
Algorithmic Eta-reduction in Type-theory of Acyclic Recursion

Roussanka Loukanova1,2

1Stockholm University, Stockholm, Sweden
2Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,

Acad. G. Bonchev Str., Block 8, 1113 Sofia, Bulgaria

Keywords: Algorithms, Acyclic Recursion, Type Theory, Reduction Calculi, Canonical Forms, Eta-reduction.

Abstract: The paper extends the standard reduction calculus of the higher-order Type-theory of Acyclic Recursion to η-
reduction. This is achieved by adding a restricted η-rule, which is applicable only to terms in canonical forms
satisfying certain conditions. Canonical forms of terms determine the iterative algorithms for computing the
semantic denotations of the terms. Unnecessary λ-abstractions and corresponding functional applications in
canonical forms contribute to algorithmic complexity. The η-rule provides a simple way to reduce complexity
by maintenance of essential algorithmic structure of computations.

1 INTRODUCTION

This paper is part of theoretical development and ap-
plications of a new approach to the mathematical no-
tion of algorithm, originally introduced by the for-
mal languages of recursion (Moschovakis, 1989). The
simply-typed theory of recursion Lλ

ar introduced in
(Moschovakis, 2006) is a higher-order type theory,
which is a proper extension of Gallin type theory TY2
(Gallin, 1975). The book (Moschovakis, 2019) inves-
tigates complexity in its untyped version.

The formal languages FLR introduced in a se-
quence of papers (Moschovakis, 1989; Moschovakis,
1993; Moschovakis, 1997), while untyped systems
formalising untyped domains of recursive functions,
allow full recursion with cyclicity, and are equivalent
to any of the classic theories of the mathematical no-
tion of algorithm. The formal syntax of Lλ

ar, presented
originally in (Moschovakis, 2006), is typed and al-
lows only recursion terms with acyclic systems of as-
signments, thus, formalising algorithms that end after
finite iterations of computations. Typed languages of
full recursion Lλ

r have the typed syntax of Lλ
ar, with-

out the acyclicity requirement. The classes of lan-
guages of recursion (FLR, Lλ

r , and Lλ
ar) have two se-

mantic layers: denotational semantics and algorith-
mic semantics. The recursion terms of Lλ

ar are essen-
tial for representing algorithmic computations of se-
mantic information.

This paper concerns the typed theory of algoritms
Lλ

ar, which is already well developed, and provides

new approaches to intelligent foundations, with ver-
satile applications, and especially to the areas of Ar-
tificial Intelligence (AI). In this paper, we introduce
a technique, which, by adding a simple additional re-
duction rule to the reduction calculi of Lλ

ar, is impor-
tant for applications of Lλ

ar to the areas of AI.
The purpose of the reduction calculi of the for-

mal language of Lλ
ar is to reduce every Lλ

ar term A to
a term in a canonical form that represents the com-
putational steps for the computation of the denotation
of A. The reduction calculi of Lλ

ar reflect fundamen-
tal algorithmic patterns in computations. Among the
potential applications of Lλ

ar are intelligent software
systems, e.g., in robotics and in AI, that perform al-
gorithmic procedures, which determine reliable per-
formance. The prominent applications of Lλ

ar are to
computational semantics of formal and natural lan-
guages, and, in particular, semantics of programming
and other specification languages in Computer Sci-
ence and AI, as well as Natural Language Process-
ings (NLP), and computational grammars that cover
semantics.

The reduction calculus of Lλ
ar reduces every Lλ

ar-
term to its canonical form. The canonical forms not
only preserve the denotations of the Lλ

ar-terms, they
reveal the algorithmic steps encoded by the terms
for computing their denotations. The canonical form
cf(A) of every Lλ

ar-term A determines the algorithm
that computes the denotation of A in the semantics
domain of every given semantic structure. The λ-rule
of Lλ

ar is one of the most important reduction rules

Loukanova, R.
Algorithmic Eta-reduction in Type-theory of Acyclic Recursion.
DOI: 10.5220/0009182410031010
In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020) - Volume 2, pages 1003-1010
ISBN: 978-989-758-395-7; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

1003

for the recursion and abstraction operators. Never-
theless, in many cases, the λ-rule, creates redundant
λ-abstractions over variables that do not occur freely
in the recursion terms (e.g., see Example 3.1). For ex-
ample, it is important to simplify terms having such
extra abstractions, when translating, i.e., rendering,
natura language (NL) expressions to semantic repre-
sentations by Lλ

ar-terms.
This paper presents a restricted η-reduction that

simplifies terms in canonical forms. The η-rule does
not preserve the strictest referential synonymy of its
input and output terms, which are in canonical forms.
Importantly, the η-rule takes care to maintain closely
the algorithmic meaning of the terms in the entire
reduction sequence, while reducing computational
complexity caused by excessive, superfluous lambda-
abstractions and corresponding functional applica-
tions. It preserves the denotations of the input and re-
duced terms. (Loukanova, 2019c; Loukanova, 2019b)
introduce and investigate the properties of more intri-
cate rules and reduction calculi for removing redun-
dant lambda-abstractions. The η-reduction is also in-
teresting. It is easier to use, by extending the ordinal
reduction calculus of Lλ

ar, since it is applied directly,
only to terms in canonical forms.

(Loukanova, 2011d) introduces very briefly the η-
rule, for the purpose of applying it to semantic rep-
resentations of human language, without looking into
its properties. We reformulate the rule here, for pre-
senting its properties with respect to its existing and
potential applications to the areas of Artificial Intelli-
gence (AI). In particular, we point to applications that
need context dependent information and algorithmic
computations that depend on states of information, in-
cluding agents.

We should stress that the η-rule introduced here is
about recursion terms and the algorithms designated
by them. It is different from, while related to, the
denotational η-rule in standard λ-calculi.

In Section 2, we give the formal definitions of the
syntax of Lλ

ar. We introduce the denotational and algo-
rithmic semantics of Lλ

ar with some intuitions and ex-
amples. Then, we introduce the rules of the reduction
calculus of the type theory Lλ

ar, which is central to the
referential intensions, i.e., to the algorithmic meaning
in a selected specific semantic domain of applications,
and some key theoretical results. The central part of
the paper is on introducing the new, additional η-rule
for reduction of the Lλ

ar terms, which are in canoni-
cal forms, to simpler η-canonical forms that formalise
more efficient algorithmic computations.

2 TYPE-THEORY OF ACYCLIC
RECURSION

2.1 Types

The set Types is the smallest set defined recursively
as follows, by :

τ :≡ e | t | s | (τ1→ τ2) (Types)

The type e is for entities, also called individuals; s
is for states consisting of various information, e.g.,
such as possible worlds, context, time and/or space
locations, some agents, e.g., a speaker; t is for truth
values. For an elaboration of possible choices of con-
text information, which include speaker agents, see
(Loukanova, 2011b). The type (s→ τ) is for context
dependent objects.

2.2 Syntax of Lλ
ar

Vocabulary of Lλ
ar

• Constants: K =
⋃

τ∈Types Kτ,
where, for each τ ∈ Types, Kτ is a finite set:
Kτ = {cτ

0,c
τ
1, . . . ,c

τ

kτ
}

• Pure Variables: PureV =
⋃

τ∈TypesPureVτ,
where, for each τ ∈ Types,
PureVτ = {vτ

0,v
τ
1, . . .} (a denumerable set)

• Recursion Variables (Memory Locations):
RecV =

⋃
τ∈TypesRecVτ,

where, for each τ ∈ Types,
RecVτ = {pτ

0,p
τ
1, . . .} (a denumerable set)

Definition 1 (The set Terms of Lλ
ar).

A :≡ cτ : τ | xτ : τ | B(σ→τ)(Cσ) : τ (1)
| λ(vσ)(Bτ) : (σ→ τ) (2)

| Aσ
0 where { pσ1

1 := Aσ1
1 , . . . ,

pσn
n := Aσn

n } : σ
(3)

for A1 : σ1, . . . , An : σn are terms (n≥ 0), and p1 : σ1,
. . . , pn : σn are pairwise different recursion variables
(memory locations), and the sequence of assignments
{ p1 :=A1, . . . , pn :=An } satisfies the Acyclicity Con-
straint:

Acyclicity Constraint. A sequence of assignments
of the form:

{ p1 := A1, . . . , pn := An }
is acyclic iff there is a ranking function

rank : { p1, . . . , pn } −→ N
such that, for all pi, p j ∈ { p1, . . . , pn }, if p j oc-
curs freely in Ai, then rank(p j)< rank(pi).

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

1004

Intuitively, an acyclic sequence of assignments
{ p1 := A1, . . . , pn := An } defines recursive computa-
tions of the values den(A1), . . . , den(An) to be as-
signed to the locations p1, . . . , pn, which close-off
after a finite number of steps; ranking rank(p j) <
rank(pi) means that the value Ai assigned to pi, may
depend on the values of the free occurrences of the
location p j in Ai, and of all other free occurrences of
locations with lower rank than p j.

Some Notations and Abbreviations
• The symbol “=” is a predicate constant of the lan-

guage Lλ
ar for identity, and also used for the iden-

tity relation, which it denotes

• The symbol “≡” is a meta-symbol for literal iden-
tity between expressions

• The symbol “:≡” is a meta-symbol that we use in
definitions, e.g., of types and terms, and for the
replacement operation

• Often, we skip some “understood” parentheses

• The type σ of a term A may be depicted either as
a superscript, Aσ, or by a colon, A : σ

We use the following abbreviations for “folding” and
“unfolding” sequences of assignments. For any terms
A1 : σ1, . . . , An : σn, An+1 : σn+1, C,D : τ, and recur-
sion variables p1 : σ1, . . . , pn : σn, (where n≥ 0):

−→p :=
−→
A ≡ p1 := A1, . . . , pn := An (4a)

−→p :=
−→
A {C :≡ D} ≡ (4b)

p1 := A1{C :≡ D}, . . . , pn := An{C :≡ D} (4c)

where, for all i= 1, . . . , n, Ai{C :≡D} are the result of
the replacement of all occurrences of C, respectively
in Ai without causing variable clashes.

Denotational Semantics of Lλ
ar The language Lλ

ar
has denotational semantics provided by a denotational
function denA, for any given typed semantic structure
A with typed domain frames and variable assignments
g in A. The definition of denA is by structural in-
duction on the terms, for details, see (Moschovakis,
2006) and (Loukanova, 2019c; Loukanova, 2019b).
Often, we shall designate the denotation function by
den without the superscript.

2.3 Reduction Calculus of Lλ
ar

The reduction rules define a reduction relation be-
tween terms.

The congruence relation, ≡c, is the smallest rela-
tion between Lλ

ar terms (A≡c B) that is reflexive, sym-
metric, transitive, and closed under: term formation

rules (application, λ-abstraction, and acyclic recur-
sion); renaming bound variables (pure and recursion),
without causing variable collisions; and re-ordering
of the assignments within the acyclic sequences of as-
signments of the recursion terms , i.e., for any permu-
tation π : {1, . . . ,n}→ {1, . . . ,n}:

Reduction Rules of Lλ
ar

Congruence If A≡c B, then A⇒ B (cong)

Transitivity If A⇒ B and B⇒C, then A⇒C (trans)

Compositionality
• If A⇒ A′ and B⇒ B′, (rep1)

then A(B)⇒ A′(B′)

• If A⇒ B, then λu(A)⇒ λu(B) (rep2)

• If Ai⇒ Bi, for i = 0, . . . , n, then (rep3)
A0 where { p1 := A1, . . . , pn := An }

⇒ B0 where { p1 := B1, . . . , pn := Bn }
The Head Rule (head)(

A0 where {−→p :=
−→
A }
)
where {−→q :=

−→
B }

⇒ A0 where {−→p :=
−→
A , −→q :=

−→
B }

given that no pi occurs freely in any B j, for i = 1,
. . . , n, j = 1, . . . , m

The Bekič-Scott Rule (B-S)

A0 where {p :=
(
B0 where {−→q :=

−→
B }
)
,−→p :=

−→
A }

⇒ A0 where {p := B0,
−→q :=

−→
B , −→p :=

−→
A }

given that no q j occurs freely in any Ai, for i = 1,
. . . , n, j = 1, . . . , m

The Recursion-application Rule (recap)

(A0 where {−→p :=
−→
A }
)
(B)

⇒ A0(B) where {−→p :=
−→
A }

given that no pi occurs freely in B, for i = 1, . . . ,
n

The Application Rule (ap)
A(B) ⇒ A(p) where {p := B}
given that B is a proper term and p is a fresh loca-
tion

The λ-Rule (λ)
λu(A0 where { p1 := A1, . . . , pn := An })

⇒ λuA′0 where { p′1 := λuA′1, . . . , p′n := λuA′n },
where for all i = 1, . . . , n, p′i is a fresh lo-
cation and A′i is the result of the replacement
of the free occurrences of p1, . . . , pn in Ai with
p′1(u), . . . , p′n(u), respectively, i.e.:

A′i :≡ Ai{p1 :≡ p′1(u), . . . , pn :≡ p′n(u)}

Algorithmic Eta-reduction in Type-theory of Acyclic Recursion

1005

2.4 Some Major Properties of Lλ
ar

The following theorems are important for the algo-
rithmic meanings of the terms.
Theorem 1 (Canonical Form Theorem). (For details,
see (Moschovakis, 2006), § 3.1.) For each term A,
there is a unique, up to congruence, irreducible term
C, denoted by cf(A) and called the canonical form of
A, such that:

1. cf(A) ≡ A0 where { p1 := A1, . . . , pn := An } for
some explicit, irreducible terms A1, . . . , An (n≥ 0)

2. A⇒ cf(A)
3. if A⇒B and B is irreducible, then B≡c cf(A), i.e.,

cf(A) is the unique, up to congruence, irreducible
term to which A can be reduced

Theorem 2. (See (Moschovakis, 2006), § 3.11.) For
any Lλ

ar terms A and B, if A⇒ B, then

den(A) = den(B) (5a)
den(A) = den(cf(A)) (5b)

The canonical forms have a distinguished feature that
is part of their computational (algorithmic) role: they
provide algorithmic patterns of semantic computa-
tions. The more general terms provide algorithmic
patterns that consist of sub-terms with components
that are recursion variables; the most basic assign-
ments of recursion variables (of lowest ranks) pro-
vide the specific basic data that feeds-up the general
computational patterns. The more general terms and
sub-terms classify language expressions with respect
to their semantics and determine the algorithms for
computing the denotations of the expressions.

Algorithmic Semantics of Lλ
ar. The notion of algo-

rithmic semantics, i.e., algorithmic intension, in the
languages of recursion, (Moschovakis, 2006), covers
the most essential, computational aspect of the con-
cept of meaning. The referential intension, int(A),
of a meaningful term A is the tuple of functions (a
recursor) that is defined by the denotations den(Ai)
(i ∈ {0, . . .n}) of the parts (i.e., the head sub-term A0
and of the terms A1, . . . , An in the system of assign-
ments) of its canonical form:

cf(A)≡ A0 where { p1 := A1, . . . , pn := An }

Intuitively, for each meaningful term A, the inten-
sion of A, int(A), is the algorithm for computing its
denotation den(A). Two meaningful expressions are
synonymous iff their referential intensions are natu-
rally isomorphic, i.e., they are the same algorithm.
Thus, the algorithmic meaning of a meaningful term
(i.e., its sense) is the information about how to com-
pute its denotation step-by-step: a meaningful term

has sense by carrying instructions within its struc-
ture, which are revealed by its canonical form, for
acquiring what they denote in a model. The canon-
ical form cf(A) of a meaningful term A encodes its
intension, i.e., the algorithm for computing its deno-
tation, via: (1) the basic instructions (facts), which
consist of { p1 := A1, . . . , pn := An } and the head
term A0, which are needed for computing the deno-
tation den(A), and (2) a terminating rank order of
the recursive steps that compute each den(Ai), for
i ∈ {0, . . . ,n}, for incremental computation of the de-
notation den(A) = den(A0).

The reduction calculus of the type theory Lλ
ar is

effective. The calculus of the intensional synonymy,
i.e., algorithmic equivalence, in the type-theory Lλ

ar
has a restricted β-reduction rule, which contributes
to the high expressiveness of the language of Lλ

ar,
see (Moschovakis, 2006) and (Loukanova, 2011a;
Loukanova, 2011c).

Theorem 3 (Referential Synonymy Theorem). (See
(Moschovakis, 2006), § 3.4.) Two terms A,B are ref-
erentially synonymous, A ≈ B, i.e., algorithmically
equivalent, with respect to a given semantic structure
A iff there are explicit, irreducible terms (of appropri-
ate types), A0,A1, . . . ,An,B0,B1, . . . ,Bn, n ≥ 0, such
that:

1. A⇒cf A0 where { p1 := A1, . . . , pn := An },
2. B⇒cf B0 where { p1 := B1, . . . , pn := Bn },
3.(a) for every x ∈ PureV∪RecV,

x ∈ FreeVars(Ai) iff x ∈ FreeVars(Bi),

for i ∈ {0, . . . ,n}
(6)

(b) for all g ∈ G:

den(Ai)(g) = den(Bi)(g), i ∈ {0, . . . ,n} (7)

3 ETA-REDUCTION

In this section, at first, we present an example from
natural language to motivate the usefulness of the ad-
ditional η-rule, and then we introduce the η-rule and
the extended reduction calculus.

Example 3.1. The detailed steps of rendering the sen-
tence (8a) into a term, and its reduction to the canoni-
cal form (8b)–(8e), are given in (Loukanova, 2019b),
as motivation for γ-reduction, which is more general
and complex.

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

1006

Kim hugs some dog render−−−→ A . . . (8a)

cf(A)≡c [λyk(some
(
d(yk)

)
(h(yk)))](k) where (8b)

{k := kim, (8c)
h := λykλxd hugs(xd)(yk), (8d)
d := λyk dog} (8e)

Then, by Theorem 3:

cf(A) 6≈ B≡c

[
λyk some(d′)

(
h(yk)

)]
(k) where (9a)

{k := kim, (9b)
h := λykλxd hugs(xd)(yk), (9c)

d′ := dog} (9d)

The term B in (9a)-(9b) is in a canonical form, but it is
not algorithmically equivalent (referentially synony-
mous) to the term (8b)-(8e), by the reduction calculus
of Lλ

ar. That is, these two terms are not algorithmi-
cally equivalent with respect to the strictest notion of
algorithm introduced in (Moschovakis, 2006).

Definition 2 (η-rule). Let A be a term in a canonical
form:

A≡ A0 where {−→p :=
−→
A ,

pn+1 := λvAn+1,

−→q :=
−→
B }

(10a)

≡ A0 where { p1 := A1, . . . , pn := An,

pn+1 := λvAn+1,

q1 := B1, . . . ,qk := Bk }
(10b)

with n≥ 0, k ≥ 0, such that

1. v : σ is a pure variable and pn+1 : (σ→ τ) is a
recursion variable (location).

2. The explicit, irreducible term An+1 : τ does not
have any (free) occurrences of v (and pn+1).

3. All the occurrences of pn+1 in A0,
−→
A , and

−→
B are

occurrences of the term pn+1(v), which are in the
scope of λv (modulo appropriate renaming of v).

Then, for any fresh recursion variable p′n+1 : τ

A0 where {
−→p :=

−→
A ,

pn+1 := λvAn+1,

−→q :=
−→
B }

(11a)

⇒η A0{pn+1(v) :≡ p′n+1} where {
−→p :=

−→
A {pn+1(v) :≡ p′n+1},

p′n+1 := An+1,

−→q :=
−→
B {pn+1(v) :≡ p′n+1}}

(11b)

where,
−→
A {pn+1(v) :≡ p′n+1} is the result of the re-

placement Ai{pn+1(v) :≡ p′n+1} of all occurrences
of pn+1(v) with p′n+1, in all terms Ai of

−→
A , and

−→
B {pn+1(v) :≡ p′n+1} is the is the result of the re-
placement B j{pn+1(v) :≡ p′n+1} of all occurrences of
pn+1(v) with p′n+1, in all terms B j of

−→
B .

Note: In the η-rule and corresponding applica-
tions, for all i ∈ {0, . . . ,n} and j ∈ {0, . . . ,k}, the re-
placements Ai{pn+1(v) :≡ p′n+1} and B j{pn+1(v) :≡
p′n+1} are such that the occurrences of the term
pn+1(v) in Ai and B j are in the scope of λv.
Theorem 4 (Denotational Equivalence by η-rule).
Let A be a term in a canonical form:

A≡ A0 where {−→p :=
−→
A ,

pn+1 := λvAn+1,
−→q :=

−→
B }

(12a)

(n≥ 0) such that:
1. v : σ is a pure variable and pn+1 : (σ→ τ) is a

recursion variable.
2. The explicit, irreducible term An+1 : τ does not

have any (free) occurrences of v (and pn+1).

3. All the occurrences of pn+1, in A0,
−→
A , and

−→
B , are

occurrences of the term pn+1(v), which are in the
scope of λv (modulo appropriate renaming of v).

Let p′n+1 : τ be a fresh recursion variable, and A′ be a
term as in (13b) (by the η-rule):

A≡ [A0 where {−→p :=
−→
A ,

pn+1 := λvAn+1,

−→q :=
−→
B }]

(13a)

⇒η A′ ≡ [A0{pn+1(v) :≡ p′n+1} where

{−→p :=
−→
A {pn+1(v) :≡ p′n+1},

p′n+1 := An+1,

−→q :=
−→
B {pn+1(v) :≡ p′n+1}}]

(13b)

Then,

A 6≈ A′ (14a)

cf(A′)≡c A′ (14b)

and, for all g ∈ G, i ∈ {0, . . . ,n}, and j ∈ {1, . . . ,k},
the following denotational equalities hold:

den(A)(g) = den(A′)(g) (15)

and:

den(Ai)(g{−→p :=
−→
p , pn+1 := pn+1,

−→q :=
−→
q })

(16a)

=den
(

Ai{pn+1(v) :≡ p′n+1}
)
(g{−→p :=

−→
p′ ,

p′n+1 := p′n+1,
−→q :=

−→
q′ })

(16b)

Algorithmic Eta-reduction in Type-theory of Acyclic Recursion

1007

and:

den(B j)(g{−→p :=
−→
p , pn+1 := pn+1,

−→q :=
−→
q′ })

(17a)

=den
(

B j{pn+1(v) :≡ p′n+1}
)
(g{−→p :=

−→
p′ ,

p′n+1 := p′n+1,
−→q :=

−→
q′ })

(17b)

where, for all i∈ {1, . . . ,n+1} and j ∈ {1, . . . ,k}, the
values pi ∈ Tσi , p′i ∈ Tσi , q j ∈ Tτ j , and q′ j ∈ Tτ j are

calculated by recursion on the rank of −→p , pn+1,
−→
p′ ,

p′n+1, −→q ,
−→
q′ .

Proof. The proof is long, by induction on the rank
values, and is not in the subject of this paper.

Definition 3 (η-reduction). The η-reduction relation
in Lλ

ar is the smallest relation ⇒∗η between Lλ
ar-terms,

such that:
(1) For any Lλ

ar-terms A and B,
if cf(A)⇒η B, then A⇒∗η B (η-red)

(2) ⇒∗η is closed under transitivity, congruence, and
is compositional with respect to term formation
rules, i.e.:
Transitivity If A⇒∗η B and B⇒∗η C, then A⇒∗η C

(η-tr)
Congruence If A≡c B, then A⇒∗η B (η-cong)
Compositionality
• If A⇒∗η A′ and B⇒∗η B′, then A(B)⇒∗η A′(B′)

(η-rep1)
• If A⇒∗η B, then λu(A)⇒∗η λu(B) (η-rep2)
• If Ai⇒∗η Bi, for i = 0, . . . , n, then (η-rep3)

A0 where { p1 := A1, . . . , pn := An }
⇒∗η B0 where { p1 := B1, . . . , pn := Bn }

Definition 4 (η-equivalence relation ≈η). For any
Lλ

ar-terms A and B

A≈η B ⇐⇒ for some C,

cf(A)⇒∗η C and C ≈ B
(18)

Corollary 1. For any Lλ
ar-terms A and B,

(1) if A⇒∗η B, then den(A) = den(B)
(2) if A≈η B, then den(A) = den(B)

Proof. ((1)) is proved by induction on the definition
of the⇒∗η. Then, ((2)) follows by the Definition 4 of
≈η.

Corollary 2. There exist (many) Lλ
ar-terms A, B, and

C such that

A⇒ B⇒∗η C =⇒ A≈ B =⇒ A≈η B≈η C (19a)

while C 6≈ B and C 6≈ A (19b)

4 USEFULNESS OF THE
ETA-RULE

In this section, we present some arguments for the use
of η-rule and η-reduction, for existing and potential
applications.

Maintenance of Essential Algorithmic Computa-
tions. While the equalities (15), (16a), (17a) are
about denotations, they do not use the denotational
traditional β-conversion or any other syntactical ma-
nipulations over the terms A and A′, except the η-rule
for A⇒∗η A′.

Preservance of Algorithmic Structure. The η-rule
preserves very closely the computational structure of
the term A in a canonical form. The term A′, which is
such that A⇒∗η A′, is also in a canonical form, with
parts that are almostly the same as the correspond-
ing parts of A, with the exception of the replacements
{pn+1(v) :≡ p′n+1} and skipped λv from the term part
of pn+1 := λvAn+1 to the term part of p′n+1 := An+1.

The where assignments formalise some essentials
of object declarations in object oriented programming
languages, and in general, of function declarations in
programming languages.

The equalities of the denotations of the corre-
sponding parts, given in (16a)–(16b) and (17a)–(17b),
are proved by recursion on rank. The denotations of
the parts may, in general, strictly depend on the values
of the recursion variables that have lesser rank. The
denotational equality of the corresponding parts, e.g.,
of Ai and Ai{pn+1(v) :≡ p′n+1}, in (20a)–(20b), holds
for the variable assignment g due to its update for the
local variables within the scope of where, which are
constrained by the recursion assignments.

den(Ai)(g{−→p :=
−→
p , pn+1 := pn+1,

−→q :=
−→
q })

(20a)

=den
(

Ai{pn+1(v) :≡ p′n+1}
)
(g{−→p :=

−→
p′ ,

p′n+1 := p′n+1,
−→q :=

−→
q′ })

(20b)

The recursion variables −→p , pn+1,
−→
p′ , p′n+1, −→q ,

−→
q′ ,

are bound, i.e., constrained to the values determined
by the assignments in the scope of where. In case that
rank(pi) > rank(pn+1), the value den(Ai)(g) of the
part Ai can depend on the value of pn+1, and respec-
tively, den

(
Ai{pn+1(v) :≡ p′n+1}

)
(g) on the value of

p′n+1. Without the constraints pn+1 := λvAn+1 and
p′n+1 := An+1, a variable assignment g can be such
that for some a ∈ Tσ, g(pn+1)(a) 6= g(p′n+1). Then,
without the specified update of g, outside the scope of

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

1008

where, i.e. outside the local system of assignments,
it is possible that den(Ai)(g) 6= den

(
Ai{pn+1(v) :≡

p′n+1}
)
(g).

Local Scope of Recursion Operator. We explain
the role of the local scope of the recursion operator
designated by the constant where.

Let us consider again the terms in Example 3.1.
The corresponding parts, which are subject of the η-
rule, λyk(some

(
d(yk)

)
(h(yk))), of the term (8b)–(8e),

and λyk(some
(
d′
)
(h(yk))), of (9a)–(9b), depend on

the values of d and d′, respectively. The denota-
tions of these terms are equal only within the local
scopes of where, with the variable assignment up-
dated, i.e., constrained by the corresponding assign-
ments d := λykdog and d′ := dog. Without these con-
straints, it is possible that, for some g ∈ G, we have
the denotational inequality in (21a)–(21b):

den
(

λyk(some
(
d(yk)

)
(h(yk)))

)
(g) (21a)

6= den
(

λyk(some
(
d′
)
(h(yk)))

)
(g) (21b)

because g(d) ∈ T(ẽ→(ẽ→t̃)) and g(d′) ∈ T(ẽ→t̃) can be
any objects in these domains. For example,

(
g(d)

)
(k)

can depend on a, and it is possible that there is some
k ∈ Tẽ, such that

(
g(d)

)
(k) 6= g(d′) so that, the fol-

lowing holds:

den
(

λyk(some
(
d(yk)

)
(h(yk)))

)
(k) (22a)

6= den
(

λyk(some
(
d′
)
(h(yk)))

)
(k) (22b)

Then, from (22a) by the denotation function, den, we
have (23a).

I (some)
((

g(d)
)
(k)
)((

g(h)
)
(k)
)

(23a)

6= I (some)
(

g(d′)
)((

g(h)
)
(k)
)

(23b)

For all variable assignments g in a given semantic
structure A, we get den(A)(g) = den(A′)(g), because
the recursion variables −→p , pn+1,

−→
p′ , p′n+1, −→q ,

−→
q′ , are

bound, i.e., constrained to the values determined by
the assignments in the scope of where. The term A
carries the binding constraints together with the scope
of where.

Theorem 4 is not just about denotational seman-
tics of terms related by the η-rule. Many different
terms (as in many formal languages) have the same
denotations. Some manipulations and operators over
terms, do not preserve denotations, i.e., they may pro-
duce new terms that have different denotations from
the original terms over which they operate. While the

η-rule does not preserve the original, strict algorith-
mic steps, i.e., the referential intension, Theorem 4
proves that the η-rule, applied on a canonical form
cf(A), preserves its denotational semantics, by mini-
mal divergence from the algorithmic steps determined
by the original canonical form cf(A) on which it is
applied. This additional reduction is useful for var-
ious tasks, e.g., in translations between NL expres-
sions and generation of NL from semantic representa-
tions. Theorem 4 extended to the ≈η equivalence by
Corollary1 shows that the ≈η equivalence is one of
the many equivalence relations between terms, which
is stronger than denotational equality and weaker than
referential synonymy.

5 EXISTING AND POTENTIAL
APPLICATIONS

In this section, we point to existing and potential ap-
plications of the Type-Theory of Acyclic Recursion
Lλ

ar, in areas that are within the subareas of Artifi-
cial Intelligence (AI). The reduction calculs of Lλ

ar ex-
tended to η-reduction is useful in such applications,
for reducing algorithmic complexity.

• programming languages: for algorithmic (proce-
dural) semantics of programming languages

• compiler programming languages: for automatic
conversion of recursive programs into iterative
programs, where the reduction calculus is build
into parts of compilation processing

• algorithm specifications with higher-order type
theory of algorithms

• data science / database

• Computational Semantics (Loukanova, 2016)

• Syntax-Semantics Interface in NLP, computa-
tional grammar, and lexicon of human language
(Loukanova, 2019d; Loukanova, 2019a)

• Language Processing / Technology

• Computational Neuroscience (Loukanova, 2017)

6 OUTLOOK AND FUTURE
WORK

We have formulated the η-rule to simplify the canon-
ical forms in some cases with occurrences of vacuous
λ-abstractions and corresponding functional applica-
tions, by preserving all other structural components

Algorithmic Eta-reduction in Type-theory of Acyclic Recursion

1009

of the canonical terms. The proof of Theorem 4 in-
volves details of general canonical forms and induc-
tion steps. It demonstrates what part of a canonical
form is reduced, by inessential divergence from the
strictest referential synonymy of the entire term. It
demonstrates that the replacements preserve the de-
notation of the entire term.

The presented η-rule has applications to computa-
tional semantics of human languages and to semantics
of programs and compilers. Replacements based on
the η-rule are not always possible because there are
intervening (algorithmic) structures. The effect of a
general β-replacement would have been like reversing
iteration to recursive program interpreter. Something
like a compiler that translates a program with recur-
sion (i.e. a Lλ

ar term) to a program with induction,
and then finds functional components that compute
constant functions (not depending on inputs), and in
attempts to provide the constant value, without using
the “vacuous” function applications, is reversing the
tail recursion into recursion. The presented η-rule
avoids this.

In the analyses of certain classes of human lan-
guage expressions, at least those that we have covered
in recent work, the η-rule provides simplification of
canonical terms that are otherwise irreducible.

REFERENCES

Gallin, D. (1975). Intensional and Higher-Order Modal
Logic: With Applications to Montague Semantics.
North-Holland Publishing Company, Amsterdam and
Oxford, and American Elsevier Publishing Company.

Loukanova, R. (2011a). From Montague’s Rules of Quan-
tification to Minimal Recursion Semantics and the
Language of Acyclic Recursion. In Bel-Enguix, G.,
Dahl, V., and Jiménez-López, M. D., editors, Biology,
Computation and Linguistics, volume 228 of Fron-
tiers in Artificial Intelligence and Applications, pages
200–214. IOS Press, Amsterdam; Berlin; Tokyo;
Washington, DC.

Loukanova, R. (2011b). Modeling Context Information
for Computational Semantics with the Language of
Acyclic Recursion. In Pérez, J. B., Corchado, J. M.,
Moreno, M., Julián, V., Mathieu, P., Canada-Bago,
J., Ortega, A., and Fernández-Caballero, A., editors,
Highlights in Practical Applications of Agents and
Multiagent Systems, volume 89 of Advances in Intel-
ligent and Soft Computing, pages 265–274. Springer
Berlin Heidelberg.

Loukanova, R. (2011c). Reference, Co-reference and
Antecedent-anaphora in the Type Theory of Acyclic
Recursion. In Bel-Enguix, G. and Jiménez-López,
M. D., editors, Bio-Inspired Models for Natural and
Formal Languages, pages 81–102. Cambridge Schol-
ars Publishing.

Loukanova, R. (2011d). Semantics with the Language of

Acyclic Recursion in Constraint-Based Grammar. In
Bel-Enguix, G. and Jiménez-López, M. D., editors,
Bio-Inspired Models for Natural and Formal Lan-
guages, pages 103–134. Cambridge Scholars Publish-
ing.

Loukanova, R. (2016). Relationships between Speci-
fied and Underspecified Quantification by the Theory
of Acyclic Recursion. ADCAIJ: Advances in Dis-
tributed Computing and Artificial Intelligence Jour-
nal, 5(4):19–42.

Loukanova, R. (2017). Binding Operators in Type-Theory
of Algorithms for Algorithmic Binding of Functional
Neuro-Receptors. In Ganzha, M., Maciaszek, L., and
Paprzycki, M., editors, Proceedings of the 2017 Fed-
erated Conference on Computer Science and Informa-
tion Systems, volume 11 of Annals of Computer Sci-
ence and Information Systems, pages 57–66. Polish
Information Processing Society.

Loukanova, R. (2019a). Computational Syntax-Semantics
Interface with Type-Theory of Acyclic Recursion for
Underspecified Semantics. In Osswald, R., Retoré,
C., and Sutton, P., editors, IWCS 2019 Workshop on
Computing Semantics with Types, Frames and Re-
lated Structures. Proceedings of the Workshop, pages
37–48. The Association for Computational Linguis-
tics (ACL).

Loukanova, R. (2019b). Gamma-Reduction in Type The-
ory of Acyclic Recursion. Fundamenta Informaticae,
170(4):367–411.

Loukanova, R. (2019c). Gamma-star canonical forms in the
type-theory of acyclic algorithms. In van den Herik, J.
and Rocha, A. P., editors, Agents and Artificial Intel-
ligence, pages 383–407, Cham. Springer International
Publishing.

Loukanova, R. (2019d). Syntax-semantics interfaces of
modifiers. In Rodrı́guez, S., Prieto, J., Faria, P.,
Kłos, S., Fernández, A., Mazuelas, S., Jiménez-
López, M. D., Moreno, M. N., and Navarro, E. M.,
editors, Distributed Computing and Artificial Intelli-
gence, Special Sessions, 15th International Confer-
ence, pages 231–239, Cham. Springer International
Publishing.

Moschovakis, Y. N. (1989). The formal language of recur-
sion. Journal of Symbolic Logic, 54(04):1216–1252.

Moschovakis, Y. N. (1993). Sense and denotation as algo-
rithm and value. In Oikkonen, J. and Väänänen, J.,
editors, Logic Colloquium ’90: ASL Summer Meet-
ing in Helsinki, volume Volume 2 of Lecture Notes in
Logic, pages 210–249. Springer-Verlag, Berlin.

Moschovakis, Y. N. (1997). The logic of functional recur-
sion. In Dalla Chiara, M. L., Doets, K., Mundici,
D., and van Benthem, J., editors, Logic and Scientific
Methods, volume 259, pages 179–207. Springer, Dor-
drecht.

Moschovakis, Y. N. (2006). A Logical Calculus of Mean-
ing and Synonymy. Linguistics and Philosophy,
29(1):27–89.

Moschovakis, Y. N. (2019). Abstract Recursion and Intrin-
sic Complexity, volume 45 of Lecture Notes in Logic.
Cambridge University Press.

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

1010

