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Abstract: This paper introduces a new bi-objective minimum latency problem with profit collection, where routes must
be constructed in order to maximize the collected profit and to minimize the total latency. These objectives
are usually conflicting. Thus, considering some important features, as the segmentation of the customers into
two classes, mandatory and optional, and the presence of uncertain travel times, we follow a bi-objective
approach, aiming to compute a set of Pareto-optimal alternatives with different trade-offs for a decision-maker
to choose from. In order to address this computationally challenging problem, we propose a Multi-Objective
Iterated Local Search. Computational results confirm the practicality of the algorithm, in terms of the quality
of the solutions, and its computational efficiency in terms of time spent. We conclude that the algorithm finds
good-quality solutions for small and medium-size instances.

1 INTRODUCTION

This paper models and solves a new routing problem
of practical importance, which considers customers
with different service level agreements. The frequent
customers are mandatory to be serviced, whilst the
service requests of the non-frequent customers might
be either rejected or accepted. The attractiveness of
these additional customers relies on the potential ad-
ditional profit that can be gained. A generic appli-
cation of the problem we are considering is the de-
sign of routes for technicians for repair and mainte-
nance operations. Mandatory customers are requiring
preventive maintenance operations, whereas optional
customers are requiring a repair service. In this ap-
plication, vehicles are used only for carrying material
and personnel. Thus, we can suppose that the vehi-
cle capacity is unlimited. There are other applicative
contexts in which the company has to regularly visit
customers with long-term relations, whereas potential
customers, usually located close to the existing ones,
can be serviced, in an effort to expand the existing
customer base. A similar setting is also faced by small
package shipping companies, where commercial cus-
tomers need to be regularly visited, while residential
customers are only visited on an ad hoc basis. The
aforementioned problems pose the same challenge:
designing a set of routes with the aim of visiting all

the mandatory customers and, at the same time, de-
termining the subset of the potential customers that
will be included in the routing plans. Although such
problems are frequently used to model real cases, they
are often modelled as single objective models, despite
the fact that in the majority of applications are multi-
objective in nature. Two conflicting objectives can be
considered relevant in our case. The first is to max-
imize the total collected profit, while the second is
to minimize the total arrival time to the customers.
Combining these conflicting objectives into one sin-
gle objective is questionable, since they are expressed
in different measurement units, motivating the mod-
elling of the problem as a bi-objective one.

The main contributions of this paper are:

• The introduction of the bi-objective minimum la-
tency problem with profit collection, considering
realistic features such as the presence of optional
customers and stochastic travel times.

• While modeling this problem, we consider a risk-
averse measure for the total arrival time, instead
of the widely used expected risk measure.

• We present a more general and risk-averse ap-
proach, which includes the well known Condi-
tional Value at Risk (CVaR, for short) as a special
case, providing a unified framework for dealing
with risk.
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• We design and implement an iterated greedy pro-
cedure to efficiently deal with instances of reason-
able size that can be used for a broad class of risk
measures.

The paper is organized as follows. The next sec-
tion is dedicated to the literature review. Section 3
presents the problem description, formalized in the
Appendix. Section 4 is devoted to the description of a
solution approach. We discuss the effectiveness of the
method and report computational results in Section 5.
We conclude in Section 6.

2 LITERATURE REVIEW

The minimum latency problem (MLP) or travelling
repairman problem (TRP) is one of the most famous
customer-centric routing problems. It consists in find-
ing a tour starting from a depot node, which mini-
mizes the sum of the elapsed times (or latencies) to
reach a given set of nodes. The problem arises in situ-
ations in which the arrival time has a crucial role in the
customers satisfaction and it has recently attracted the
attention of the researchers, due to its importance in
applicative fields such as emergency logistics (Bruni
et al., 2018b), delivery logistics (Bruni et al., ), and
manufacturing contexts such as machine scheduling
(Bruni et al., 2019).

This problem has been extensively studied by a
large number of researchers who proposed several
exact and non-exact approaches. Lucena (Lucena,
1990) and Bianco et al. (Bianco et al., 1993) pro-
posed early exact enumerative algorithms, in which
lower bounds are derived using a Lagrangian relax-
ation. Fischetti et al. (Fischetti et al., 1993) pro-
posed an enumerative algorithm that makes use of
lower bounds obtained from a linear integer program-
ming formulation. Different mixed integer program-
ming formulations with various families of valid in-
equalities have been proposed in the last years (Bi-
gras et al., 2008; Ezzine et al., 2010; Méndez-Dı́az
et al., 2008; Van Eijl, 1995). Salehipour et al. (Sale-
hipour et al., 2011) first proposed a simple composite
algorithm based on a GRASP, improved with a vari-
able neighborhood search procedure. In (Mladenović
et al., 2013a), Mladenović et al. presented a general
variable neighborhood search metaheuristic enhanced
with a move evaluation procedure facilitating the up-
date of the incumbent solution. Silva et al. (Silva
et al., 2012) presented a composite multi-start meta-
heuristic approach consisting of a GRASP and a ran-
domized variable neighborhood descent algorithm. A
direct extension of the TRP/MLP is the multiple trav-
eling repairman problem (k-TRP) that considers iden-

tical vehicles. Although many researchers have stud-
ied the TRP, the literature on the multiple vehicle case
is surprisingly limited. Recently, Nucamendi-Guillén
et al. (Nucamendi-Guillén et al., 2016; Nucamendi-
Guillén et al., 2018) presented an efficient new formu-
lation, defined on a multi-level network, for the deter-
ministic k-traveling repairman problem enhanced by
an iterative greedy metaheuristic. Several metaheuris-
tic algorithms have been designed for efficiently solv-
ing routing problems with cumulative costs and its
variants (Mladenović et al., 2013b; Ngueveu et al.,
2010; Ribeiro and Laporte, 2012; Rivera et al., 2015).

The k-Traveling Repairmen Problem with Prof-
its (k-TRPP) has been introduced by Dewilde et al.
(Dewilde et al., 2013) as an extension of the TRP
where the service at each node is rewarded with a non-
negative profit, which decreases with arrival time at
the node. Recently, in (Yongliang et al., 2019) a popu-
lation based hybrid evolutionary search algorithm has
been proposed for solving the problem, combining a
randomized greedy construction method for initial so-
lution generation and a dedicated variable neighbor-
hood search for local optimization. Although several
contributions have addressed uncertainty in routing
problems (Beraldi et al., 2005; Bruni et al., 2014; Be-
raldi et al., 2015a; Beraldi et al., 2015b) only a few
contributions focused on incorporating uncertainty in
the k-TRPP (Bruni et al., 2018a; Beraldi et al., 2019;
Bruni et al., 2020). Moreover, all of the aforemen-
tioned works focused on the single-objective version
of the problem, seeking for a trade-off between re-
ward and variance, two different objectives that are
not calculated with the same metric.

To the best of our knowledge, the only two
contributions dealing with the multi-objective MLP
are (Arellano-Arriaga et al., 2019; Arellano-Arriaga
et al., 2017). Both papers consider a bi-objective
approach for the MLP, considering a single-vehicle
tour and minimising the travel time (as a measure of
distance) and the latency of that tour. In this paper,
we address the problem under a risk-averse perspec-
tive considering a fleet of vehicles, the profits and the
presence of optional customers. To the best of out
knowledge, the the problem studied in this paper has
never been tackled before.

3 PROBLEM FORMULATION

Let consider an undirected graph G = V,E where
V = {0,1,2, . . . ,n} corresponds to the node set and
E denotes the edge set. Node 0 denotes the depot
and V ′ = {1,2, . . . ,n} represents the set of customers
further partitioned into two subsets: M is the set of
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mandatory customers, while O is the set of optional
customers. For each demand node i∈V ′, a profit pi is
defined. Additionally, there is a homogeneous fixed
fleet of K uncapacitated vehicles, dispatched from the
depot and that can serve any route assigned.

The aim is to design vehicle routes for serving a
mix of regular and on the spot customers, while ensur-
ing that the arrival time at the customers is minimized
and the profit collected is maximized. To this end,
this paper addresses a combined minimum latency
and profit maximizing repairman problem through a
bi-objective model that captures the profit collecting
nature, as well as the main feature of the minimum
latency problem.

In particular, the first objective function is the to-
tal profit collected. Let assume that we have a set of
routes πk, k = 1, . . .K, then, the collected profit can be
expressed as:

P = K

k=1 i∈πk
pi

Now, let assume that each edge l ∈ E has an asso-
ciated random travel time t̃l , with a given mean µl and
variance σ2

l . When the travel times are considered
random, the arrival time of each vehicle at generic
node i is itself a random variable (denoted with t̃i).
In particular, the arrival time at each node is the sum
of the travel times associated to the links l ∈ πk

i i.e.
belonging to the subpath connecting the depot to the
node i. The total arrival time, defined as

T = K

k=1 i∈πk
t̃i

is itself a random variable.
Since the decision-maker is risk-averse when

making a decision, the problem does not merely en-
tail the minimization of the expected arrival time, but
it must also consider the decision maker’s attitude
against risk.

Formally, a risk measure is a map ρ : X− > R
that attaches a scalar value to each random vari-
able X : Ω− > R , governed by a probability distri-
bution function FX , whose moment-generating func-
tion MX z = IEezX exists for all z ≥ 0. Artzner et
al. (Artzner et al., 1999) stated a set of properties
that should be desirable for any risk measure. The
four axioms they stated are: Monotonicity, Transla-
tion equivariance, Subadditivity and Positive Homo-
geneity. Given two random variables X and Y and a
risk function, ρ, we can define the properties as fol-
lows.

• Monotonicity- A risk measure is monotone, if for
all X , Y : X ≤Y ρX ≤ ρY , i.e., higher losses mean
higher risk

• Translation Equivariance- A risk measure is trans-
lation equivariant, if for all X , and scalars c ∈ R:
ρX + c = ρX + c, i.e., increasing (or decreasing)
the loss increases (decreases) the risk by the same
amount

• Subadditivity- A risk measure is subadditive, if
for all X , Y ρX +Y ≤ ρX + ρY , i.e., diversifica-
tion decreases risk

• Positive Homogeneity- A risk measure is posi-
tively homogeneous, if for all X , λ ≥ 0: ρλX =
λρX , i.e., doubling the size doubles the risk

Any risk measure which satisfies these axioms is said
to be coherent (Artzner et al., 1999).

A general class of risk measures is represented by
the spectral risk measures, first introduced by Acerbi
(Acerbi, 2002). A spectral risk measure, denote by
SRMφ is a function parameterized by φ, a nondecreas-
ing normalized right-continuous integrable probabil-
ity density function, such that φ ≥ 0, and 1

0 φpd p = 1.
The density function φ is also called an risk spectrum.
It can be defined as follows:

SRMφ =
1
0 φpF−1 pd p = 1

0 φpVaRpd p.

Spectral risk measures satisfy the properties of mono-
tonicity, convexity, translation invariance and co-
herency. In most real-life applications, the probability
distribution of the travel times is typically unknown
and only indirectly observable through historical sam-
ples. A remedy for this difficulty is to adopt a distribu-
tionally robust approach, assuming that the probabil-
ity distribution is merely known to belong to an ambi-
guity set, typically defined as the family F of all dis-
tributions that have known first and second moments.
This ambiguity prompts us to investigate the quan-
tification of the risk in this more general setting. In
this case, solutions are evaluated under the worst-case
over all the distributions in the family F and hence,
consistent with the known moments. The resulting
Worst-Case Spectral Risk Measure (WCSRM) repre-
sents a conservative (that is, pessimistic) approxima-
tion for the true (unknown) SRM. We can define the
WCSRM as follows:

WCSRM = supF∈FSRMφ.

As proposed in (Li, 2018), it can be proved that the
WCSRM admits an elegant closed form expression:

WCSRM = µ+σ

√
1
0 φ2 pd p−1

Considering the above definitions, the risk crite-
rion reduces to the worst-case Conditional Value at

The Bi-objective Minimum Latency Problem with Profit Collection and Uncertain Travel Times

111



Risk1, when

φp =

{
1

1−α
if p > α

0 if p≤ α.

and we have 1
0 φ2 pd p = 1

1−α
. In fact, we obtain the

well known formula

WCVaR = supF∈FCVaRα = µ+σ

√
α

1−α
.

A similar closed form (assuming Normal distribu-
tions) can also be obtained for another well-known
risk measure, the Entropic VaR (EVaR), recently
introduced in Ahmadi-Javid (Ahmadi-Javid, 2012a;
Ahmadi-Javid, 2012b), which is the tightest possible
upper bound for VaR and the CVaR. The EVaR of X
with confidence level α is defined as follows:

EVaRα = in fz>0{z ln
(
MX z−11−α

)
} =

= in fz>0{z lnIE
[

exp
(X

z

)]
− z ln1−α}

Despite its apparent complexity, also the EVaR
can be boiled down to the following closed form ex-
pression assuming normally distributed random vari-
ables:

EVaRα = µ+σ
√
−2ln1−α.

The above result provides a unified perspective on
solving the problem under different risk measures
with same objective function structure,

µ+Γσ

just by modifying the scale factor Γ of the standard
deviation. Applying this risk measure to the total ar-
rival time (T risk) leads to the following objective func-
tion (for a fixed set of routes πk, k = 1, . . .K): The total
completion time, defined as

T risk = K

k=1 i∈πk
IEt̃i+Γ

√
K

k=1 i∈πk
VARt̃i

where VAR represents the standard deviation of the
total arrival time. The mathematical formulation of
the problem is reported in the Appendix.

1Basically, CVaR is defined as the average of the α%
worst cases weighted with a uniform weight. More for-
mally, the CVaR risk measure at a given confidence level
α ∈ 0,1, quantifies the expected loss of the random variable
in the worst 1−α% of cases Hence:

CVaRα = IEX |X ≥VaRα.

If FX is continuous, then we have

CVaRα =
1

1−α

1
α VaRpd p

4 HEURISTIC PROCEDURE

Our heuristic approach for approximating the Pareto-
front is based on three main procedures: a construc-
tive phase, an improvement phase and a perturba-
tion mechanism. The algorithm requires as input the
following sets and parameters: the number of cus-
tomers n, the number of vehicles K, the set of manda-
tory customers M and the set of optional customers
O. In our algorithm, a solution is represented by
s = {π1,π2, . . . ,πk}. The pseudcode is shown in 1,
where Sm denotes the set of mandatory nodes not yet
visited, Sa the set of non-visited nodes and Sp the cur-
rent partial solution. The algorithm ends when the
maximum number of iterations (Maxiter) is reached.

Algorithm 1: Pseudo-code for the heuristic procedure.
Data: n,K

1 Initialization: s = {0}, iter := 0, MaxIter := T ,
Sa =V ′, Sm =M

2 ConstructiveProcedure
3 ImprovementProcedure
4 ParetoSetInsertion
5 while iter < MaxIter do
6 PerturbationProcedure
7 ConstructiveProcedure
8 ImprovementProcedure
9 ParetoSetInsertion

10 iter← iter+1
11 end
12 Filter the Pareto Front (F0)

Result: F0

In what follows, we will specialize each main step
of the algorithm.

4.1 Constructive Procedure

This procedure is based on the parallel route building
strategy originally proposed in (Potvin and Rousseau,
1993). The set of unrouted customers is denoted by
(Sa), the current partial solution by (Sp) the cost ma-
trix by C and the number of customers per route by
nl in Sp. The procedure also considers a generalized
regret criterion for the selection of the customers to
include in the solution.

For the first iteration, the constructive procedure
starts with the empty routes in Sp. The procedure se-
lects the customers in Sa with the greatest expected
travel time with respect to the depot, giving priority
to the mandatory customers. Once all of the routes
have at least one customer, the procedure continues
by sequentially inserting the remaining customers in
Sa, always prioritizing the mandatory nodes. For this,
the cost of insertion is computed based on the general-
ized regret measure described in (Nucamendi-Guillén
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et al., 2018) but considering the risk measure associ-
ated to the latency. The procedure ends when all of
the mandatory customers have been assigned (inde-
pendently of the remaining customers in Sa). For in-
stance, if the first Sm customers assigned correspond
to the mandatory ones, then the constructive proce-
dure finalizes the assignment (even when there are n
- Sm customers not assigned), and the solution cre-
ated goes to the improvement procedure. On the other
hand, optional nodes can be inserted before finishing
the insertion of the mandatory nodes. Figure 2 shows
the pseudocode for this procedure.

Algorithm 2: Outline of the Constructive Procedure.

Data: Sa,Sm
1 while |Sm|> 0 or |Sa|> 0 do
2 if there are empty routes then
3 Initialize them with customers i ∈ Sa that

have the highest values of πi−µ0i
4 Sa := Sa\ i and if i ∈M Sm := Sm\ i
5 end
6 foreach customer in Sa do
7 Determine the best insertion points over

all the K partial routes
8 Compute the regret between the values of

all insertion points and the value of the
best insertion point

9 end
10 Insert the first customer with the highest regret

into its best place in s
11 Update Sa,Sm
12 end
13 Compute the total collected profit P and the total

arrival time T for the current solution s
14 return s

After the solution is improved, it is compared
against the non-dominated solutions found so far. De-
tails of the improvement phase are provided in the
next section.

4.2 Improvement Procedure

After the initial construction is obtained, the solution
is sent to a improvement procedure that applies five
different local search strategies, arranged in two ma-
jor groups: Intra route neighborhoods (Intra RN) and
inter-route neighborhoods (Inter RN). The neighbor-
hoods used are:
• Swap move: operator that exchanges the position

of two nodes, i and j, both belonging to the same
route.

• Reallocation move: operator that removes a cus-
tomer from its current position on the route and
reinserts it in a different position on the same
route.

• 2-opt move: Two adjacent edges are deleted in the
tour, then the arcs are reversed and reconnected in
a different way.

• Interchange move: Two nodes, each belonging to
a different route, exchange their respective posi-
tions (when possible with respect to the remaining
vehicles capacities).

• Insertion move: A customer is removed from its
current position in the tour and inserted in a new
position into a different route.
The intra RN includes the swap, reallocation and

2-opt moves, whereas the inter RN involves the in-
terchange and insertion moves. The intra RN starts
by executing the swap move and it goes into a loop
where the three local searches are iteratively exe-
cuted, beginning with the reallocation move. This
loop ends when none of the neighbourhoods can im-
prove the current solution in at least one objective. On
the other hand, the inter RN performs first the inter-
change move and then the solution goes into a loop
in which the Insertion and Interchange moves are ap-
plied iteratively. Similarly, the inter RN procedure
ends when none of the neighborhoods can improve
their input solution. After finishing the improvement
procedure, the solution is evaluated to verify if it can
be candidate to be included in the Pareto Front. The
procedure of evaluation determines if the solution is
non-dominated, then it is inserted into the a list CS.

4.3 Perturbation Procedure

The perturbation procedure consists of a partial-
removal mechanism that randomly selects a group of
customers in s and assign them into Sa and the re-
maining clients in the routes are re-allocated to the
first positions in their corresponding route preserving
the order in which they were sequenced in the selected
solution. In case the one or more customers removed
belong to the mandatory set, then the indicator Sm is
updated correspondingly.

4.4 Pareto Candidate Set Insertion

In every iteration, this mechanism evaluates if the so-
lution obtained (after finalizing the improving proce-
dure) is non-dominated with respect to the set of so-
lutions found by the algorithm and stored in the can-
didate set (CS). It is evident that, for the first itera-
tion, the mechanism immediately includes the solu-
tion obtained. From the second to the last iteration,
the current solution is compared with the ones that
have been previously inserted in the set. If the cur-
rent solution is non-dominated then it is added, oth-
erwise, it is discarded, and a new initial solution is
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constructed. It is important to mention that, to ac-
celerate the computation time, the case for which the
current solution would dominate any of the previous
is not evaluated. As a result, the set of CS must con-
tain at most MaxIter different solutions. To finalize
the procedure of obtaining the non-dominated Pareto
set (F0), a mechanism of obtaining the final set of non-
dominated solutions is implemented. As mentioned
above, since Pareto Candidate Set Insertion only eval-
uates if any of the previous inserted solutions domi-
nates the current solution but not vice-versa, this pro-
cedures compares all of the solutions in the set to
determine which ones belong to the non-dominated
front.

5 COMPUTATIONAL RESULTS

To evaluate the proposed approach, we modified a
set of benchmark instances originally proposed by
Augerat et al. (Augerat et al., 1995) (P-instances) and
Christofides and Elion (Christofides and Eilon, 1969)
(E-instances) and also used in (Bruni et al., 2020). In
those instances, we incorporated the information de-
noting whether a customer is mandatory to be visited
or not. We have considered the general expression

Γ =

√
α

1−α

for the risk measure, with different value of α =

0.1,0.5,0.9, to model different risk aversion levels.
The algorithm was coded in C++ and the experiments
were executed using a PC Intel R©CoreTMi7 @2.30
GHz with 16 GB of RAM Memory under Windows
10 as OS. To account for the the randomness of the
algorithm, it was ran 10 times per instance, con-
sidering different seed values at each execution and
MaxIter = 50. To evaluate the performance of the
algorithm, three quality multiobjective metrics were
used:

• Number of points on the Pareto-Front (NPF)
(Schott, 1995; Van Veldhuizen, 1999): This met-
ric determines the ability to provide more choices
for the decision-maker. The larger, the better.

• The k-nearest neighbor density estimation tech-
nique (k-D) (Zitzler et al., 2001). This metric
allows to estimate the density of the fronts. In
this work, the three density estimator is used. The
smaller, the better.

• The Hypervolume of the space covered (Zitzler
and Thiele, 1999). The main idea behind this met-
ric is to compute the area of objective function
space covered by the nondominated vectors. This

Table 1: Values of four quality metrics over E-instances (10
executions per instance) with a value of α = 0.1.

Instance
name

Average
NPF k-D Hypervolume CPU time

En22k4 17.00 0.096 0.275 0.413
En23k3 10.30 0.179 0.394 0.382
En30k3 1.80 0.000 0.000 1.426
En30k4 3.80 0.361 0.470 1.736
En33k4 8.90 0.214 0.379 2.531
En51k5 15.40 0.119 0.247 18.679
En76k7 17.30 0.111 0.297 95.412
En76k8 20.50 0.087 0.235 109.466

En76k10 17.30 0.099 0.230 137.650
En76k14 26.20 0.065 0.221 173.438

Table 2: Values of four quality metrics over E-instances (10
executions per instance) with a value of α = 0.5.

Instance
name

Average
NPF k-D Hypervolume CPU time

En22k4 18.60 0.080 0.226 0.417
En23k3 9.80 0.203 0.400 0.376
En30k3 1.50 0.000 0.000 1.415
En30k4 1.00 0.000 0.000 1.722
En33k4 8.20 0.233 0.358 2.530
En51k5 16.70 0.101 0.244 18.524
En76k7 18.10 0.098 0.293 95.498
En76k8 20.70 0.089 0.203 109.600

En76k10 18.40 0.102 0.319 137.543
En76k14 29.20 0.057 0.204 173.426

metric estimates the size of the global dominated
set in objective space. The larger, the better.

Additionally, we evaluate the elapsed CPU time
in seconds to determine the effectiveness of the algo-
rithm in finding solutions within a reasonable compu-
tational time.

Tables 1 to 6 show the average values for the pro-
posed metrics. Column 1 indicates the name of the
instance, while columns 2, 3 and 4 report the aver-
age valued for the above-mentioned metrics. The last
column reports the elapsed time measured in seconds.
Specifically, Tables 1 to 3 and 4 to 6 report the re-
sults for different values of α (0.1, 0.5 and 0.9, corre-
spondingly). The reason of considering these values
is to determine the ability of the algorithm to model
the risk aversion.

According to the information shown in Tables 1–
3, the algorithm produced dense fronts for all the val-
ues of α and good values of the hypervolume. To
graphically display the performance of the algorithm
over the group of E-instances, the ones with the mini-
mum and maximum sizes were selected (En22k4 and
En76k14, respectively) considering the front with the
maximum number of points for each value of α for
comparison. As can be observed, in both cases, the
value of α= 0.9 provides fronts with highest values of
reward (and minimum values of risk) whereas, for the
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Table 3: Values of four quality metrics over E-instances (10
executions per instance) with a value of α = 0.9.

Instance
name

Average
NPF k-D Hypervolume CPU time

En22k4 15.00 0.093 0.252 0.413
En23k3 9.30 0.209 0.361 0.386
En30k3 2.70 0.577 0.634 1.441
En30k4 9.70 0.234 0.529 1.706
En33k4 8.20 0.266 0.482 2.554
En51k5 16.50 0.108 0.256 17.648
En76k7 19.60 0.093 0.298 95.793
En76k8 22.00 0.082 0.218 109.917

En76k10 17.90 0.101 0.256 137.707
En76k14 38.50 0.046 0.150 193.409
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Figure 1: Pareto front for instance En22k4.

case when α = 0.1, the values of risk are the largest.
Thus, it can be concluded that, the parameter α has an
effect over the quality of the solutions.

Tables 4, 5 and 6 summarizes the results over the
P-instances.

For the set of P-instances, the algorithm showed
a similar behavior as for the E-instances. Regarding
the number of points, it is clear that the parameter α

has not effect. Similarly, as the size of the instance
increases, the average values of k-distances reduce,
indicating that the algorithm produces dense fronts.
With respect to the hypervolume, there is not a clear
conclusion about the quality of the results.

Figures 3 and 4 show the results obtained for in-
stances Pn16k2 and Pn76k5. As it can be noticed, for
the instance Pn16k2, all of the values of α provided
very similar Pareto fronts, which indicates that solu-
tions are not deteriorating as the value of α increases.
On the contrary, for the instance Pn76k5, the value of
α = 0.1 produced the Pareto front with smallest val-
ues of reward and high values of risk. In the case of
the hypervolume, the value of α = 0.1 produced the
smallest values in average.
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Figure 2: Pareto front for instance En76k14.

Table 4: Values of four quality metrics over P-instances (10
executions per instance) with a value of α = 0.1.

Instance
name

Average
NPF k-D Hypervolume CPU time

Pn16k8 6.3 0.401 0.744 0.251
Pn19k2 4.7 0.518 0.857 0.210
Pn20k2 3.7 0.584 0.729 0.319
Pn21k2 6.4 0.330 0.578 0.348
Pn22k2 9.9 0.188 0.654 0.440
Pn23k8 12.4 0.154 0.764 1.794
Pn40k5 9.6 0.173 0.577 14.022
Pn45k5 12.4 0.150 0.750 24.161
Pn50k7 19.3 0.090 0.766 25.448
Pn50k8 9.9 0.160 0.646 26.636

Pn50k10 12.4 0.130 0.647 57.349
Pn51k10 12.5 0.125 0.772 35.037
Pn55k7 13.8 0.125 0.734 33.569
Pn55k8 12.3 0.156 0.796 37.299

Pn55k10 16.8 0.101 0.624 54.669
Pn60k10 19.6 0.087 0.754 65.975
Pn60k15 17 0.042 0.268 94.188
Pn65k10 23.3 0.046 0.265 93.541
Pn70k10 15.5 0.099 0.559 244.324
Pn76k4 9.5 0.173 0.614 80.482
Pn76k5 32.2 0.052 0.837 96.904

Regarding the CPU time, the algorithm showed a
consistent performance over the E- and P-instances
(increasing the execution time as the size of the in-
stance increases).

6 CONCLUSIONS

In this work, we study a novel minimum latency bi-
objective problem with profit collection and optional
customers. For this problem a heuristic approach was
proposed and developed for a broad class of risk mea-
sures. The performance was assessed using a set of
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Table 5: Values of four quality metrics over P-instances (10
executions per instance) with a value of α = 0.5.

Instance
name

Average
NPF k-D Hypervolume CPU time

Pn16k8 6.3 0.392 0.734 0.245
Pn19k2 4.4 0.653 0.994 0.209
Pn20k2 4 0.651 0.592 0.312
Pn21k2 6.1 0.309 0.671 0.346
Pn22k2 10.6 0.182 0.692 0.458
Pn23k8 12.1 0.167 0.859 1.770
Pn40k5 10.4 0.168 0.693 13.772
Pn45k5 13.1 0.137 0.631 24.801
Pn50k7 21.6 0.070 0.616 26.879
Pn50k8 11 0.168 0.784 29.604

Pn50k10 11.4 0.139 0.710 56.368
Pn51k10 11.3 0.157 0.770 35.650
Pn55k7 13.1 0.148 0.796 34.495
Pn55k8 12.7 0.154 0.793 37.371

Pn55k10 16.1 0.115 0.677 54.255
Pn60k10 20.8 0.076 0.672 66.105
Pn65k10 20.9 0.055 0.342 93.630
Pn70k10 16.5 0.102 0.637 188.625
Pn76k4 12.3 0.143 0.835 82.182
Pn76k5 35.6 0.051 0.896 95.832

Table 6: Values of four quality metrics over P-instances (10
executions per instance) with a value of α = 0.9.

Instance
name

Average
NPF k-D Hypervolume CPU time

Pn16k8 7.5 0.324 0.775 0.237
Pn19k2 4.1 0.619 0.836 0.205
Pn20k2 3.3 0.715 0.688 0.325
Pn21k2 6.5 0.289 0.522 0.358
Pn22k2 12.6 0.162 0.811 0.433
Pn23k8 12.6 0.147 0.706 1.786
Pn40k5 10.2 0.184 0.655 13.765
Pn45k5 14.2 0.129 0.791 24.142
Pn50k7 21.1 0.083 0.790 26.536
Pn50k8 12.3 0.132 0.784 29.412
Pn50k10 12 0.141 0.733 56.085
Pn51k10 12.2 0.143 0.769 35.643
Pn55k7 13.7 0.124 0.798 33.561
Pn55k8 15.1 0.117 0.772 37.396
Pn55k10 19.4 0.088 0.716 56.543
Pn60k10 22.9 0.054 0.295 66.403
Pn60k15 1 – – 93.891
Pn65k10 22.4 0.072 0.743 94.151
Pn70k10 18 0.094 0.633 188.721
Pn76k4 9.9 0.181 0.738 84.142
Pn76k5 34.4 0.050 0.852 95.949

benchmark instances that were properly adjusted to
analyze this particular problem. Specifically, the val-
ues of the multiobjective metrics indicate that the al-
gorithm is able to find good quality fronts in a com-
petitive computational time. The algorithm makes a
positive contribution towards finding a trade-off be-
tween the profit and the risk aversion.

Future work can include the analysis of the case
of capacitated vehicles or the inclusion of an objec-
tive function which is able to balance the maximum
traveled distance among different vehicles, to provide
equity in labor shifts. The incorporation of parame-
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Figure 3: Pareto front for instance Pn16k8.

2.
7

2.
8

2.
9 3

3.
1

3.
2

3.
3

·1
04

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
·105

Total Reward

To
ta

lR
is

k

alpha = 0.9
alpha = 0.5
alpha = 0.1

Figure 4: Pareto front for instance Pn76k5.

ters such as time windows, or due dates for each node
may also help to model real-life situations. In addi-
tion, including more objectives, mainly those related
to environmental or social goals is an interesting re-
search avenue.
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APPENDIX

In order to formulate the problem, we present
the multi-layer network proposed in the deter-
ministic context (Nucamendi-Guillén et al., 2018;
Nucamendi-Guillén et al., 2016), and successfully ex-
tended by (Bruni et al., 2018a) for the risk-averse vari-
ant. Let L be the set of levels L = {1, · · · ,r, · · · ,N},
where N = n− k+ 1, and each level includes a copy
of all the customers amended also with the depot in
levels from 2 to n. Each tour in the network is repre-
sented by a path that ends in the first level and starts
in a copy of the depot in some level. In fact, the level
number represents the position of the customer in the
tour: the customer in the first level is the last in the
tour, the customer in the second level is the last but
one, and so on. Two distinct tours cannot visit the
same customer, neither in the same level nor in dif-
ferent levels. The model variables are defined as fol-
lows. Let xr

i be a binary variable that takes value 1 iff

customer i is visited at level r (i.e. there are r−1 cus-
tomers to be visited after in the same tour); otherwise,
it is set to 0. If xr

i = 1, we say that customer i is active
at level r. Let yr

i j be another binary variable that is set
to 1 iff edge (i, j) is used to link customer i active at
level r+1 with customer j active at level r; otherwise,
it takes value 0.
The mathematical formulation is expressed as fol-
lows.

Max : z1 =
(

j∈V ′
N

r=1
π jyr

0 j +
i∈V ′ j∈V ′

j,i

N−1
r=1

π jyr
i j
)

(1)

Min : z2 =
(

j∈V ′
N

r=1
rµ0 jyr

0 j +
i∈V ′ j∈V ′

j,i

N−1
r=1

rµi jyr
i j
)
−

Γ

√
j∈V ′

N
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r2σ2

0 jy
r
0 j + i∈V ′ j∈V ′

j,i

N−1
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r2σ2
i jy

r
i j (2)

N

r=1
xr

i ≤ 1 i ∈M (3)

N

r=1
xr

i = 1 i ∈ O (4)

i∈V ′
x1

i = K (5)

N

r=1 j∈V ′
yr

0 j = K (6)

yN
0i = xN

i i ∈V ′ (7)

j∈V ′
j,i

yr
i j = xr+1

i i ∈V ′, r = 1,2, . . . ,N−1 (8)

yr
0 j +

i∈V ′
i, j

yr
i j = xr

j j ∈V ′, r = 1,2, . . . ,N−1 (9)

xr
i ∈ {0,1} i ∈V ′, r = 1,2, . . . ,N (10)

yr
0 j ∈ {0,1} j ∈V ′, r = 1,2, . . . ,N (11)

yr
i j ∈ {0,1} i, j ∈V ′, i , j, r = 1,2, . . . ,N−1 (12)

The objective function z1 in (1) maximizes the total
revenue.The second objective function minimizes the
risk associated with the given routes. In particular,
following the general expression discussed in Section
3, it is evaluated as the sum of the expected arrival
time at the nodes plus the standard deviation of the
total arrival time multiplied by a parameter Γ. Both
the terms can be derived by applying the standard for-
mula of the expected value and variance of the sum
of independent random variables. Constraints (3) en-
sure that the optional customers i are served at most
once. Constraints (4) guarantee that the mandatory
customers are served. Constraints (5) and (6) ensure
that only K starting and ending edges are created,
whereas constraints (7) - (9) satisfy connectivity re-
quirements. Finally, constraints (10) – (11) show the
nature of variables.
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