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Abstract: Flexible reorganization of complex IoT (Internet-of-Things)-based sensor networks is crucial for the 
alignment of the sensor network’s operational dynamics with that of the monitored external phenomenon. 
Software-Defined Networking (SDN), when supported by Cloud-level Network Virtualization (NV), offers a 
prospective avenue for a flexible sensor network that can re-orchestrate as the monitored process demands. 
In order to allow for seamless softwarization of the sensor network functional entities, this paper promotes 
function modularization and establishment of both virtual repositories of reusable software modules as well 
as requisite operational software. An architectural solution that is aligned with Industry 4.0’s ideology is 
presented in this work. This along with the software-defined resources is deemed as a viable solution to re-
orchestrate the physical sensor network. By means of example simulation scenarios, this paper highlights the 
utility of NV for flexible soft trialling of sensor network topological re-orchestration and highlighting the 
possible network downtime associated with that operation. The outcome offers potential for the utilization of 
the virtual environment and the dynamics retained within it to offer ground for pre-planning for best possible 
re-orchestration scenario that comply with adaptive interaction with the dynamics of the physical 
environment.

1 INTRODUCTION  

Typical IoT-based sensor network organizations 
entail complex architectures in provisioning the 
necessary internet connectivity between the physical 
wireless sensor network (WSN) and the remote cloud 
server (Ezdiani et al., 2017, Ezdiani et al., 2015). 
Flexible operation of such IoT-based sensor network 
deployments is of critical importance as it engages 
with its physical surroundings (Violettas et al., 2017, 
Ndiaye et al., 2017). Network Virtualization, in 
conjunction with Software-Defined Networking 
(SDN), holds considerable potential to unlock the 
requisite salience offered by a programmatic and 
flexible IoT-based system solution (Modieginyane et 
al., 2018, Ojo et al., 2016, Gupta 2018, Acharyya et 
al., 2016, He et al., 2019). 

The core principle behind SDN is to decouple the 
control plane from the data plane to allow for 
centralised configurability of the network (via 
virtualizing the underlying functions and decision-
making process) (Nguyen et al., 2016, Kobo et al., 
2017, Mostafaei et al., 2018, Bera et al., 2017). 

Herein, SDN controller(s) is the essential entity, 
which possesses the overall (centralised) view of the 
network and is responsible for both management of 
the underlying functions as well as efficient routing 
of data. On its merger with Network Virtualization, 
the role of the SDN is that of an ‘orchestrator’ (e.g. 
between ‘sliced virtual networks’) (Modieginyane et 
al., 2018). A variety of proposals, employing SDN-
based approaches, have been put forth to address 
issues pertaining to flexible and dynamic topological 
manipulation of WSNs. (Haque et al., 2019) utilise 
the concept of SDN within their proposed ‘SDSense’ 
architecture to devise a centralised logical controller 
that could preside over the configuration of software-
embedded sensors residing in the data plane. 
Equipped with topology control modules (amongst 
other modules viz., routing and scheduling modules) 
as well as provision for user-governed addition and 
removal of logical modules, the central controller 
plays an important role in influencing the 
functionality and topology of the network. 

Jemal et al., 2013 pursue self-adaptation within 
WSN by means of conventional adaptive approach. 
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The paper used certain adaptive middleware control 
components. His paper focuses on cluster based WSN 
and does not emphasize upon the aspect of network 
re-orchestration from a topological standpoint. 
Results pertaining to improvement in network 
performance as a result of software-defined 
topological re-orchestration have not been included 
within their paper. The efficacy of establishing a 
singular repository catering for data storage as well as 
knowledge and functional (core as well as auxiliary) 
components in augmenting the flexibility of the 
network is not considered. In their approach the 
planning is driven via a pre-defined ruleset. Also, the 
authors consider a simple case of network rupture 
caused by sensor mobility and resolve it by means of 
enabling it to ‘adapt’ and connect to the gateway 
within range. The aspect of network downtime is not 
investigated. With the emergence of technologies like 
cloud-based services, software defined networks, 
Industrial IoT and virtualization, a more flexible and 
open approach could be facilitated for adaptively 
manipulating the sensor network. This in effect allow 
for open capability of accommodating knowledge 
acquisition and learning with time. Here the context 
of this paper is to highlight the potential here and 
suggest related architecture. 

Kipongo et al., 2018 incorporate a ‘Topology 
Management’ within the SDN controller, enabling it 
with the capability to visualize the topology of their 
Software Defined Wireless Sensor Networks 
(SDWSN) architecture. No evaluation of the 
proposed work is presented. The authors 
acknowledge the importance of developing a 
topology discovery protocol that would entail 
minimum latency, which led them to undertake a 
survey of ‘Topology Discovery’ within the SDN 
domain. Galluccio et al., 2015 put forth an SDN-
based solution for wireless sensor networks, namely 
‘SDN-WISE’ wherein the ‘WISE-visor’ controller, 
consisting of a ‘Topology Management’ layer, is 
responsible for governance of the logics pertaining to 
network management. The role of the ‘Topology 
Management’ layer within this architecture is to a) 
virtualize underlying network functions, b) extract the 
necessary information viz., battery capacity, address, 
RSSI (Received Signal Strength Indication), etc. from 
the underlying devices and relay them over to the 
controller(s) and c) exert control over the stack layers 
denoted by the controller(s). Abdolmaleki et al. 2017 
incorporate a fuzzy-based topology discover protocol 
on top of the SDN-WISE solution to enhance network 
efficiency via increasing network lifetime and 
decreasing packet losses. In a bid to address device 
and ‘network topology’ management issues in IoT-

based WSNs, Bera et al. 2018 employ the concept of 
SDN to design a controller equipped with node and 
network-specific rule-based management policies to 
exert control over the respective packet formats. In 
another research effort to enhance software-defined 
control over IoT-based sensor network topologies, 
Theodorou et al., 2017 put forth the ‘Coral-SDN 
architecture’ wherein the centralized ‘CORAL’ 
controller is entrusted with responsibility to manage 
network dataflow. The ‘CORAL controller’ 
comprises of a modular ‘Decision Making’ 
subsystem (consisting of certain rules and algorithms) 
to allow for rule-based adaptation of network 
topology and routing control functionalities. The 
controller also consists of a ‘Network Modeller’ 
module that retains a graph-based abstracted view of 
the underlying network. Information pertaining to 
radio signal strength and link quality can be derived 
from here. 

While the above documented state of the art 
presents important progress towards the WSN based 
cyber-physical operation, it lacks penetration towards 
number of operational drivers. These are relevant to 
the dynamics of the interaction between the cyber and 
physical environments when operational changes 
need to be physically implemented. Here, both soft 
trialling of various re-orchestration scenarios on a 
virtual platform, and examination of performance 
implications associated with physical WSN 
downtime have, to the best of our knowledge, not 
received significant attention. The latter is important 
performance measure that reflect capability of the 
system to cope with the real time monitoring demand 
of the monitored process or phenomenon. 

Similar to that embodied by the concept of SDN, 
our work also involves virtualization of the 
underlying data plane (physical) functions but 
emphasizes upon formulation of a ‘Data and 
Knowledge’ repository of the necessary WSN core 
and auxiliary virtual functional modules that could 
reside at the cloud (or the IT-layer) as documented in 
a previous research work of ours (Acharyya et al., 
2019). It is anticipated that interactive collaboration 
amongst the virtualization unit and the software 
repository could offer an adequate framework for 
requisite flexible soft trials. 

This paper offers novel approach to the support of 
the overall process of software-defined re-
orchestration and relate them to the proposed Industry 
4.0-based architectural solution. Overall, the 
objective of this paper is to present an architectural 
solution capable of capitalizing on SDN-enabled 
virtualization technology to modularly allow for the 
necessary real-time interaction with the operational 
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dynamics related to those of the prevailing service 
needed for the monitored phenomenon. 

The rest of the paper is organized in the following 
manner. The proposed ideology of the ‘three core 
modular network functions that constitute any IoT-
based sensor network is spelt out in section 2. Section 
3 details the proposed Industry 4.0-based 
architectural framework for IoT-based sensor 
network, which allows for the necessary flexible 
network re-orchestration through virtualization and 
software control. Example sensor network re-
orchestration scenarios, along with certain simulation 
based flexible WSN topological re-orchestration 
cases, are presented in section 4. The ‘network 
downtime’ associated with the re-orchestration 
process is highlighted in section 5 by means of two 
simulation-based examples. Finally, the conclusion 
of this research work is presented in section 6. 

2 FLEXIBLE WSN NETWORK 
FUNCTIONAL COMPONENTS 

An IoT-based sensor network organization should 
have basic functionalities for wireless sensing, data 
routing and Internet gateway access (Acharyya et. al., 
2019). These three key generic functions can act as 
standalone functions on individual devices or 
integrate as two or three functions on the same device 
depending on the ability of the hardware host to 
accommodate for these functions. Modern approach 
in offering edge computing allow for further auxiliary 
functional units coupled with these three generic 
functions in support of the system computational 
requirements and enhance the real time performance. 
Figure 1 depicts the ‘core’ and example ‘auxiliary’ 
roles executed by each of the three generic functions. 

As shown in figure 1, core activities associated 
with ‘Leaf function’ pertain to ‘Sensing and Data-
acquisition’ functions viz., sensor selection amongst 
heterogeneous sensing, and sampling rate relevant 
data acquisition of each type of the required sensing 
as well as maintenance of connectivity with router (or 
Gateway) node via bidirectional radio messages. On 
the other hand, example auxiliary activities that may 
be assumed by the leaf node include edge-computing-
based data management tasks such as buffering, 
queueing, compression, and digital signal processing. 
Also, depending upon capabilities possessed by the 
hardware employed, it may assume and execute 
higher functional roles of ‘data routing’ and IoT-
enabled connectivity utilizing protocol such as 
6LowPAN. This, in effect, enables the node to be 

directly accessible through the internet. Core and 
auxiliary functions pertaining to ‘Router node’ are 
also depicted in figure 1. Herein, routing of sensed 
data (obtained from the leaf nodes) over to the ‘sink’ 
or ‘Gateway nodes as well as acting as a ‘cluster-
head’ for a group of lower level (leaf) sensor nodes 
are identified as two key core functions that could be 
attributed to a router node. Its auxiliary functions may 
include aggregation and processing of group of data, 
undertaking the role of leaf node or that of an IoT-
enabled Gateway node, depending upon resources 
encompassed by the hardware. Finally, as depicted in 
figure 1, the core activities associated with the 
gateway node include facilitating as a local sink for 
the data generated by the network, escalating the 
accumulated data to the upper level IT-layer over the 
internet. The ‘Edge Computing’-based tasks viz., 
management and processing of sensed data, buffering 
and/or organizing queue of sensed data, in addition to 
assuming the role of a leaf node, if both necessary and 
feasible, constitute its auxiliary activities. 

 

Figure 1: Example core and auxiliary activities that can be 
attributed to main functions composing an IoT-enabled 
sensor network organization viz., (a) Leaf (or end device) 
sensing functionality, (b) Routing functionality and (c) IoT-
based WSN Gateway functionality. 

The above categorization of IoT-based sensor 
network functionalities allows for scalability of the 
network. For example, a single node system has all 
the functions integrated in one node. The gateway 
here also assumes the sensing capabilities, which is a 
typical IoT device. A two-node network has both the 
leaf and gateway functionalities. Further sizes should 
include two or three type of core functions involved. 
Typical example organizations of star, tree or multi-
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hop connectivity are shown by figure 2. They are 
quite common in sensor network organizations. 
Example implementation is the use of TI CC2538 as 
wireless sensor and/or wireless router is quite 
common as the device offers numerous capabilities of 
facilitating interaction with heterogeneous sensing, 
facilitating reasonable computational and storage 
capability and hosting wireless low-power protocol. 
The latter includes the IoT capability through the 
6LowPAN. The Raspberry Pi is another typical 
example for a gateway implementation. This offers 
ample resources for facilitating the bridging between 
the low power wireless sensor network protocol and 
the internet protocol and facilitate the needs for the 
transport layer. 

 

Figure 2: Example WSN implementation scenarios core (a) 
Star Connectivity, (b) Tree Connectivity and (c) Serial 
Connectivity. 

Cloud-based virtualization support can be gained 
using operating system (OS) like Contiki. This OS 
offers Cooja simulation environment. Cooja is a 
Contiki-based simulator wherein the same Contiki-
OS based C codes are used for compiling and 
programming the virtual Cooja nodes as that 
employed for the TI CC2538 wireless sensor-cum-
transceivers. By virtue of this, the virtual Cooja 
simulator mimics the physical processes of the 
underlying TI CC2538-based physical sensor node or 
network. Such relation between the physical network 
entities and their virtual counterparts, enable services 
such as remote re-orchestration and associated 
performance analysis. 

Defining these controls as software modules 
would render them capable of undergoing dynamic 
configurational manipulations. This is by switching 
over from one functional role to another and/or 
incorporating additional ‘IoT-WSN’-centric software 
tasks, there by allowing for augmented flexibility of 
the individual functions, and hence overall WSN 
network. As a step to achieve this, it is deemed viable 
to establish a structured ‘Data and Knowledge 
Repository, which besides accommodating for 
historical data as well as solution patterns, also caters 

for the formulation of both ‘core’ and ‘auxiliary’ 
software modules that could be accessed by the SDN-
enabled virtualization environment. This aspect is 
discussed later in section 3. 

3 PROPOSED ARCHITECTURE  

The proposed architecture for IoT-based sensor 
networks is as depicted in figure 3. At the upper level 
there are two major layers. These are the ‘Information 
Technology’ (IT) and the ‘Operational Technology’ 
(OT) layers that accommodate for the virtual and 
physical layers respectively. The IT-layer hosts the 
‘Data and Knowledge’ repository as well as control 
and virtualization management resources. This 
facilitate the components for establishing and 
managing the virtualized environment. It should also 
allow for performing the testing of new virtual 
network setting before the necessary network re-
orchestrations applied on the physical network at the 
OT layer.  

 

Figure 3: Proposed IoT-based sensor network organization. 

The objective is for orchestration and testing of 
the virtual network behaviour before final reflection 
on the physical network. Being scalable in nature, the 
‘Data and Knowledge’ repository could also 
accommodate for reusable patterns that relate to 
previous experiences, besides hosting the known 
knowledge components. Accommodation for known 
solutions associated with known events is one of the 
important features. This allow the system to retain 
and accumulate experiences with time. The platform 
also facilitates important playground for assessing 
any planned changes to the physical environment 
before actual execution of the change. This may 
impose real time sensitive demands especially when 
it comes to applications with high degree of 
dynamics. 

The OT layer consists of the physical wireless 
sensor network nodes deployed for the necessary 
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sensing and monitoring purposes. Physical data 
collected by the various clusters of ‘leaf nodes’ or 
‘end devices’ are routed by their respective ‘router’ 
nodes which pass it over to their respective IoT-
enabled gateway nodes. Certain sensor-motes as the 
TI CC2538 employed by us (and as previously 
alluded to in section 2) could be software-
reconfigured to execute multi-functional tasks. For 
example, upon incorporation and activation of the 
respective software component, they could execute 
dual functionalities of both router and leaf node, as 
required. When functioning as a leaf node, the TI 
CC2538 can acquire heterogeneous sensor data viz., 
temperature of external surroundings, radio signal 
strength, etc. Node-operational parameters pertaining 
to physical layer (e.g. sensor selection, rate of 
sampling of the heterogeneous data, etc.), MAC layer 
(e.g. implementation of communication protocol viz., 
TDMA, CSMA, etc.) can be dictated through 
software control. 

The ability to flexibly switch to a different 
functional role when required is an important feature 
to realize the vision of a software defined and flexible 
IoT sensor network organization that can be 
orchestrated through software control. As mentioned 
earlier, any IoT-based software-defined sensor 
network organization is composed of three key 
functional modules viz., Leaf function, Router 
function and the IoT Gateway function, that could be 
either switched, merged, disassembled or tweaked by 
means of software control. Advancements made in 
field of SoC technology render certain wireless-
microcontroller sensor-transceiver devices to be 
capable of accommodating for and executing more 
than one of the core functionalities at a time. Such 
hardware sensor-cum- could be pre-configured or 
loaded with one or of the three functions with the help 
of the related software.  

Equipped with protocol conversion capabilities as 
well as computational, IoT-enabled gateway such as 
the Raspberry Pi facilitates the necessary bridging of 
protocols. It could cater for ‘Edge Computing’ i.e. the 
requisite data processing and computation operations 
(viz., data compression, data buffering, queueing [1, 
2], etc.) prior to escalating the sensed data (obtained 
from the router nodes) to the IT-layer over the 
internet. The IT layer could either be accessed by a 
single gateway that relates to all other cluster heads 
or by multiple gateways (governing their respective 
clusters) simultaneously. The ability of nodes 
switching functions through software allows for 
numerous topological scenarios and hence offer 
flexibility for the network to maneuver with the 
situation. 

The IT layer is composed of three main 
components viz., ‘Data and Knowledge Repository’, 
‘Operational Software’ as well as the ‘Virtual 
Nework’. 

The ‘Data and Knowledge Repository’ is 
responsible for storage and management of historical 
sensed data retrieved from the OT layer and in 
particular those related to important events that are 
associated with the virtualization of important 
processes. Its inherent knowledge components 
contribute towards formulation of core and auxiliary 
network functions that are meant to be accessed by 
the virtualization unit. Herein, historical data is 
deemed valuable for testing new virtual organization 
on the various possible process behaviour before real-
life implementation on the physical network (OT 
layer). Finally, retaining historical solution patterns 
as system past experiences is another important role 
associated with the ‘Data and Knowledge Repository’ 
unit. 

The ‘Operational Software’ related to the key 
operating tools for the development of codes relevant 
to the network functions. It also facilitates the 
development of possible training of software 
components or network organization for handling a 
given event. Contiki for example is important part of 
this block in generating the wireless node executable 
code and managing the Cooja simulator. Data 
processing and analytics software tool could also 
have important role here that supports the function of 
the network virtualization. Dynamic monitoring of 
the change in RSSI over time may for example, reveal 
that a given node within the network is heading 
towards dis-connectivity of the current associated 
data path. This, in turn may indicate the need for re-
orchestrating the network’s topology in order to avoid 
any subsequent issues. Similar example to analytical 
software like Matlab could offer the wide range of 
processing and soft computing capabilities. 

The virtualization unit reflects the behaviour of 
the underlying physical network. It represents the 
mirror image of the physical network from both the 
topological organization as well as functional 
operational software for each node within the 
network. The history data represent the network 
performance and the extent to which it maintains the 
required flow of data through the network and into the 
sink. Another important and challenging aspect of 
virtualization is that of the representation of the 
physical environment where the physical network is 
located. This has an important impact on the received 
radio signal strength and is very difficult to be 
mimicked precisely. The availability of machine 
intelligence and learning within the cloud will play an 
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important role here. One may initially approximate 
through modelling or characterization of the physical 
behaviour and then teach the system with more 
accurate behaviour with time. 

The following section offers example processes 
within WSN that are virtualized in the context of 
network topology and embedded software. The three 
network functions are represented within the software 
with an ability to get dynamically replaced as per the 
outcome of the re-orchestration process.  

4 EXAMPLE NETWORK RE-
ORCHESTRATION 
SCENARIOS 

4.1 Simple Network Manipulation 

Consider the following example wherein two 
different Contiki-generated, virtual ‘software 
functional modules’ are interchangeably 
implemented onto the same virtual network element 
to realize different WSN functionalities and thus, 
completely alter the network behaviour. This example 
has been performed within the virtual resource of the 
Cooja simulator available within Contiki. Herein, the 
‘broadcast_open’ function presented within the 
Contiki-based software ‘C’ code was altered in a 
minor way to realize both the necessary functional 
modules, and thus, influence the communication 
protocol. 

As shown in figure 4a, virtual Cooja node, Node 
ID: 1 has been configured to behave as an end device 
by programming as ‘end device’ (core) virtual 
software functional module. Similarly, Node ID: 2 
and Node ID: 3 acts as ‘router’ and ‘gateway’ devices 
since they have been configured with ‘router’ and 
‘gateway’ functional software modules respectively. 
It is important to note that since the intermediate 
Node ID: 2 is configured to behave as a router, the 
network behaves as a ‘multi-hop network’. Such 
multi-hop network connectivity facilitates dataflow 
from the end-device (Node ID: 1) to the gateway 
(Node ID: 3) via the router (Node ID: 2). Thus, the 
sensed dataflow in this case, emanates from the ‘end-
device’ function to the ‘router’ function, and finally 
to the ‘gateway’ function. The mote output window 
screenshot obtained from Cooja wherein random light 
data generated by the end device reaches the gateway 
via the router node is as shown in figure 4b. 

 

 
 

4(a) 
 

 
 

4(b) 

Figure 4: (a) Virtual representation of a simple multi-hop 
network; (b) Mote output window screenshot depicting 
multi-hop network behaviour.  

Upon implementation of a separate virtual 
software ‘functional module’ i.e. the ‘leaf node’ 
‘functional module’ on the same virtual Cooja node 
(Node ID: 2), it ceases to be a router and acts an end 
device. Without the router node, the same virtual 
network now behaves as a ‘star network’ as can be 
seen from figures 5a and 5b. A separate virtual 
‘functional module’ is employed for the gateway in 
order to re-orient the network to follow a TDMA-
based scheme, as opposed to the CSMA-based 
protocol implemented earlier. 

This star network connectivity facilitates polling-
based data flow i.e. from the end devices (Node_ID: 
1 and Node: ID 2) to the gateway (Node ID: 3) is as 
shown in figure 5a. Thus, for providing star network 
service, the direction of the sensed dataflow in this 
case involves constant sequential switching between 
‘end-device 1 virtual functional module’ to ‘gateway’ 
virtual functional module and ‘end-device 2 virtual 
functional module’ to ‘gateway’ virtual functional 
module. The ‘mote output’ window screenshot 
illustrating the polling-based data flow within the 
star-topology based network is shown in figure 5b. 
Thus, the above example aptly demonstrates that the 
network can be orchestrated to switch from case I to 
case II and vice-versa via implementation of the two 
different functional modules. This could be useful 
action to support (for example) reconnecting a mobile 
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node to the network when it becomes out of the line 
of sight with the Gateway. 

 
 

5(a) 
 

 
 

5(b) 

Figure 5: (a) Star implementation of the multi-hop network 
(shown in Fig. 4); (b) Mote output window screenshot 
depicting multi-hop network behaviour.  

Herein, the role of software-defined re-
orchestration in reformulating the functional 
behaviour of node 2 (originally a router function) to 
that of a ‘leaf function’ is depicted. This example, 
albeit simplistic, attempts to convey that such 
incremental re-orchestrations taking place at the 
individual node level are instrumental in altering the 
topological orientation and thereby the flow of data 
within the network. This also demonstrate the 
software defined approach in isolating the data from 
the control. Here, while the network offers the data 
path, the functions of the node are change through the 
software to alter the path. Multiple similar 
incremental actions may take place for a more 
complex network in re-orchestrating the topology of 
the overall network. The following section supported 
by figure 6 offers illustrations here. 

Owing to the numerous flexible parameters 
available for software-reconfiguration within the 
different layers of the Contiki-stack, our IoT-WSN 
can possess a broad range of software functional 
modules that can be exploited to extract more 

complex network behaviour in catering for a wide 
range of service requirements. 

4.2 Scenarios for Network  
Re-orchestration 

Different sensing-based applications necessitate 
dynamic changes in software-defined node-function. 
This creates an avenue for re-orchestrating the current 
network topology. Irrespective of such topological 
variations, the three functions of ‘leaf node’, ‘router 
node’ and ‘IoT gateway node’ are indispensable with 
respect to execution of the mandatory tasks of 
‘sensing and data’ acquisition, data routing and data 
transportation to the Cloud respectively. Figure 6 
illustrates example topological variations of a 
stationary IoT-based sensor network that may be 
subjected to software-defined re-orchestration.  

 
 

(a)                    (b)                  (c)                   (d) 

Figure 6: Certain possible topological formations that an 
IoT-based sensor network can adapt to owing to software-
defined re-orchestration: (a) Star Topology; (b) Tree 
Topology, (c) Mesh Topology and (d) Multi-hop Topology 
respectively.  

For example, software-defined reformulation of 
Node 4 from leaf node to a router node could enable 
the network to re-orchestrate its topological 
orientation from a ‘star’-based network depicted in 
figure 6a to a tree-based network shown in figure 6b. 
Through similar software-defined re-orchestration, 
mesh and multi-hop-based topological frameworks 
could be realised, as shown in figures 6c and 6d 
respectively. 

To gauge the change in network performance 
derived through software-defined topological re-
orchestration, consider the following experimental 
case. Initially, the 8-node network is assumed to 
operate under a multi-hop topological framework, as 
depicted in figure 6d. Figure 6a, on the other hand, 
depicts the same network re-orchestrated to operate 
within a star topological framework.  

The sampling rate of data being sensed by the end 
devices is incremented (in steps of five samples per 
second from one sample per second to 20 samples per 
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second) for both network topologies to observe the 
implications, as depicted in Table 1. The ‘packets 
lost’ parameter is used in this experiment for the 
performance evaluation purposes. 

Table 1: The impact of increasing sampling rates on the 
packet loss incurred by a network of 8 nodes for different 
scenarios. 

Sampling rate 
PPS (i.e. 

‘Packets per 
second’) 

Packets lost 
PPS 

Multi-hop 

Packets lost 
PPS 

Star-CSMA 
 

Packets 
lost PPS 

Star-
TDMA 

1 0 0 0
5 3 0 0

10 5 0 0
15 8 4 0
20 10 0 0

 

Upon re-orchestrating the same network to a star 
topological framework, it was observed that no 
packet losses are incurred when the network is 
operated on TDMA protocol (wherein each node 
transmits its data during its own particular/distinct 
time slot). When increasing the sampling rate to 20 
PPS, the multiple-hop topology reflects gradual 
increase in packet loss. The star network under the 
CSMA protocol started losing 4 PPS at the 20 PPS 
rate. Meanwhile, the star network under the TDMA 
protocol persist on passing all the packets without 
loss. 

Thus, it could be inferred that whilst operating in 
service conditions demanding higher sampling rates, 
star-based topological frameworks fare better than 
multi-hop networks in terms of mitigating the overall 
packet losses incurred by the system. Also, by 
introducing the functional changes using software 
defined network function approach, ‘multi-hop’- 
based topological networks could resort to star-based 
topological framework via software-defined re-
orchestration to restrict the number of packets lost. 

This example signifies the importance of 
embedding network behavioural knowledge within 
the virtual network in catering for foreseeing 
performance analyses prior to actual re-orchestration 
execution at the OT layer. 

5 NETWORK DOWNTIME 
DURING  
RE-ORCHESTRATION 

Implementation of the outcome onto the real-life 
physical network may temporarily entail partial or 
complete service disruption. However, it is viable to 

ascertain this through experimentation. The entire 
duration of the network service disruption i.e. from 
the first instance of breakdown of service up until the 
complete resumption of the normal dataflow and 
service post-reorchestration, is referred to as ‘network 
downtime’. It is necessary to investigate this issue 
through an example scenario so as to determine the 
extent upon which a given software-defined 
reorchestration processes affect network ‘uptime’.  

We deem it viable to split the re-orchestration 
process across three phases viz., ‘Data analysis and 
event identification phase’, ‘Re-Orchestration 
Planning phase’ and lastly ‘Re-Orchestration 
Execution phase’. These are briefly touched upon in 
the following paragraph but are discussed in detail in 
the subsequent parts of the paper.  

Dynamic monitoring of network data at the cloud-
level with the help of virtualization may help in 
revealing any important event that could potentially 
disrupt network operation (either partially or in 
complete). For example, events such as a mobile 
router node moves away from the connectivity chain 
or reaching low battery energy level may indicate that 
it needs to be replaced with another router node in 
order to sustain the flow of data for the dependent 
chain of nodes. Such events are continuously 
monitored during the on-going ‘Data Analysis and 
Event Identification’ phase by means of a knowledge 
component present within the ‘Data and Knowledge 
Repository’ hosted by the cloud. Upon detection or 
identification of any such event necessitating network 
re-orchestration, an alarm is triggered within this 
phase to initiate the next phase i.e. ‘Re-orchestration 
Planning Phase’.  

The ‘Re-orchestration Planning Phase’ firstly 
involves proactive accumulation of the essential 
pieces of information from the OT layer (that also 
influences virtual network) as required for triggering 
of the re-orchestration process. Based on analysis of 
these collected data, replacement router selection 
process takes place. Successful identification of 
replacement router set the stage for the physical re-
orchestration of the physical network at the OT layer.  

Progression of any re-orchestration process in this 
sequence ensures confinement of any downtime 
experienced by the network to the last i.e. ‘Re-
orchestration Execution Phase’ alone. 

With respect to the considerations stated above, 
consider the following example of a cloud-monitored 
network that is required to undergo re-orchestration. 
Herein, a physical network that requires election of a 
suitable cluster-head for a group of leaf nodes owing 
to a special condition causing the existing cluster-
head or router to start moving out of reach of the 
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gateway. The virtual network for this scenario is 
depicted in figure 8 wherein, a mobile router node (i.e. 
node 5) which is due to depart, acts as a cluster-head 
for four mobile end devices i.e. nodes 1, 2, 3 and 4 
and relays the sensed data so accumulated to a 
Gateway represented by node 6. The four connected 
devices are acting as leaf nodes. Some of these leaf 
nodes can assume router function. For the sake of 
simplicity, it is assumed that leaf nodes can only 
communicate with the gateway though a router even 
if they are within the communication range of each 
other. However, a virtualization environment, being 
unbounded by the physical communicational 
limitations of the real world in consideration could 
provision for such direct communication between the 
leaf nodes and the gateway (and vice versa), if 
required.  

 

Figure 8: Simulation of network consisting of a (departing) 
mobile router and four end devices within Cooja.  

As ‘part of the on-going monitoring activity 
(during the ‘Data Analysis and Event Identification’ 
phase) within the Cloud knowledge repository, a 
given knowledge component continuously monitors 
the radio signal strength (RSSI) between the router 
node 5 and the gateway node 6. By means of watching 
the history data of corresponding RSSI values 
between the router and the gateway. As it recognizes 
the pattern of the router departure, it raises a trigger 
to kick start the ’Re-orchestration Planning phase’ 
phase. 

In the ‘Re-orchestration Planning phase’, another 
known knowledge component works on the 
identification of the potential nodes that could replace 
the current router. In this example, we have assumed 
that the three nodes (1, 2 & 3) can assume router 
function. Meanwhile, node 4 can only be a leaf 
function and hence will be eliminated from the 
competition for the router role (see figure 9). The 
appropriate selection of the replacement router 
among nodes 1, 2 and 4 follow the execution of a 

given fitness model. The model requires the 
measurement of three parameters. These are strength 
of the elected node to reach all the relevant leaf nodes 
using the RSSI reading, strength of the elected node 
to connect to the gateway using the RSSI readings and 
the elected node backup battery energy level. 

Equal weightage has been assumed for each of 
these three parameters for this example. This, 
however, could change on a case-by-case basis or 
through long term learning process. As alluded to 
earlier, a software knowledge component takes the 
responsibility of computing and comparing the 
‘normalized’ weight values for each of the participant 
end devices and identify the replacement router. The 
mathematical expression pertaining to the fitness 
model i.e. normalized weight i.e. ‘WN’ (for each 
participant end device) is as follows: 

 

WN = [mi×RSSIAVG_EDs] + [mi+1×RSSIED-G] + 
[mi+2×BED], 

where, 
mi, mi+1, mi+2 represent the weights associated with 
each of these three factors, 
‘RSSIAVG_EDs’ represent the average radio signal 
strength of a participant end device with respect to all 
the other relevant end devices within the cluster, 
‘RSSIED-G’ represent the radio signal strength of a 
participant end device with respect to the Gateway 
and  
‘BED’ pertains to existing battery level of a participant 
end device.  

The participant end device with superior fitness 
value will be elected as the replacement router. This 
in turn facilitates the decision for actual physical re-
orchestration. The ‘execution’ phase involves several 
sequential transactions of message exchange amongst 
the nodes to attain their ‘re-orchestrated’ status within 
the final state of the network. 

Figure 9 below provides an abstracted 
representation of the requisite communication 
messages exchanged amongst the constituent nodes 
across the three phases, for the execution of the 
necessary election process. 

Herein, during the on-going ‘Data Analysis and 
Event Identification’ phase, the Gateway node 6 
regularly transmits message ‘MG-R’ to the router node 
5 to determine its RSSI value with respect to it (at a 
set transmission rate). The router node, in turn, 
responds with the message ‘MR-G’ to the Gateway 
node, along with its battery level value. This data is 
sent to the cloud for storing the trend. It will also be 
monitored at the cloud by the relevant knowledge 
component associated with the ‘Re-orchestration 
Planning’ phase. 
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Figure 9: Abstracted representation of the exchange of 
communication messages across the three different phases 
to elect a suitable clusterhead from the constituent end 
devices to replace the departing clusterhead.  

During the ‘Re-orchestration Planning’ phase, the 
gateway node (being capable of directly 
communicating with the all the leaf nodes,) 
broadcasts message ‘MG-L_Post-trigger’ to the leaf nodes 
capable of turning into routers (nodes 1, 2 and 4 in 
this case) directing them to transform to the role of a 
router. These ‘leaf-turned router’ nodes i.e. node 1, 2 
and 3 then broadcast radio messages ‘ML1_Broadcast’, 
‘ML2_Broadcast’ and ‘ML3_Broadcast’ respectively to the 
other leaf nodes (i.e. all the three participant leaf 
nodes as well as the lone, non-participant, router-
incapable leaf node 4) to obtain their RSSI values 
with respect to each other. Upon reception of these 
broadcast messages, the other listening leaf nodes 
respond with their respective RSSI signal values, 
denoted by messages ‘ML1_receive’, ‘ML2_receive’ and 
‘ML3_receive’. Through message ‘ML_R_RSSI’, each 
participant leaf node relays the average of the 
received RSSI signal values over to the router node, 
which in turn relays the combined information over 
to the Gateway node as denoted by message 
‘MR_G_RSSI_AVG’. The Gateway node then transmits 
radio messages ‘MG_L_RSSI_broadcast’ to leaf nodes 1, 2 
and 3, in order to determine their radio signal strength 
with itself as well as acquire their battery level values. 
The leaf nodes respond with message 
‘ML_G_RSSI_receive’ to the gateway node. 

Upon reception of the requisite parameters from 
all the participant nodes, the Cloud based dedicated 
knowledge component executes the ‘planning’ 
process wherein the normalized weight values for 

each of the constituent participant end devices are 
computed and compared. The participant end device 
with the most superior normalized weight will be 
notified of its new role as a cluster head for the 
remaining end devices. Figure 11 depicts the mote 
output screenshot pertaining to the election outcome 
processed at the IT-layer. 

 

Figure 10: Screenshot of the mote output window within 
Cooja depicting messages pertaining to the election 
outcome.  

This is followed by the final stage of the re-
orchestration process i.e. the ‘Re-orchestration 
Execution phase’. This proceed with implementing 
the above outcomes derived through the ‘planning 
process’ onto the actual physical or ‘OT’ layer 
components. Herein, a number of requisite sequential 
messages, represented by ‘MNotifications’ get executed 
involving the Gateway notifying the elected node of 
its new role as a ‘router node’, then notifying the 
departing router to resign its ‘router’ role and switch 
over to the role a ‘leaf’ node, then notifying all the 
leaf nodes about the new router i.e. node 1 and finally 
the resumption of the dataflow within the network i.e. 
gathering of all the end devices’ sensed data by the 
newly elected router (denoted by message 
‘ML_R_Resume’, upon traversal up to the approximate 
position of the previously existing router within the 
range of the gateway) and relaying it over to the 
Gateway node, denoted by message ‘MR_G_Resume’. 

Figure 11 depicts the instant at which the 
successful candidate (i.e. leaf node with node ID 1) 
switches over to the role of a router and commences 
the act of accumulating data from its leaf nodes. 

 

Figure 11: Screenshot of the mote output window within 
Cooja depicting messages pertaining to the election 
outcome.  
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As alluded to earlier, the ‘end-to-end’ downtime 
is calculated from the instant of time at which normal 
service delivery is interrupted up to the instant of time 
at which its normal network dataflow is restored. In 
our work, the network downtime incurred takes place 
from the instant router node 5 has been notified to 
become a leaf node until resumption of data flow of 
all leaf nodes through node 1 (as a replacement 
clusterhead). The instant of time wherein the normal 
dataflow service within the network is completely 
restored. Upon figuring out the number of messages 
getting executed within this phase from the above 
account, it is found that the network experiences a 
downtime of the order of ‘six’ communication 
messages for this particular case of network re-
orchestration. Results such as above are only relative. 
Since the bulk of the re-orchestration process takes 
place within the virtual environment and that the 
motive of this exercise was to merely gauge the 
relative downtime incurred as a result of the network 
re-orchestration process, the Contiki simulator has 
been relied upon and employed entirely to draw 
tentative evaluation results. It is duly realized actual 
downtime incurred can only be determined through 
physical experimentation and forms part of the future 
work. At this stage, virtualization is based on real life 
data. Further reflection to more involved test will be 
consider in future work. Also, in order to obtain a 
more accurate network downtime value, practicalities 
associated with real-world communication process 
viz., the exact protocol being employed, persisting 
conditions of communication, etc. need to be factored 
in. This example reflects the viability of the 
virtualization platform (operating in conjunction with 
the knowledge software components within the IT-
layer) in working out a suitable re-orchestration’s 
scenario during the first two phases before decision 
for re-orchestration execution phase takes place. 
However, although the bulk of the computation could 
take place at the cloud, the knowledge software 
components (responsible for the desired 
computations) could also reside at the ‘edge devices’ 
viz., Gateway, router nodes, etc. Herein, it is 
worthwhile to state that this research work solely 
focusses on the extent of downtime incurred as result 
of the network re-orchestration process whereas the 
future work will revolve around analysis of impact of 
the network parameters such as sampling rate, 
protocol employed, number of nodes, number of 
hops, topology, etc. on the re-orchestration latency. 
However, the aspect of data loss too (as a result of the 
network re-orchestration process) is an interesting 
research proposition that could be pursues as part of 
the future work. 

6 CONCLUSIONS  

This research work attempts at addressing the aspect 
of software-defined functional and topological re-
orchestration of sensor networks through 
modularization and virtualization of the WSN 
functions within an architectural organisation based 
on the Industry 4.0-based ideology. Downtime 
suffered by the network as a result of the re-
orchestration  largely depends on the structural 
arrangement i.e. topological orientation, density of 
nodes, number of hops, number of messages to be 
exchanged amongst the various constituent nodes (as 
per the re-orchestration strategy obtained from the 
‘Re-orchestration Planning’ phase), etc. While 
majority of WSN systems have the ability for 
absorbing this down-time without any significant 
impact, high dynamic applications  involving mobile 
sensor nodes could be quite critical towards such 
down-time. Further work will involve determination 
of the actual downtime incurred during the ‘Re-
orchestration phase’ using the real-life hardware 
nodes. Furthermore, analysis of impact of the network 
parameters such as sampling rate, protocol employed, 
number of nodes, number of hops, topology, etc. on 
the re-orchestration latency will also be pursued. 

The paper has emphasized upon the significant 
role of WSN virtualization and software repository of 
knowledge components in offering the necessary 
environment for monitoring, and if necessary, re-
orchestrating the dynamics of the physical network. 
This introduction should stimulate the research in this 
novel and important area of WSN.  
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