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Abstract: The exponential growth of the Internet of Things in conjunction with the traditional lack of security mecha-
nisms and resource constraints associated with these devices have posed new risks and challenges to security
in networks. IoT devices are compromised and used as amplification platforms by cyber-attackers, such as
DDoS attacks. Machine learning-based intrusion detection systems aim to overcome network security lim-
itations relying heavily on data quantity and quality. In the case of IoT networks these data are scarce and
limited to small-sized networks. This research addresses this issue by providing a labelled behavioral IoT
data set, which includes normal and actual botnet malicious network traffic, in a medium-sized IoT network
infrastructure (83 IoT devices). Three prominent botnet malware are deployed and data from botnet infec-
tion, propagation and communication with C&C stages are collected (Mirai, BashLite and Torii). Binary and
multi-class machine learning classification models are run on the acquired data demonstrating the suitability
and reliability of the generated data set for machine learning-based botnet detection IDS testing, design and
deployment. The generated IoT behavioral data set is released publicly available as MedBIoT data set∗.

1 INTRODUCTION

The adoption of the Internet on an increasing wider
scope, i.e., providing connectivity capabilities to ev-
eryday objects, is a reality. In fact, the rise of the
Internet of Things (IoT) has just begun and it is ex-
pected to have a major increase in the near future. It
was estimated that there would be 26.66 billion active
IoT devices by 2019, a figure that may be increased
up to 75 billion by 2025 (Statista, 2019). 127 new
IoT devices are connected to the Internet every second
(McKinsey, 2017) in a wide range of applications,
from factories and smart cities sensors to healthcare
and car products. The market size is calculated to
grow over $212 billion by 2019 and reach $1.6 trillion
by 2025 (Liu, 2019). However, the adoption of the
IoT technology still poses usability concerns even to
early adopters and eager customers, related to device
security and data privacy issues (Bosche et al., 2018;
Sklavos et al., 2017). Thus, despite its huge growth,
the Internet of Things market explosion is still being
limited by its main barrier: security (Bertino and Is-
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lam, 2017; Bosche et al., 2018; Pratt, 2019).
Their ubiquity will pose a major challenge to secu-

rity as IoT devices have traditionally lacked of proper
control measures and proactive security management
(e.g., usage of default passwords, no firmware up-
dates, no access control policy), featuring them as
high vulnerable and prone to be compromised devices
(Bertino and Islam, 2017). These features have been
exploited by malicious actors, being able to compro-
mise the defenseless devices by exploiting its vulnera-
bilities, gaining remote access and using them as mag-
nification platforms for their massive attacks (Kolias
et al., 2017). An IoT botnet is just a particular type of
botnet in which the compromised devices are IoT de-
vices, thus showing analogous scheme and dynamics
to computer botnets. In this regard, when a vulnera-
ble device is compromised it becomes a bot, a mem-
ber of a larger community of compromised devices,
called botnet, under the control of a malicious actor,
the botmaster. The botmaster has remote access and
control of the bot over the Internet, without the con-
sent and awareness of the actual owner of the com-
promised device, using a Command&Control (C&C)
server (Silva et al., 2013). Botnets have been used
to perpetrate a wide range of malicious attacks, from
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massive SPAM and phishing campaigns to distributed
denial-of-service (DDoS), the most common usage of
a botnet. A DDoS attack targets the availability of
online resources, such as websites or services. The
main goal is to saturate the targeted server or network
with more traffic than it can handle (e.g., receiving
an overwhelming amount of messages, connection re-
quests or forged packets) thus provoking the service
or website to crash and become unavailable to legiti-
mate users requests (Weisman, 2019).

1.1 Data Sets for IoT Anomaly
Detection

The phenomenon of botnet detection in computer net-
works has been widely studied (Garcia et al., 2014;
Feily et al., 2009), with many available data sets at
hand (Shiravi et al., 2012), while the most recent IoT
network botnet phenomenon has not received the re-
quired attention yet, showing a remarkable lack of
available data sources.

Data sets for building effective IoT anomaly de-
tection methods rely on the acquisition of both le-
gitimate (normal) and malicious (botnet) behavioral
data from IoT networks. Anomaly models are built
and trained using only legitimate data to establish the
so-called normality patterns. The induced models are
tested using legitimate and malicious data, where the
metrics related to model’s detection performance are
evaluated. Therefore, proper and complete data are
key components for a high-performance effective in-
trusion detection system (IDS). Table 1 summarizes
the available data sets for IoT anomaly-based intru-
sion detection systems. As can be observed, a small
amount of data sets are available for the specific IoT
botnets issue. The available data sets are focused on
small-sized IoT networks, reflecting the behavior of
a small set of IoT devices. Additionally, a specific
and small variety of devices are used (mostly security
cameras) limiting the scope of the IoT devices ana-
lyzed from the broad domain of available IoT devices.
None of the available IoT data sets combine real and
emulated devices, which limit the scope of their re-
sults to either real or emulated devices. In this regard,
our generated data set combines real and emulated de-
vices, using different but common types of IoT de-
vices, not investigated by previous data sets (i.e., fans,
locks, light bulbs and switches), in a medium-sized
network composed of more than 80 devices. Fur-
thermore, our data set focuses on the first stages of
a botnet deployment, such as infection and propaga-
tion, while the rest of the data sets focus on the last
stages of the botnet lifecycle, mainly detection of at-
tacks (Kirubavathi and Anitha, 2014).

As already stated, the Internet of Things is a real-
ity that will become ubiquitous in the following years.
This fact combined with the lack of proper security
measures and devices inherent vulnerabilities make
IoT devices an easy and appealing target for cyber
attackers (Bertino and Islam, 2017). Thus, proper
data are in need to create machine learning-based ef-
fective detection systems that may help to overcome
these limitations. In this regard, there is a remarkable
lack of available data sets that might help to build ef-
fective IDSs in IoT networks. This research aims to
fill this significant gap in IoT anomaly-based IDSs by
providing a novel IoT data set obtained from medium
size IoT network architecture (more than 80 devices),
which includes normal and malicious behavior from
different devices (real and emulated) and the deploy-
ment of prominent IoT botnets (Mirai, BashLite and
Torii). The scale extension enables to capture mal-
ware spreading patterns that cannot be seen in small-
sized networks, thus providing a more realistic envi-
ronment. Additionally, this data set includes the be-
havior of Torii botnet malware which has not been
addressed in any other data set before. Finally, this
data set provides data for the first stages of botnet de-
ployment (i.e., infection, propagation and communi-
cation with C&C server stages), thus complementing
the available data sets which mainly focus on attack
detection, the main outcome and part of the last stages
of the botnet lifecycle (Hachem et al., 2011; Kiruba-
vathi and Anitha, 2014).

This paper is structured as follows: Section 2 pro-
vides background information and a review of re-
lated literature, Section 3 explains the methodology
followed to implement the experimental setup while
Section 4 offers a detailed overview of the main out-
come of this study, a novel IoT data set for botnet
detection, and its verification. Finally, Section 5 con-
cludes the study and highlights its main contributions.

2 LITERATURE REVIEW &
BACKGROUND INFORMATION

2.1 Botnets & DDoS Attacks

Botnets have been used to perpetrate record-breaking
DDoS attacks. In this regard, in 2016, the journalist
Brian Krebs was the target of a record-breaking attack
(620 Gbps) to its blog KrebsOnSecurity.com, specifi-
cally tailored to take the site offline (Krebs, 2016). A
month later, the french hosting provider OVH was at-
tacked by the same botnet (probably BashLite), reach-
ing 1 Tbps and involving over 140.000 compromised
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Table 1: Data sets for IoT Anomaly-based IDS.

Data set Botnet
Number

of devices
Device type

Real or
Emulated

Network
Size

Data set features Date Reference

N-Baiot
Mirai

BashLite 9

Doorbell
Webcam

Thermostat
Baby monitor

Security Camera

Real Small 115 - statistics 2018

(Meidan et al.,
2018a)

(Meidan et al.,
2018b)

IoT host-based
datasets for ID

research

Hajime
Aidra

BashLite
Mirai
Doflo

Tsunami
Wroba

2
Multimedia Center
Security Camera Emulated Small

NA - PCAP &
Netflow/Host

2018

(Bezerra et al.,
2018a)

(Bezerra et al.,
2018b)

IoT Network
Intrusion Dataset

Mirai 2
Speaker

Wi-Fi Camera Real Small NA - PCAP 2019
(Kang et al.,

2019)

Bot-IoT
No actual
malware -
simulated

5

Refrigerator
Smart Garage door

Weather Monitoring
Smart Lights

Smart thermostat

Emulated Small 31+14 - flow 2019

(Moustafa,
2019)

(Koroniotis
et al., 2019)

cameras/dvr (Pritchard, 2018). The same year, Dyn, a
domain name system provider of major websites and
services such as CNN, Netflix, Paypal, Visa or Ama-
zon was attacked by the Mirai botnet, using around
100.000 IoT devices and reaching up to 1.2 Tbps,
causing the servers to be inoperative and the web-
sites unreachable by the legitimate users for several
hours (Weisman, 2019; Hilton, 2016). It is estimated
that Dyn lost around 8% of its customers (i.e., 14000
domains) as a consequence of the attack and the lost
of trust (Weagle, 2017). This was just the onset for
the IoT botnet-based attacks. Since then, the attacks
have not stopped, evolving in sophistication and ca-
pabilities as the source code of the malware behind
the botnets became available to the public (Asokan,
2019). A recent report by F-secure states that cyber-
attacks on IoT devices rouse 300% in 2019, reaching
the 3 billion attacks, an unprecedented figure (Doff-
man, 2019). The threat is still alive and growing,
caused mainly by the combination of the increase of
the number of IoT devices deployed worldwide and
the intrinsic vulnerabilities carried by such devices,
which can also contain valuable data related to med-
ical or control issues. Nevertheless, one of the major
risks is the usage of the IoT endpoints (e.g., a printer
or a fridge) as an easy-to-reach and vulnerable en-
try points to wider and secured networks (Doffman,
2019).

As a result, cyber security for IoT, in the form of
early detection of threats, becomes a key issue to de-
tect and mitigate such attacks. In this regard, intru-
sion detection systems are widely used network secu-
rity components which aim to detect security threats
where preventive security measures are not feasible to
implement (Benkhelifa et al., 2018; Sun et al., 2007).

2.2 Intrusion Detection Systems

An intrusion could be defined as a set of activities
or actions that compromise one or more components
of the IT security model known as CIA triad (i.e.,
short for Confidentiality, Integrity and Availability)
of a specific entity or system. These systems are not
restricted to computers, network equipment, firewall,
routers or networks but to any information technol-
ogy system which is under the monitoring scope of
an intrusion detection system (IDS) (Sun et al., 2007).
Based on that, an intrusion detection system is a secu-
rity tool that aims to detect and identify the unautho-
rized individuals willing to break into and misuse a
system and also those authorized and legitimate users
that abuse of their privileges within the system (Sun
et al., 2007). There are four common approaches used
for intrusion detection: misuse, anomaly, specifica-
tion and hybrid (Benkhelifa et al., 2018; Sun et al.,
2007; Butun et al., 2013; Zarpelão et al., 2017). They
are briefly explained as follows:

• Misuse or signature-based detection systems use
known fingerprints or signatures from attacks
stored in a database. If an IDS finds a match be-
tween the current activities and a known signa-
ture it raises the alarm about the detected suspi-
cious behavior. This systems are easily bypassed
by not-known or novel attacks, when a signature
is not yet available.

• Anomaly-based detection systems are based on
the creation of a typical or normal activity pro-
file. Current activities are compared against this
normal behavior. If the IDS finds a significant de-
viation or discrepancies from the normality model
it raises the alarm about the suspicious behavior.
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These systems success on the detection of novel
attacks but they are prone to false positives (i.e.,
legitimate behavior is detected as malicious be-
havior) as the normal behavior might not be easy
to model, so that being very sensitive to the cor-
rectness of the normality model created.

• Specification-based detection systems combine
features of misuse and anomaly approaches. They
apply anomaly-based principle on set of human
generated specifications or constraints about the
normal or legitimate behavior. These systems aim
to detect novel attacks based on anomalous behav-
ior while reducing the amount of false positives.

• Hybrid detection systems involve the combination
of any of the previous approaches, aiming to over-
come the weaknesses of one approach using the
strengths of another.

One of the most effective and widely used detection
methods is the anomaly-based approach, which en-
ables to detect novel attacks but with the inevitable
trade-off of being sensitive to the correctness of the
generated normality model. In this regard, statistical
methods and machine learning algorithms are gen-
erally used to generate the normal behavior profile
(Zarpelão et al., 2017). Therefore, valid behavioral
models should be used in order to obtain the max-
imum benefit of this approach, depending in a direct
manner on the available training data (Bolzoni, 2009).
In IoT networks, where a wide variety of devices may
coexist in the same network, it is likely to have dif-
ferent normality profiles which emphasizes the need
of accurate IoT behavioral data that enable the imple-
mentation of effective anomaly-based IDS. Thus, the
need of proper data encompassing such differences
are highly in demand. However, there is a remarkable
lack of available data sets that consider the different
network behaviors, devices and architectures that can
be found in IoT networks and its major threats. As
a result, proper IoT behavioral data are key to train
the IDS model for effective intrusion detection in IoT
networks.

2.3 Machine Learning-based IDS

Machine learning has shown promising results re-
garding computer botnet traffic detection (Livadas
et al., 2006) and more lately, in the specific IoT botnet
detection issue (Zarpelão et al., 2017). As a result of
the remarkable increase in IoT related security inci-
dents, researchers have reoriented their focus to deal
with the investigation of feasible and effective IoT
botnet detection methods involving anomaly-based
machine learning approaches. These approaches aim

to overcome the intrinsic hardware and software lim-
itations and capabilities of these devices (Zarpelão
et al., 2017). In this regard, in Meidan et al. (2018b),
Deep Autoencoders, Local Outlier Factor, One-Class
Support Vector Machines and Isolation Forest algo-
rithms models built and evaluated using the N-baiot
dataset. The results show that all algorithms, except
Isolation Forest, effectively detected all Mirai and
BashLite simulated attacks. Their proposed method,
based on Deep Autoencoders, showed the lowest false
alarms ratio and required less time to detect the at-
tacks than the other approaches. Prokofiev et al.
(2018) used Logistic Regression algorithm to esti-
mate the probability that a device was part of an
IoT botnet, focusing on the connection initiation at
the propagation stage. Lin et al. (2014) proposed an
IoT botnet detection method which combines Sup-
port Vector Machines and Artificial Fish Swarm al-
gorithms. McDermott et al. (2018) provided a new
application for a text recognition deep learning algo-
rithm (Bidirectional Long Short Term Memory based
Recurrent Neural Network), with remarkable success
on Mirai botnet attack detection. Doshi et al. (2018),
used different network features to train and evaluate
the accuracy of k-Nearest Neighbors, Support Vector
Machines, Decision Tree, Random Forest and Artifi-
cial Neural Networks algorithms on the detection Mi-
rai DDoS attacks. A novel IoT malware detection ap-
proach using network traffic is proposed in Shire et al.
(2019) where Convolutional Neural Networks and bi-
nary visualisation technique were used to provide a
fast detection method for zero-day malware.

As can be observed, the application of anomaly
detection requires the acquisition of malicious traf-
fic which is tested against normal or legitimate traffic
in order to evaluate the goodness of the proposed de-
tection model. For this purpose, the data sets should
provide both kinds of network traffic in order to as-
sess the effective detection of threats. In this paper
we provide demonstrability of the generated data set
on classification issues (i.e., supervised learning), for
the easiness of interpretation of the results and com-
parison, but this data set may also be used to build
effective anomaly detection models, considered tradi-
tionally unsupervised learning.

3 METHODOLOGY

The main outcome of this research is the generation of
a labelled behavioral IoT data set, which includes nor-
mal and actual botnet malicious network traffic, in a
medium-sized IoT infrastructure (composed of more
than 80 devices). The focus was on the acquisition
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of network data from all the endpoints and servers
during the initial propagation of Mirai, BashLite and
Torii botnets.

3.1 IoT Network Topology

The network topology created for the purpose of this
study is provided in Figure 1. It is composed by
3 connected networks: internet network, monitoring
network and IoT LAN network. Their functions and
components are described as follows:

• Internet Network: this network is directly con-
nected to the internet in order to provide internet
connectivity for the initial configuration of differ-
ent devices. To restrict the connectivity between
networks, a different subnetwork mask is estab-
lished.

• Monitoring Network: this network provides stor-
age and processing capabilities for the data re-
ceived from the switch. It is composed by a cap-
ture server and a security information and event
management (SIEM) server. The capture server
is responsible for the collection and storage of the
acquired network packages within the whole in-
frastructure. Tcpdump is used to monitor and log
the network traffic and store the data in pcap file
format which is later used as an input by the SIEM
server. The SIEM server is a Splunk software in-
stance which is responsible for data indexing, fil-
tering, analysis and data set generation (i.e., data
processing and labelling).

• IoT LAN Network: this local area network (LAN)
allows to spread the malware in a contained man-
ner. This network is composed of physical and
virtual IoT devices that generate the behavioral
traffic collected by the monitoring network, ei-
ther benign or malware generated traffic. Virtual
devices are deployed using containerization soft-
ware (i.e., Docker). The composition and capa-
bilities of this network devices are explained as
follows:

– Router: this device is responsible for the gener-
ation of an isolated network segment allowing
only communication between internal devices
within this network (i.e., using firewall rules).
The router provides IP addresses to this inter-
nal devices using Dynamic Host Configuration
Protocol (DHCP).

– Switch: this device is responsible for the ac-
quisition and transfer of the network packages
using the port mirroring technique. Port mir-
roring is used to clone and transfer network
packages that flow through one port to another

port, in real time, without affecting the network
performance. In this scenario, all devices gen-
erated data are captured and transferred to the
monitoring network.

– IoT Management System: this device allows
the management of all the IoT devices in a cen-
tralized manner. It is deployed using Hassio
software running on a Raspberry Pi, which al-
lows to simulate the same network behavior of
real implementations. In this network, 4 differ-
ent IoT devices were emulated: fan, lock, light
bulb and switch. Each device allows the re-
mote control of different features. For instance,
the fan allows the selection of speed, oscillation
state, current fan state and turning on/off capa-
bilities.

– Virtual IoT Devices: this device allows the vir-
tualization of IoT devices using Docker con-
tainers. It is deployed using a Raspberry Pi
which allows to emulate the behavior of an IoT
device.

– Wireless Access Point: this device allows net-
work connection to the non-ethernet compati-
ble devices. It is configured to allow the router
the capability of assigning IP addresses (via
DHCP), thus avoiding the possibility of IP ad-
dress duplicates.

– BashLite C&C Server: this server is the com-
mand and control unit of the BashLite botnet.
FTP and web services are installed to allow the
spreading of the malware. The server is also
used to compile the malware binaries used to
propagate the infection.

– Mirai C&C Server: this server is the command
and control device of the Mirai botnet. FTP and
web services are installed to allow the malware
propagation. The server is also used to compile
the malware binaries used to spread the infec-
tion.

– DNS Server Sinkhole: this server provides the
domain name resolution for the Mirai botnet. It
is also used as a sinkhole for the domains that
Torii malware requests connection. The sink-
hole avoids the actual connection between Torii
and the domain of its C&C server, providing ef-
fective malware contention.

– Physical Devices: this devices compose the col-
lection of real IoT devices of this network. It is
composed by 3 different devices: Sonoff tas-
mota smart switch, TpLink smart switch and
TpLink smart bulb. All of them allow exter-
nal device management and provide different
features. For instance, the light bulb allows to
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control light intensity, status and turn on/off ca-
pabilities.

In order to create a medium-sized network, virtual de-
vices are created and physical devices deployed, sum-
ming up a total amount of 83 devices. Table 2 shows
the composition of the IoT LAN network. As can
be observed, 80 devices are emulated and 3 are ac-
tual physical devices. The virtual devices have ARM
architecture as it is inherited from the Raspberry Pi
while the physical devices have MIPS architecture.
This fact conditions the malware binary used to in-
fect the device, being architecture-dependant, and en-
riches the spectrum of the data, considering a wider
variety of IoT devices. The features column provides
outlines the actions that the deployed IoT devices are
capable to perform.

Table 2: IoT network device composition.

Device Type Features Architecture
Number of

devices

Switch Physical
Turn On
Turn Off MIPS 2

Light
bulb

Physical
Turn On
Turn Off
Intensity

MIPS 1

Lock Virtual
Lock

Unlock ARM 20

Fan Virtual

Turn On
Turn Off

Speed
Oscillation

ARM 20

Switch Virtual
Turn On
Turn Off ARM 20

Light
bulb

Virtual
Turn On
Turn Off
Intensity

ARM 20

3.2 IoT Behavior

The simulation of devices’ behavior can be performed
in several ways, ranging from the imitation of the be-
havior by manual usage of the devices to the automa-
tion of the execution of specific functions/tasks using
scripts. The quality and consistency of the simulated
behavior is key to create a high quality data set that
provide realistic data input for effective IDS solutions.
In such cases, the acquisition of real and relevant data
regarding the normal usage patterns provide a realis-
tic baseline for the simulation of the behavior. For in-
stance, in a normal living room, the research showed
that a light bulb had a mean usage of 1.7h per day
while this value achieved 2.3h in the case of a light
bulb in the kitchen (Gifford et al., 2012). This infor-
mation provided a baseline for the simulation of be-
nign behavior in our experimental setup. In the case
of malware behavior it is simulated by the execution
of the different modules within the botnet, providing
a real output of the botnet behavior.

3.2.1 Legitimate Behavior

An automated execution approach is utilised for the
simulation of benign behavior. This approach takes
into account the architecture of the device, as stated in
Table 2, performed using a python script and MQTT
(MQ Telemetry Transport) protocol, which is a com-
munication protocol used to control IoT devices. The
IoT management system allows to automate this con-
trol and perform scheduled tasks on connected IoT
devices. A script with trigger actions is configured
and deployed. In this scenario, the following legiti-
mate behavior is simulated using the following trig-
gers:

• All devices are turned on at 8.00 AM

• Each time a device state changes, the manage-
ment system starts a countdown until the next
state change.

• The countdown value is randomized.

• The maximum limit of changes is established in
20 and a maximum of 3h on ON state is set.

• All devices are turned off at 07.00 PM

• In order to simulate a working environment, exe-
cution of the triggers is limited from Monday to
Friday.

By the usage of the previous triggers, network pack-
ages are generated along the network, captured and
stored. The captured network packages provide the
following communication information: time, protocol
used, TCP stream, TCP stream size, source IP, desti-
nation IP, MAC addresses, TCP raw message and re-
sponse code.

3.2.2 Malicious Behavior

The malicious behavior is generated by the deploy-
ment of three prominent botnet malware within the
controlled environment: Mirai (Antonakakis et al.,
2017), BashLite (Marzano et al., 2018) and Torii
(Kroustek et al., 2018). Mirai and BashLite botnets
have been widely studied and malware source code is
available on the Internet. Thus its deployment is fully
controlled in the lab environment using a C&C server
for each botnet and the source code is modified to con-
nect with this specific C&C server. Torii source code
is not yet available on the Internet, thus the samples
used for its deployment within the controlled envi-
ronment were obtained from Hybrid Analysis archive
(Crowdstrike, 2019). In order to avoid Torii malware
to connect with its actual C&C server, special con-
tention measures are in place. Mirai, BashLite and
Torii botnet propagation is performed and controlled
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Figure 1: Medium-sized IoT network topology.

within the environment using different strategies, ex-
plained in the following paragraphs.

• Botnet Propagation Techniques
– Mirai and Yakuza version of BashLite are con-

figured and executed within the controlled envi-
ronment, modifying the malware source codes
in order to link the infection binaries with the
corresponding in-lab C&C servers. Once the
botnet is properly set, droppers are the medium
used by these botnets to download and install
the appropiate malware file according to the
victim’s architecture which once executed will
run the bot daemon, compromising the device
successfully.

– Torii malware has not been profoundly studied
yet, so the deployment of this malware in the
lab environment carries further risks. In order
to contain and eliminate the risks of improper
use of the devices by Torii’s actual botmaster, a
sinkhole in the DNS server and firewall rules
are used. Torii connection attempts with its
C&C server are permanently denied and redi-
rected. As a result of the lack of proper knowl-
edge of Torii malware spreading methods and
source codes, the binaries are deployed manu-
ally within the lab environment. The obtained
sample is specifically tailored to target ARM
devices. The malware is executed running the
executable with root privileges in the target de-
vices, allowing to spread the malware through
the IoT devices.

• Botnet Contention Methods
– One of the major risks within the lab is the

abuse of the devices by real attackers. In this
regard, Torii poses a major challenge. Contrar-
ily to Mirai and BashLite, Torii has not been
deeply analyzed and poses a risk within the lab
environment that has to be addressed. Unsuc-

cessful botnet contention may lead to unautho-
rized usage of the IoT devices by real attackers
to perpetrate attacks or collect rellevant data.
Two major risks are found within this experi-
mental setup which are addressed and outlined
as follows:

1. Possibility of existence of hidden code in Mi-
rai’s source code to connect to the real C&C
server

2. Torii’s unknown spread techniques and func-
tionalities

Even though Mirai spreading techniques are
well-known, additional security measures are
taken to ensure effective contention of the mal-
ware. To address this issues, a sinkhole and
firewall rules are in place to deny possible con-
nection attemps to the real C&C servers. The
DNS sinkhole redirects the connection attempts
by resolving the name resolution request with a
controlled IP address. Firewall rules are set in
the router to block/control the traffic based on
known network masks.

Botnet malware are deployed at different times within
6 days (i.e., each let run free for 2 consecutive days)
aiming to obtain relevant botnet information and elim-
inate undesired overlapping of information. Further-
more, Mirai malware is capable of detect malware
running on a specific device and remove it in order
to take the single control of it. A limited number of
devices are infected in each botnet deployment. In the
case of BashLite malware, 40 devices were infected,
chosen in a pseudo-randomized way by limiting the
scope of devices scanned and infected. Mirai botnet
malware infected 25 devices, limited by the change of
configuration to restrict the internal scanner to spread
within the lab IP ranges. Torii botnet malware was
manually deployed in 12 devices, all under the con-
trolled scope of the DNS sinkhole.
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3.3 IoT Behavior Verification

In order to verify the suitability of the IoT behavioral
data set generated within the experimental setup for
detection purposes, the generated data are further pro-
cessed and used to build and test machine learning-
based classification models. Machine learning clas-
sification models aim to correctly predict the label or
category of an unknown data point based on features
(also called predictors) found on the training data pro-
vided during the model training/building phase (i.e.,
supervised learning). Binary classification is used
when the data points are split into to two mutually
exclusive categories (e.g., benign and malware) while
multi-class classification deals when more than two
categories are present within the data (e.g., benign,
Mirai, BashLite and Torii). In order to validate the
outcome of the experimental setup, both approaches
are used, inducing binary and multi-class machine
learning classification models, which are validated us-
ing k-fold cross validation.

From the source pcap files captured within the lab,
features are extracted and used as predictors/input for
the machine learning models. The features used in
this lab are computed as in Mirsky et al. (2018). A
total of 100 network traffic statistical features are cal-
culated, within different time windows. Table 3 pro-
vides a brief description of the generated features. As
can be observed, statistical features are calculated in
relation to 4 major categories for each of the 5 time
windows (i.e, 100ms, 500ms, 1.5s, 10s and 1min).

Table 3: Feature Categories.

Categories Features
Host-MAC&IP Packet count, mean and variance

Channel
Packet count, mean, variance, magnitude, ra-
dius, covariance, and correlation

Network Jitter
Packet count, mean and variance of packet jit-
ter in channel

Socket
Packet count, mean, variance, magnitude, ra-
dius, covariance and correlation

After the features are extracted, a random sample
of data points are selected for each class and used
to train/test machine learning models using 10-fold
cross validation. Four traditional machine learning
algorithms are used to induce and test classifier mod-
els. The main objective for these tests is to demon-
strate the suitability of the present data set for ma-
chine learning-based anomaly and classification de-
tection models. In this regard, there is no model
hyper-parameter optimization performed on the in-
duced models. Default scikit learn library (version
0.20) configurations are used, leaving room for im-
provement on the classifiers performance. In this re-

lation, k-Nearest Neighbors (k-NN), Support Vector
Machines (SVM), Decision Tree (DT) and Random
Forest (RF) algorithms are implemented. For each of
the models, four performance metrics are reported:
accuracy, precision, recall and F1 score. They are
briefly described as follows:

• Accuracy: ratio of the correctly classified test in-
stances among all test instances.

• Precision: fraction of positive instances correctly
classified among all the positive classified in-
stances.

• Recall: fraction of positive instances correctly
classified among all the actual positive instances.

• F1 score: harmonic mean of precision and recall
metrics.

All the performance metrics are bounded on the in-
terval [0, 1]. In general, a value close to 1 may be
deemed as a positive or good result for the given task
while a value close to 0 as a bad performance. In this
regard, for classification tasks, the higher the value
the better the classifier performance on label detection
and discrimination, thus inferring that the data and the
classifier are suitable for that purpose. In our specific
case, if the classifiers show a performance close to 1
in all metrics it may be inferred that the data is suit-
able for machine learning-based IoT botnet detection
and that the data labels (e.g., legitimate and malware)
can be discriminated effectively.

4 RESULTS

4.1 IoT Behavioral Data Set

The network packets collected in the IoT LAN net-
work are redirected to the monitoring network using
the port mirroring technique, where the SIEM soft-
ware (i.e., Splunk) was used to process and label the
data, thus allowing to create the final data set. This fi-
nal data set is generated in two versions: structured
(features are computed and extracted from the raw
data) and non-structured format (raw pcap files). The
total number of packets captured during the experi-
mental setup are provided in Table 4.

Table 4: Network data captured.

Number of packets Traffic type Number of devices

4,143,276 BashLite 40
842,674 Mirai 25
319,139 Torii 12

12,540,478 Benign 83
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As can be observed, a total amount of 17,845,567
network packets were captured within the experimen-
tal setup. Around 30% of this traffic was deemed
and labelled as malicious while 70% corresponds to
legitimate network traffic. Using Splunk it is possi-
ble to analyze and provide further details about the
type of communication. Regarding the legitimate net-
work traffic, 32% of the packages are found to be
related to system updates, 53% to device communi-
cation (MQTT protocol) and 15% to other network
data (e.g., TLS errors, pings, etc). Mirai and BashLite
source codes are configured to convey different kind
of communications on different ports, with the pur-
pose of facilitating the posterior analysis of the data.
In this relation, malicious traffic analysis shows that
68% of the data captured is related to the malware
propagation activity while 32% to the communica-
tion between the C&C servers and bots. In the case
of Torii, malicious traffic only includes data regard-
ing the initial infection of the device as the contain-
ment measures did not allow the real C&C to reach
the device and trigger posterior botnet events such
as propagation. The generated data set is made pub-
licly available in the following url: https://cs.taltech.
ee/research/data/medbiot

4.2 IoT Behavior Verification

4.2.1 Binary Classification

Binary or two-class classification models are induced
and 10-fold cross validated for four widely used ma-
chine learning classification models. In this case, the
data is divided in two classes or labels: legitimate
and malware (mixed data from the three malware sub-
classes). More specifically, the data set used is created
by random selection of 3000 data points from the le-
gitimate traffic, thus conforming the legitimate class
data. The malware class is composed of 1000 ran-
dom selected data points for each one of the malware
botnets deployed within the lab, summing up to 3000
data points for this class. As a result, a balanced data
set is created and used to perform the binary clas-
sification task. Support Vector Machines algorithm
showed a poor performance in all assessed metrics,
thus is not reported in the results, which are provided
in Table 5.

Table 5: Binary classification results.

Model Accuracy Precision Recall F1 score

k-NN 0.9025 0.9082 0.9025 0.9001
DT 0.9315 0.9448 0.9315 0.9293
RF 0.9532 0.9580 0.9532 0.9481

As can be observed, Random Forest algorithm is
able to discriminate over 95% of the data points, thus
detecting effectively the vast majority of the malware
traffic. Decision Tree and k-NN show slightly less
discriminatory performance, but over 90% in all per-
formance metrics in both cases. The malware traffic,
which is composed of a mixture of 3 different bot-
net malware, is effectively discriminated from legit-
imate traffic, as can be confirmed by the normalized
confusion matrix provided in Table 6, extracted from
a Random Forest model. As already stated, SVM
showed bad performance, and its results are not re-
ported. Nevertheless, this fact may suggest that the
data is not linearly separable, thus being SVM a not
suitable classifier model for this task unlike the other
algorithms used. These results emphasize the effec-
tive capabilities of machine learning approaches to
detect botnet malware traffic, even in the first stages of
its deployment (i.e., infection, propagation and com-
munication with the C&C server stages) and disre-
garding the botnet malware employed. Furthermore,
the data set created within this lab demonstrates its
suitability to be used as a medium-sized realistic IoT
data set for IoT botnet detection scenarios and IDS
testing.

Table 6: Confusion matrix of RF binary classification.

Predicted
Malware Legitimate

A
ct

ua
l

Malware 291 9
Legitimate 7 293

4.2.2 Multi-class Classification

In this setting, multi-class classification models are
induced and 10-fold cross validated for the same algo-
rithms employed in the binary approach. In this case,
the data was divided in four classes or labels: legit-
imate, Mirai, BashLite and Torii. The data set used
is created by random selection of 2000 data points
of each of the possible classes, summing up to 8000
data points, evenly distributed in 4 labels. The main
aim of this configuration is not only to test the le-
gitimate/malware discrimination, as in the binary ap-
proach, but also the discrimination of the specific mal-
ware source. As in the previous setting, Support Vec-
tor Machines algorithm showed a poor performance
in all metrics, thus its performance is not reported.
Table 7 provides the results for the multi-class classi-
fication task.

As can be seen, Random Forest model outper-
forms Decision Tree and k-NN algorithms in the
multi-class classification task, in a similar fashion as
in the binary models. More specifically, RF algorithm
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Table 7: Multi-class classification results.

Model Accuracy Precision Recall F1 score

k-NN 0.8706 0.8849 0.8706 0.8505
DT 0.9516 0.9584 0.9516 0.9499
RF 0.9766 0.9824 0.9766 0.9657

is able to discriminate more accurately the labels in
the multi-class scenario than in the binary setting, be-
ing able to discriminate accurately over 97% of the
data points. As shown in Table 8, extracted from the
Random Forest model, the classification model is very
accurate in all cases, not showing any significant bias
towards any of the possible labels. The results ob-
tained suggest that the source of network traffic can
be effectively discriminated in earlier stages of bot-
net infection. They also demonstrate that the learning
capabilities of machine learning-based detection can
be accurate not only in the binary setting but also in
the specific discrimination of different sources of ma-
licious traffic in medium-sized IoT networks.

Table 8: Confusion matrix of RF multi-class classification.

Predicted
Mirai BashLite Torii Legitimate

A
ct

ua
l Mirai 197 0 0 3

BashLite 2 196 0 2
Torii 0 0 198 2
Legitimate 2 0 0 198

5 CONCLUSIONS

The exponential growth of the Internet of Things is a
fact and these devices will become ubiquitous in the
near future. The increasing connectivity capabilities
of these devices in conjunction with their traditional
lack of security features make them an appealing tar-
get for cyber-attackers. Malicious actors compromise
the vulnerable IoT devices and use them as an ampli-
fication platform of their attacks, becoming part of the
so-called botnet. Botnets have been extensively used
to deliver massive spam campaigns and perpetrate
record-breaking DDoS attacks that may lead to nefar-
ious consequences. Therefore, there is an increasing
need to overcome the lack of security of these devices.
The proposed solutions are mainly coming from ma-
chine learning-based approaches.

The performance of machine learning algorithms
heavily rely on data quality and quantity. In this re-
lation, there is a remarkable lack of data sources in
the specific IoT networks scenario. The experimen-
tal setup of this research aims to fulfill this gap by
providing a novel data set with network data col-
lected from a medium-sized IoT network architecture,

which is composed of legitimate and botnet malware
traffic. Three IoT botnet malware are deployed in
real and emulated IoT devices and data are acquired
from the first stages of botnet deployment, such as
infection, propagation and communication with C&C
server. These data complements the already existing
data sets which mainly focus on detection of botnet
attacks, part of the last stages of a botnet deployment.
In this sense, by focusing on early stages of botnet
deployment, the proposed data set provides the op-
portunity to perform early detection of the threat, pre-
vious to the perpetration of an attack, being able to
prevent such attacks and botnet growth. Three promi-
nent botnet malware are deployed in this research, one
of them is a complete novelty (i.e., Torii), not be-
ing deployed before in any other available data set.
The other two are well-known IoT botnet malware
whose source code is publicly available and have been
used in other data sets (i.e., Mirai and BashLite). The
currently available data sets, summarized in Table 1,
focus on small-sized networks (usually less than 10
devices), using either emulated or real devices, thus
providing limited interactions between devices inside
the network. The generated data set addresses these
limitations by combining emulated and real devices
to create a medium-sized network (i.e., 83 devices).
A larger network size may provide different insights
and interactions than smaller IoT networks. Finally,
machine learning models are built and validated us-
ing this data to demonstrate the suitability of this data
set as a reliable data source for botnet detection in
general and IDS testing and deployment in particu-
lar. The data set generated within the experimental
setup is made publicly available, aiming to overcome
the scarcity of relevant data sources in IoT network
security and limitations of the existing data sets.
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