) by using the equation in (17).

The chance constrained problem is usually hard
to solve directly (Prékopa, 1995). However, we can
transform the above POPL in (21) into an equivalence
problem. Since the return g(xxx, ξξξ) of POPL follows
the normal distribution in (19), we can standardize the
chance constraint of POPL in (21) as

Pr
(

g(xxx, ξξξ)−µg(xxx)
σ(xxx)

≤
γ−µg(xxx)

σ(xxx)

)
≤ α. (22)

Furthermore, the probability in (22) is written as

Φ
(

γ−µg(xxx)
σ(xxx)

)
≤ α (23)

where Φ : ℜ → [0, 1] is the Cumulative Distribution
Function (CDF) of the standard normal distribution.

From (23), we can derive the equivalence problem
of the chance constrained problem in (21) as

max γ(xxx) = µg(xxx)+Φ−1(α)σ(xxx)
sub. to x1 + x2 + · · ·+ xn ≤ M+1,

x1 + x2 + · · ·+ xn ≥ 1,
0 ≤ xi, i = 1, · · · , n.

(24)

The equivalence problem in (24) is a deterministic
one. Thus, we don’t need to evaluate the probability
that appears in (21). The deterministic optimization
problem in (24) is also called POPL in this paper.

Figure 1 illustrates the feasible region of POPL for
the case of n = 2. The feasible region is denoted by

the gray area between two hyper-planes. If a portfolio
xxx ∈ ℜn doesn’t use the loan (x0 = 0), it exists on the
lower plane: 1lxxxT = 1. On the other hand, if a port-
folio xxx ∈ ℜn uses the loan up to the limit (x0 =−M),
it exists on the upper plane: 1lxxxT = M+1.

3.3 Solution of Problem

We consider the solution of POPL in (24).
Lemma 1. The standard deviation σ(xxx) defined by
(10) is convex (Tagawa, 2019).

Proof. Since the covariance matrix CCC in (6) is positive
semi-definite, it can be decomposed as

σ(xxx) =
√

xxxCCC xxxT =
√

xxxAAAAAAT xxxT =
√

yyyyyyT (25)
where CCC = AAAAAAT and yyy = xxxAAA ∈ ℜn.

From (25), σ(xxx) is a norm. The norm meets the
triangle inequality for any θ ∈ [0, 1] as

σ(θxxx+(1−θ) x̂xx)≤ σ(θxxx)+σ((1−θ) x̂xx). (26)
The right side of (26) can be transformed as

σ(θxxx) =
√

θyyy(θyyy)T = θ
√

yyyyyyT = θσ(xxx). (27)

From (26) and (27), we have
σ(θxxx+(1−θ) x̂xx)≤ θσ(xxx)+(1−θ)σ(x̂xx). (28)
From (28), σ(xxx) in (10) is a convex function.

Theorem 1. The objective function γ(xxx) of POPL in
(24) is concave. In other words, −γ(xxx) is convex.

Proof. From (20) and γ(xxx) in (24), we have
θγ(xxx)+(1−θ)γ(x̂xx)− γ(θxxx+(1−θ) x̂xx)

= Φ−1(α)×
(θσ(xxx)+(1−θ)σ(x̂xx)−σ(θxxx+(1−θ) x̂xx)).

(29)

From Lemma 1 and Φ−1(α)< 0 for α ∈ (0, 0.5),
the right side of (29) is negative. Hence, we have

γ(θxxx+(1−θ) x̂xx)≥ θγ(xxx)+(1−θ)γ(x̂xx). (30)
From (30), γ(xxx) in (24) is a concave function.

Since all constraints of POPL in (24) are linear,
the feasible region of POPL is convex. Furthermore,
from Theorem 1, POPL is a convex optimization
problem. If xxx⋆ ∈ ℜn is a local optimal solution of a
convex optimization problem, the solution xxx⋆ ∈ ℜn is
guaranteed to be a global optimal one of the convex
optimization problem (McCormick, 1983).

The gradient of γ(xxx) in (24) can be derived as

∇γ(xxx) = (µµµ−L1l)+Φ−1(α)
xxxCCC√
xxxCCC xxxT

. (31)

The global optimal solution xxx⋆ ∈ ℜn of POPL in
(24) satisfies either of the following two conditions.
• ∇γ(xxx⋆) = 000 holds.
• Some constraints in (24) are active with xxx⋆ ∈ ℜn.
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4 INTEREST RATE OF LOAN

4.1 Proper Interest Rate

We think about a proper interest rate of loan L ∈ ℜ
that benefits borrowers to get much return.

Let xxx ∈ ℜn be a portfolio of POPL in which the
loan is not used as x0 = 0. Therefore, 1lxxxT = 1 holds.
For xxx ∈ ℜn, the objective function in (24) is

γ(xxx) = µg(xxx)+Φ−1(α)σ(xxx)
= (µµµ−L1l)xxxT +L+Φ−1(α)σ(xxx)
= µµµxxxT +L(1−1lxxxT )+Φ−1(α)σ(xxx)
= µµµxxxT +Φ−1(α)σ(xxx)
= µr(xxx)+Φ−1(α)σ(xxx) = γ0(xxx).

(32)

Theorem 2. Let xxx ∈ ℜn be a solution of POPL in
which the loan is not used as x0 = 0. The solution can
be improved by borrowing money from the loan if the
interest rate of loan L ∈ ℜ meets the condition:

γ0(xxx)> L (33)

where γ0(xxx) = µr(xxx)+Φ−1(α)σ(xxx).

Proof. Let’s consider a new portfolio x̂xx = κxxx, κ > 1.
The new portfolio x̂xx ∈ ℜn borrows money as

x̂0 = 1−1l x̂xxT = 1−κ1lxxxT = 1−κ < 0 (34)

where x̂0 ∈ ℜ is the proportion of loan for x̂xx ∈ ℜn.
The objective function value of x̂xx ∈ ℜn is

γ(x̂xx) = (µµµ−L1l) x̂xxT +L+Φ−1(α)σ(x̂xx)
= κ(µµµ−L1l)xxxT +L+κΦ−1(α)σ(xxx)
= κγ0(xxx)+L(1−κ1lxxxT ).

(35)

From (35) and 1lxxxT = 1, the difference between
the returns of x̂xx ∈ ℜn and xxx ∈ ℜn is γ(x̂xx)− γ0(xxx)

= (κ−1)γ0(xxx)+L(1−κ1lxxxT )

= (κ−1)(γ0(xxx)−L).
(36)

If the condition in (33) is satisfied, we have

γ(x̂xx)> γ0(xxx). (37)

Therefore, x̂xx ∈ ℜn is better than xxx ∈ ℜn.

Theorem 3. Let xxx ∈ ℜn be a solution of POPL that
uses the loan. The portfolio xxx ∈ ℜn borrows money
from the loan up to the limit such as x0 =−M if

γ(xxx)> L. (38)

Figure 2: Portfolio x̂xx ∈ ℜ2 is better than xxx ∈ ℜ2.

Proof. Let’s consider a new portfolio x̂xx = κxxx, κ > 1.
The new portfolio x̂xx ∈ ℜn borrows much money than
the current one xxx ∈ ℜn as

x̂0 = 1−1l x̂xxT = 1−κ1lxxxT

< 1−1lxxxT = x0 ≤ 0
(39)

where x̂0 ∈ ℜ is the proportion of loan for the new
portfolio x̂xx ∈ ℜn, while x0 ∈ ℜ is the proportion of
loan for the current portfolio xxx ∈ ℜn.

The objective function value of xxx ∈ ℜn is

γ(xxx) = µg(xxx)+Φ−1(α)σ(xxx)
= (µµµ−L1l)xxxT +L+Φ−1(α)σ(xxx).

(40)

The objective function value of x̂xx ∈ ℜn is

γ(x̂xx) = µg(x̂xx)+Φ−1(α)σ(x̂xx)
= κ(µµµ−L1l)xxxT +L+κΦ−1(α)σ(xxx).

(41)

From (40) and (41), the gap between them is

γ(x̂xx)− γ(xxx) = (κ−1)(γ(xxx)−L). (42)

From (42) and κ > 1, if the condition in (38) is
satisfied, x̂xx ∈ ℜn is better than xxx ∈ ℜn as

γ(x̂xx)> γ(xxx). (43)

Consequently, every portfolio xxx ∈ ℜn of POPL
that satisfies the condition in (38) can be improved
proportionally to the amount of debt.

Please notice that if the condition shown in (33)
is satisfied by an interest rate L ∈ ℜ and a portfolio
xxx ∈ ℜn (x0 = 0), the condition in (38) is also satisfied
by the interest rate L ∈ ℜ and a new portfolio x̂xx ∈ ℜn

(x̂0 < 0) generated as x̂xx = κxxx, κ > 0. That is because
the relation γ(x̂xx) > γ0(xxx) > L holds. Besides, from
Theorem 3, the portfolio x̂xx ∈ ℜn exists on the upper
plane such as 1l x̂xxT = M + 1. Figure 2 illustrates the
above xxx ∈ ℜn and x̂xx ∈ ℜn for the case of n = 2.
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4.2 Interest Rate Decision Method

The low interest rate of loan benefits borrowers. On
the other hand, the high interest rate doesn’t benefit
lenders because such a loan is not often used. Hence,
we propose a method to decide an interest rate of loan
that benefits both borrowers and lenders.

We formulate a sub-problem of POPL in the case
that the loan is not used. From (32) and 1lxxxT = 1, the
sub-problem of POPL can be formulated as max γ0(xxx) = µr(xxx)+Φ−1(α)σ(xxx)

sub. to x1 + x2 + · · ·+ xn = 1,
0 ≤ xi, i = 1, · · · , n.

(44)

In the same way with Theorem 1, we can prove
that the sub-problem of POPL in (44) is also a convex
optimization problem. Furthermore, the gradient of
γ0(xxx) in (44) can be derived as

∇γ0(xxx) = µµµ+Φ−1(α)
xxxCCC√
xxxCCC xxxT

. (45)

From Theorem 2, the procedure of the proposed
interest rate decision method is stated as follows:

Step 1: Give an acceptable risk α ∈ (0, 0,5).

Step 2: By solving the sub-problem of POPL in (44)
with the above risk α, get a solution xxx⋆ ∈ ℜn.

Step 3: Choose a proper value for the interest rate of
loan L ∈ ℜ in the range from 0 to γ0(xxx⋆).

If γ0(xxx⋆)≤ 0 holds in Step 2, we should give up the
investment in assets. That is because POPL doesn’t
have any solutions that generate profits. Otherwise,
we need to increase the acceptable risk α ∈ (0, 0.5) in
Step 1. Then, we look for another L ∈ ℜ again.

From Theorem 3, if the interest rate of loan L ∈ ℜ
is decided by the proposed method, POPL in (24) can
be written by a rather simple form as max γ(xxx) = µg(xxx)+Φ−1(α)σ(xxx)

sub. to x1 + x2 + · · ·+ xn = M+1,
0 ≤ xi, i = 1, · · · , n.

(46)

Please notice that the portfolio x̂xx = κxxx⋆ generated
by the optimal solution xxx⋆ ∈ ℜn of the sub-problem
of POPL in (44) is not guaranteed to be an optimal
solution of POPL in (46). Therefore, we have to solve
POPL in (46) seriously under the interest rate of loan
L ∈ ℜ decided by using the proposed method.

5 NUMERICAL EXPERIMENT

For solving convex optimization problems shown in
(24), (44), and (46), an interior point method provided

Table 1: Mean and variance of asset return by port0.

ξi ξ1 ξ2 ξ3 ξ4
µi 0.05 0.06 0.07 0.08
σ2

i 0.102 0.202 0.152 0.252

Table 2: Correlation coefficient by port0.

ρi j ξ1 ξ2 ξ3 ξ4
ξ1 1.0 −0.7 0.1 −0.4
ξ2 −0.7 1.0 −0.5 0.2
ξ3 0.1 −0.5 0.1 −0.3
ξ4 −0.4 0.2 −0.3 1.0

Table 3: Index of data set and number of assets.

Data set Index n
port1 Hang Seng 31
port2 DAX 85

by MATLAB (López, 2014) is employed. In order to
enhance the performance of the interior point method,
the gradients of objective functions, namely ∇γ(xxx) in
(31) and ∇γ0(xxx) in (45), are used explicitly. As stated
above, the optimality of the solutions xxx ∈ ℜn obtained
the interior point method have been also verified.

5.1 Problem Instances

Instances of POPL are defined by using three data sets
of assets, which are named port0, port1, and port2.

The data set called port0 is given by Table 1 and
Table 2. The port0 consists of n = 4 assets. Table 1
shows the mean µi and variance σ2

i of asset returns
ξi ∈ ℜ, n = 1, · · · , n. Table 2 shows the correlation
coefficient ρi j between asset returns ξi and ξ j.

The data sets called port1 and port2 are provided
by OR-Library (Beasley, 1990). The data set contains
means, variances, and a coefficient matrix of n asset
returns. Table 3 shows the capital market indices of
those data sets and the numbers of their assets.

5.2 Fixed Interest Rate

From each of the data sets, POPL is formulated as
shown in (24). By changing the value of the risk
α ∈ (0, 0.5), POPL in (24) is solved repeatedly. A
constant value is used for the interest rate of loan
L ∈ ℜ regardless of the value of α ∈ (0, 0.5).

Figure 3 shows the efficient frontier evaluated for
POPL of port0, where the upper limit of loan is given
as M = 2. Three different interest rates, L = 0.03,
0.04, and 0.05, are compared in Figure 3. “None” is
the efficient frontier when the loan is not used.

Figure 4 shows the proportion of loan x0 ≤ 0 for
each portfolio shown in Figure 3. Since “None”
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Figure 3: Efficient frontier for port0 with M = 2.

Figure 4: Proportion of loan x0 for port0 with M = 2.

Figure 5: Efficient frontier for port0 with M = 3.

Figure 6: Proportion of loan x0 for port0 with M = 3.

doesn’t use the loan, it keeps x0 = 0 in Figure 4.

Figure 5 shows the efficient frontier evaluated for
port0 with M = 3. Figure 6 shows the proportion of
loan x0 ∈ [−M, 0] for each portfolio in Figure 5.

From Figure 3 and Figure 5, we can confirm that
the efficient frontier is further improved by borrowing

Figure 7: Efficient frontier for port1 with M = 2.

Figure 8: Proportion of loan x0 for port1 with M = 2.

Figure 9: Efficient frontier for port1 with M = 3.

Figure 10: Proportion of loan x0 for port1 with M = 3.

much more money. Furthermore, from Figure 4 and
Figure 6, we can see that the loan is always used up
to the limit (x0 =−M) regardless of its value M.

Figure 7 shows the efficient frontier evaluated for
port1 with M = 2. Figure 8 shows the proportion of
loan x0 ∈ [−M, 0] for each portfolio in Figure 7.

An Interest Rate Decision Method for Risk-averse Portfolio Optimization using Loan

21



Figure 11: Efficient frontier for port2 with M = 2.

Figure 12: Proportion of loan x0 for port2 with M = 2.

Figure 13: Efficient frontier for port2 with M = 3.

Figure 14: Proportion of loan x0 for port2 with M = 3.

Figure 9 shows the efficient frontier evaluated for
port1 with M = 3. Figure 10 shows the proportion of
loan x0 ∈ [−M, 0] for each portfolio in Figure 9.

Figure 11 shows the efficient frontier evaluated for
port2 with M = 2. Figure 12 shows the proportion of
loan x0 ∈ [−M, 0] for each portfolio in Figure 11.

Table 4: Interest rate of loan by proposed method.

α 0.05 0.10 0.15 0.20 0.25
port0 0.005 0.010 0.015 0.020 0.020
port1 — — 0.001 0.001 0.005
port2 0.001 0.002 0.004 0.006 0.008

α 0.30 0.35 0.40 0.45
port0 0.025 0.030 0.035 0.040
port1 0.005 0.010 0.015 0.020
port2 0.010 0.010 0.012 0.015

Figure 15: Efficient frontier for port0.

Figure 16: Proportion of loan x0 for port0.

Figure 13 shows the efficient frontier evaluated for
port2 with M = 3. Figure 14 shows the proportion of
loan x0 ∈ [−M, 0] for each portfolio in Figure 13.

From Figure 12 and Figure 14, the loan is not used
at all when the interest rate is high (L = 0.03).

From Figure 3 to Figure 14, we can confirm that
the use of loan works well for improving the efficient
frontier. Besides, the loan is always used up to the
limit as x0 = −M. The lower interest rate provides
higher return and benefits borrowers. On the other
hand, the high interest rate of loan doesn’t benefit
lenders because such a loan is not often used. The
high interest rate of loan doesn’t benefit borrowers,
either. That is because the efficient frontier can’t be
improved for borrowers without using the loan.

5.3 Variable Interest Rate

From each of the data sets, POPL is formulated as
shown in (46). According to the proposed method,

COMPLEXIS 2020 - 5th International Conference on Complexity, Future Information Systems and Risk

22



Figure 17: Efficient frontier for port1.

Figure 18: Proportion of loan x0 for port1.

Figure 19: Efficient frontier for port2.

Figure 20: Proportion of loan x0 for port2.

a proper interest rate of loan L ∈ ℜ is decided for
each of the risk α ∈ (0, 0.5) as shown in Table 4.
The loan can’t be used for port1 when the risk is too
low (α ≤ 0.1). That is because the optimal solution
xxx⋆ ∈ ℜn of the sub-problem of POPL in (44) doesn’t
meet γ0(xxx⋆) ≥ 0. For each pair of α and L shown in

Table 4, POPL in (46) is solved repeatedly.
Figure 15 shows the efficient frontier evaluated for

port0, where the proper interest rate L ∈ ℜ in Table 4
is used for each risk α ∈ (0, 0.5). Two different upper
limits, M = 2 and M = 3, are compared in Figure 15.

Figure 16 shows the proportion of loan for each
portfolio shown in Figure 15. From Figure 16, we can
confirm that every portfolio except “None” borrows
money from the loan up to the limit as x0 =−M.

Figure 17 shows the efficient frontier evaluated for
port1 with the interest rate of loan L ∈ ℜ in Table 4.
The loan is not used for the low risks, α = 0.05 and
α = 0.1, in Figure 17. Figure 18 shows the proportion
of loan for each portfolio shown in Figure 17.

Figure 19 shows the efficient frontier evaluated for
port2 with L ∈ ℜ in Table 4. Figure 20 shows the
proportion of loan for each portfolio in Figure 19.

From Figure 15 to Figure 20, we can confirm that
the loan with the proper interest rate L ∈ ℜ is always
used for improving the efficient frontier regardless of
the acceptable risk α ∈ (0, 0.5). Furthermore, we can
see that the return γ(xxx) of the optimal solution xxx ∈ ℜn

for POPL depends not only on the risk α but also on
the upper limit of loan M. Specifically, we can get
more return by borrowing more money.

6 CONCLUSION

Portfolio optimization using loan has been formulated
as POPL and solved in this paper. The emphasis of
our work is on the proposal of an interest rate decision
method for POPL. From an acceptable risk α, the pro-
posed method can derive a proper interest rate of loan
L that benefits both borrowers and lenders. Thereby,
POPL in (24) can be also written by a rather simple
form in (46). Finally, from the result of the numeri-
cal experiment, we have confirmed that the efficient
frontier is improved by using the loan completely.

As mentioned above, the proposed method in this
paper benefits both borrowers and lenders. Therefore,
we can expect that the proposed method contributes
to economic revitalization through active investment
using loan. On the other hand, we have to choose
the acceptable risk α ∈ (0, 0.5) carefully to use the
proposed method safely and effectively.

For future work, we will extend POPL based on a
multi-period framework. Furthermore, we would like
to include cardinality constraints into POPL.
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