PIACAN: Pathway Integration and Analysis of Cancer Networks

Adrian Quintana1, Vinh Nguyen2, Tommy Dang2 and Chiquito Crasto1
1Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas, U.S.A.
2Department of Computer Science, Texas Tech University, Lubbock, Texas, U.S.A.

Keywords: Cancer Biological Pathways, Merged Networks, Cytoscape, Javascript, Web Resource, PIACAN.

Abstract: We developed a web-based software tool, Pathway Integration and Analysis of Cancer Networks (PIACAN), to identify key cancer genes, pathways and sub-pathways that are implicated in more than one type of cancer. PIACAN is the result of merging biological pathways associated with 15 different human cancer types mined from the Kyoto Encyclopaedia of Genes and Genomes (KEGG). The Cytoscape software was used to port the mined information for pathway merging and subsequent analysis. Web-determined visualization of the merged networks was achieved by programming using the JavaScript library Data-Drive-Documents (D3). The results of PIACAN allow us a mechanistic glimpse into the potential development of secondary cancers spreading to distant tissues, following the primary tumour-localization in a specific tissue, via traversal of the blood-brain barrier. Given the similarities in biological networks between different cancers, PIACAN allows us a glimpse into the similarities in cancer development in remote tissues. PIACAN is a free, public, web-accessible resource (https://adrquint.github.io/integrated-cancer-networks/), where users can identify how and where biological pathways and/or sub-pathways, depending on the cancer type. A video-demonstration of the preliminary work can be found at: https://www.youtube.com/watch?v=tOJ-EOY33fU. PIACAN is also developed as a knowledge-dissemination tool. In its current iteration, for each gene in the pathway, the system links to cancer gene information in KEGG, GeneCards, Gene Ontology, NCBI AceView, and Ensembl.

1 INTRODUCTION

Cancer is the second leading cause of death in the United States (US) accounting for approximately, a million and a half diagnoses and six hundred thousand deaths per year (Siegel, Miller, Fedewa, et al., 2017). Targeting the local cancer tissue for one or more of several specialized treatment modalities is crucial for the remission of the cancer and an increase in patient survival rate. If diagnosed early, survival-rates are highest because the cancer cells are localized to a specific tissue or organ (ACS, 2016). Breast cancer, which is a leading cause of death in women, has a 99-percent five-year survival rate when treatment begins during the (tumour) localized stage. If left untreated, and if distant tumour-formations occur, survival-rates decrease to 26-percent (Wingo, Cardinez, Landis, et al., 2003). Efforts to cure cancer have been underway and have evolved over several decades. Though survival rates have increased as treatment modalities have improved, the overall morbidities associated with cancer have not significantly decreased (Murphy, Kocanel, Xu and Heron, 2015).

In the primary stages of cancer (stages I-II), granular tumours are often small. It is recommended that tumours discovered at initial stages be surgically removed to deter the progression of the cancerous tissue onto adjacent tissue. A serious health concern is the metastasis of the cancer tissue, otherwise characterized by Stage IV cancer. At this stage, the cancer begins its progression to tissue that surrounds the primary tumour (ACS, 2015). In an ideal world, treatment would begin as soon as the patient began to exhibit symptoms. Diagnosis and disease progression is difficult to pinpoint however, due to the unknown progression patterns exhibited by certain cancers. (Nichols, Richmond & Daniels, 2017) Further treatment complications occur when the cancer...
progresses into the meninges of the brain in the form of brain tumours. At this phase, the cancer has free access to cross the blood-brain barrier (BBB) (Fidler & Ellism 1994). Consequently, the survival rate at this stage decreases dramatically due to the inability for modern drug treatments to effectively penetrate the BBB (Nieder, Spanne, Mehta, et al., 2011; Marchesi, 2013).

Ongoing research suggests that signalling pathways associated with cancer progression are interconnected (Andrew, 2008). Autophagy, which is the programmed degradation of a cell and its proteins, is initiated at the preliminary stages of cancer. It is believed that certain chemical triggers resulting from adjacent chemical signalling reactions activate this process of degradation. These adjacent pathways have been theorized to be part of p53 signalling and the mTOR sub-network. More importantly, one observes connections in certain cancer networks, which contain in them sub-networks or through specific nodes in the networks, progress to adjacent networks. Studies suggest that the p53 signalling pathway transcends through the mTOR sub-network via the gene AMPK, then exits the mTOR sub-network via the gene FIP200, thereby resulting in the activation of autophagy-related processes of (Ganley, Lam, Wang, et al., 2009). The importance of targeting certain signalling pathways for inhibition is further complicated by the realization that if a part of a pathway is altered this could lead to unwanted effects downstream (Liu, Mou, Yu, et al., 2011).

In recent years, the development of bioinformatics tools has allowed for the visualization of signalling pathways via web resources. One such comprehensive resource is the Kyoto Encyclopaedia of Genes and Genomes (KEGG), created and constantly updated since 2000 (Kanehisa & Goto, 2000). This resource and others like it have propelled the study of genomic pathways and their overall transcriptional effects within different organisms (Arlt, Casper, Glover, et al., 2003). In this study, we focused on libraries that represent research related to cancer pathways and their genomic interactions within humans.

In studying the pathways and genomic products that are associated each independent cancer, different notions of treatment can be considered (Kroagn, Lippman, Agard, et al., 2015). The segregation and independent study of the most common genes found in distinct cancers has led to the development of diagnostic testing that is specialized in detecting the abnormal transcription of one gene in a series of pathways involved in one type of signalling.

The merging of different signalling pathways to assess functional relatedness has allowed for the analysis of once thought to be independent signalling events. In merging pathway networks, one can begin to track the differential centres found in the merged networks. Key results of this process are the advances in the research of personalized (now called) precision medicine (Iyengar, Zhao, Chung, et al., 2012). Thus, pharmacological applications can be specialized to target the multiple genomic and epigenomic signatures for a patient by targeting common centres for pathways that are activated in a downstream or upstream process. In this form of treatment plan, a patient is treated not by their overall symptoms for a disease but by their own distinct genomic markers exhibited during disease progression.

The study of cancer pathway networks has revealed that many of the genes and gene products involved in each cancer are not unique to just one cancer in general but are in fact in multiple cancer pathways (Edelman, Guinney, Chi, et al., 2008) Although previous research suggests that the correlation between one specific cancer and the development of a subsequent different cancers are strong (Khatri, Sirota, Butte, et al., 2012), research conducted to substantiate these has been insufficient, especially, in a way that allows one to visualize these interactions.

Our systematic approach could lead to an innovative targeting of cancers at key locations before they metastasize and form secondary cancers. Our research focuses on better understanding these cancer-related gene interconnections by utilizing available bioinformatics tools and online genomic libraries to visually link networks at common gene points—referred to as nodes—and document the overlaps in the pathway-networks for 15 typically identified cancers in humans.

2 MATERIALS AND METHODS

PIACAN—a meta-network system that allows users to visualize commonalities in cancer-related biological pathways is the first of its kind. We anticipate that users: clinicians, biomedical researchers and students will be able to easily access through this resources, knowledge related to the literature, clinical trials, drug-gene interactions, Big Data and genomic data-driven mapping onto cancer pathways. Novel discoveries and testable hypothesis will be possible from the identification commonality in genes and sub pathways among different cancer-types.
2.1 Data Processing

All the preliminary computational work and data analysis conducted in this study was performed on an Apple MacBook Pro (late 2013 model) running MacOS version 10.12.3. The information used to populate the studied cancer networks was obtained from the KEGG online library via customized Python script (section 2.2). The script was created using Python version 2.7.11 and was executed in Python’s Integrated Development and Learning Environment (IDLE) version 2.7.11. Any additional code utilized in the creation or updating of the networks can be found in the attached appendix.

2.2 Network Design and Integration

The cumulative network containing all 15 cancer networks was created using Cytoscape (Shannon, Markiel, Ozier, et al., 2003) version 3.4.0 in conjunction with Java version 1.8.0_111. Each cancer network was imported individually into Cytoscape (www.cytoscape.org) via the Cytoscape application KEGGParser (Nersisyan, Samsonyan, Arakelyan, 2014) version 1.7.11. Importing each sub-network individually allowed for the verification of the data, especially comment tagging, assuring its completeness before the cumulative merge was initiated. The specific composition of each sub-network was used by Cytoscape to determine which nodes and edges would be fused in the cumulative network. During the merging process, each network element was analysed by Cytoscape to determine whether it was common in the adjoining network; and, if the match was found, it would lead to the accumulation of comment tags. Cytoscape network merge tools were used to integrate the 15 sub-networks into a cumulative network.

Customized Python scripts requested the pathway information for each cancer network by leveraging the KEGG API. The script searched for the organism Homo sapiens (code in KEGG for human: hsa) and output all available files matching the specified protocols. The files were all saved separately in the eXtensible Markup Language (.xml) format.

2.3 Network Information Formatting

Cytoscape export controls were used to export the background information of the cumulative network in the Cytoscape.js (.cyjs) format.

The data contained in the exported file were first reformatted into the JavaScript Object Notation (JSON, .json) format by using Regular Expression (regex) patterns thereby creating the required JSON file. The data contained in the JSON file were further adjusted to include a community object and to account for the additional genomic libraries appended to each individual node in the form of image hyperlink objects (Figure 1).

Figure 1: The preliminary merging of 15 cancer-type biological pathways from the KEGG resources by the Cytoscape network analysis software. Green rectangular nodes represent genes. Smaller circular nodes represent chemical compounds. Each edge represents an individual interaction within a pathway. 302 edges and 256 nodes are represented in the merged pathways system.

Each image hyperlink object serves the purpose of affixing a path that when clicked would redirect the web browser to supplementary genomic content stored in KEGG, NCBI AceView, GeneCards, Gene Ontology, and Ensemble (depending on which icon is selected) as will be illustrated in Figure 5b. The community object includes information regarding background pathway information of each individual gene and compound node. The community object serves two primary purposes: first, it allows for further characterization of the node information detailing the specific biological pathway(s) that contains that node; and, second, it allows for future implementation of features which will allow for the visualization of each independent sub-pathway contained in each of the 15 cancer sub-networks.

The final cumulative network was migrated to a freely accessible webpage located on GitHub (https://adrquint.github.io/integrated-cancer-networks/). The migration of the cumulative network allowed for final visualization of the cumulative network as well as the implementation of JavaScript applications. Network visualization was accomplished by using the “Force Directed” Layout found on the Data-Driven Documents JavaScript library (D3.js) (https://d3js.org/). A selection colour palette was added on the left side of the page, Figure 2).
This allowed for a specific cancer sub-network to be selected and the background to become semi-transparent; this visual aid identifies the network being considered in the context of the overall merge-system. The selection for each individual sub-network grants the user the ability to visualize one network at a time. By selecting multiple networks, this process can be additive to form merged networks which are strictly common to only those cancer types. The palette also serves the purpose of associating the node (gene product) with specific cancer networks. A drop-down menu was incorporated to allow the user to directly view and select the genes present after the selection of one or several sub-networks.

3 RESULTS AND DISCUSSION

Figure 1 represents the results of work that involved auto-downloading, merging and developing a cumulative network containing 15 human cancer-sub-networks.

The green rectangles are nodes that represent gene products. Chemical compounds contained in a pathway are represented by smaller circular nodes (possibly too small to visualize). The edges that connect the genes represent an individual type of interaction in the pathway. The networks for specifically chosen types of cancers represent 265 nodes and 302 edges.

Table 1 represents the number of nodes and edges identified for each of the 15 types of cancers studied. Breast cancer is significantly overrepresented in the table.

The primary aim of this paper is to illustrate the merging of cancer networks. The methodologies described in the previous section demonstrated how the position of the node in the network is transferred from the cancer biological pathway name to the gene. Table 2 represents a truncated list of sub-pathways and networks that are associated with common genes. The full Excel spreadsheet is available upon request from the corresponding author of the paper (CJC).

Table 1: The Table shows the total number of nodes (genes) involved in the pathways and the total edges (interactions) for each cancer-type.

<table>
<thead>
<tr>
<th>Cancer Network</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>119</td>
<td>104</td>
</tr>
<tr>
<td>Glioma</td>
<td>78</td>
<td>73</td>
</tr>
<tr>
<td>Renal Cell Carcinoma</td>
<td>64</td>
<td>34</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>57</td>
<td>45</td>
</tr>
<tr>
<td>Prostate</td>
<td>57</td>
<td>47</td>
</tr>
<tr>
<td>Colorectal</td>
<td>55</td>
<td>32</td>
</tr>
<tr>
<td>Chronic Myeloid Leukaemia</td>
<td>54</td>
<td>42</td>
</tr>
<tr>
<td>Non-small Lung</td>
<td>54</td>
<td>47</td>
</tr>
<tr>
<td>Small Lung</td>
<td>47</td>
<td>34</td>
</tr>
<tr>
<td>Acute Myeloid Leukaemia</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td>Endometrial</td>
<td>43</td>
<td>25</td>
</tr>
<tr>
<td>Bladder</td>
<td>39</td>
<td>17</td>
</tr>
<tr>
<td>Melanoma</td>
<td>34</td>
<td>23</td>
</tr>
<tr>
<td>Basal Cell Carcinoma</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>Thyroid</td>
<td>26</td>
<td>14</td>
</tr>
</tbody>
</table>

Cytoscape is a powerful network design and analysis software. It can be used for different networks—not necessarily for biological pathways. One of the drawbacks of using the Cytoscape network analysis software however, is in the area of universal knowledge dissemination. This standalone software has to be downloaded to one’s computer (free). In order to make the merged-network resource, PIACAN, accessible over the Internet, the web resources were developed as described in Section 2.3.

Table 2: The table shows which genes are common to the four pathways that contain the most number of common genes.

<table>
<thead>
<tr>
<th>Gene Node</th>
<th>Sub-Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAF</td>
<td>END, aSCLC, PROS, BRCA, AMLE, BLAD, COLO, GLIO, RENA, PANC, CMLE, MELA</td>
</tr>
<tr>
<td>MAP2K1</td>
<td>END, aSCLC, COLO, PROS, BRCA, AMLE, BLAD, GLIO, THYR, RENA, PANC, CMLE, MELA</td>
</tr>
<tr>
<td>MAPK1</td>
<td>END, aSCLC, COLO, BRCA, PROS, AMLE, GLIO, BLAD, THYR, PANC, RENA, CMLE, MELA</td>
</tr>
<tr>
<td>PIK3R5</td>
<td>BRCA, CMLE, MELA, PANC, aSCLC, END, SCLC, PROS, GLIO, AMLE, COLO, RENA</td>
</tr>
</tbody>
</table>
When the user accesses the PIACAN web-resource (https://adrquint.github.io/integrated-cancer-networks), the web page dynamically opens into a two-panel arrangement. The first panel (Figure 2) indicates the 15 cancers in colour-coded circles. The size of the circles represent the number of pathways associated with that specific cancer type.

Each gene in figure 3 is represented only once in the merged pathway system. Each of these genes is colour coded. Most have multiple colours. The colours allow the user at a glance to see which cancer pathways contain that gene. Figure 4 is a close-up of a portion of Figure 2.

![Figure 4](image)

Figure 4: Close-up of a region of the merged cancer networks that show colours for each gene representing cancer types with which they are associated.

In figure 4, (a zoomed-in area of the merged network represented in Figure 3), one can see, for example, that two colours represent the BRAF gene: purple and dark gray. The colours can be matched by the cancer type in figure 2a which shows that BRAF gene can be found in Thyroid Cancer (dark gray) and Melanoma (purple). One can also see that the ARAF and PIK3R5 genes are present in many of the cancers whose pathways are represented here.

The web resource also helps users dynamically assess genes, pathways and cancer types. Users can click multiple cancer types and only those nodal-genes implicated in selected cancers and their associated networks and sub-networks become visible (Figure 5 and 6).

![Figure 5](image)

Figure 5: Figure shows a use-case where the user has selected three cancer-types. The other cancer-types faded for additional clarity.

![Figure 6](image)

Figure 6: When specific cancers are selected, only the merged pathways related to those cancers are illustrated from the complete pathway show in Figure 3. The red-bordered inset shows how when a mouse is placed over a gene, dynamic links are created (via icons) for more information about that gene at KEGG, AceView, NCBI, Gene Ontology, Gene Cards and Ensemble.
Circles representing the other cancers are rendered faded. In the right panel only the nodes that are common to breast and prostate cancer are rendered—the rest of the meta-network is faded. The colour codes on the genes that are common to cancer-types to which they belong.

4 DISCUSSION

PIACAN allows the direct and dynamic comparison each of the 15 cancer networks against each other in terms of gene content. In this study, we have changed the paradigm of the assessment of gene-networks from the “network name” to the “gene”. The latter now becomes the pivotal node around which the merged networks are illustrated.

The comparative analyses resulted in the conclusion that a common set of genes initiated several cancer progression origin sites. Furthermore, this information can be utilized to actively monitor the organism’s evolutionary developments and how this process affects cancer progression. To illustrate this, we assessed the merged pathways and coinciding sub-networks for three cancers: breast and endometrial cancers, breast and prostate cancers, and endometrial and prostate cancers. The rationale behind the selection of these pair-wise comparisons was due to these groups having the closest alignments in regard to the number of genes they had in common. Breast and Endometrial Cancer: The comparison of the breast and endometrial cancer groups yielded 20 common genes between the two groups. This comparison produced the highest number of common genes of all the three groups compared. Out of the 20 common genes, eight of these are found in the 10 genes most commonly found in all 15 networks. The only two that weren’t found in the 20, were RB1 and E2F1. Although, drawing connections between pathways in terms of a mechanism of the progression of cancer from a primary to a secondary tissue is premature, it is noteworthy that the overlap between the breast cancer and endometrial cancer networks is significant. One can make the case the genomic relatedness of these two cancers can be attributed to the fact that both tissues are anatomically present primarily in females and thus the possibility that they both are active is much higher than in a study comparing differences in cancer that primarily affect one sex over the other. The connection between breast and endometrial tissues can be attributed to the stages of embryonic development. In these processes, the tissues differentiating the male and female sexes develop resulting in distinctive developmental processes uniquely found in one sex and not the other. In females, Breast and Prostate Cancer. In our second group, we compared the levels of overlap in gene contents of breast and prostate cancers. This group contained 19 common genes which were found to be active in both cancers. Out of 19 common genes, nine of which were found in the list of the top most commonly found genes among the networks processed. The only one that wasn’t was TP53. Generally, cancers affecting primarily one sex have a much higher percentage of cases reported within that sex. Cases of occurrences in the opposite sex however, are also common. Breast cancer is predominately present in females; however, cases in males have been reported. Endometrial and Prostate Cancer. In the third group, we compared the gene contents of endometrial and prostate cancers. This group contained 18 common genes involved in both cancer networks. Out of the 18 common genes in this group, seven of these were found in our top 10 common genes in all of our networks.

5 CONCLUSIONS

The merging of the cancer networks demonstrated that the gene products found within certain cancer networks are not unique. They are found in many other mapped networks. PIACAN leverages on-line resources of cancer-pathways, already available network merging pathways as well as web-development for universal free access. Although this is a valid step forward and provides many opportunities for discovery, more work remains to be done. Integrating more data from addition resource into our dynamic networks would be highly beneficial to visually expressing the similarities found between different cancers.

The information contained within KEGG is vast and diverse; it is not however, the only online resource that can be incorporated into our research. What was demonstrated in this report is a pilot system. To make this a truly comprehensive system, future work will involve the incorporation of information of online libraries including PubMed, PubChem, and the Protein Data Bank (PDB). The resources for gene-product information which PIACAN can currently access are those where the gene product name can be directly incorporated into a URL link. If we were to create additional links to resources where gene information is mapped onto alphanumeric IDs, the one would have to dedicate effort to translating these IDs into gene names.
With the array of other online bioinformatics libraries, which are freely accessible, it possible to begin to make conjectures and generate hypotheses as to how diseases, in this case cancer, are related and how they interact with each other. This systematic approach could lead to an innovative targeting of cancers at key locations before they metastasize and form secondary cancers, which is a significant health concern.

ACKNOWLEDGEMENTS

The authors wish to thank the Interactive Data Visualization Lab (iDVL), from the Department of Computer Science and the Center for Biotechnology and Genomics at Texas Tech University where the development of this resource was conducted.

REFERENCES