
Distance Metric Learning using Particle Swarm Optimization to Improve
Static Malware Detection

Martin Jureček and Róbert Lórencz
Faculty of Information Technology, Czech Technical University in Prague, Czech Republic

Keywords: Distance Metric Learning, Malware Detection, Static Analysis, Heterogeneous Distance Function, Particle
Swarm Optimization, k-Nearest Neighbor.

Abstract: Distance metric learning is concerned with finding appropriate parameters of distance function with respect
to a particular task. In this work, we present a malware detection system based on static analysis. We use k-
nearest neighbors (KNN) classifier with weighted heterogeneous distance function that can handle nominal and
numeric features extracted from portable executable file format. Our proposed approach attempts to specify
the weights of the features using particle swarm optimization algorithm. The experimental results indicate that
KNN with the weighted distance function improves classification accuracy significantly.

1 INTRODUCTION

During the last years, the current trend is to use mal-
ware detection frameworks based on machine lear-
ning algorithms. Thanks to cloud-based computing
which makes the cost of big data computing more af-
fordable, the concept of employing machine learning
to malware detection has become more realistic to de-
ploy. The problem to be solved is to detect malware
which has never been seen before. While signature-
based detection systems (Kephart and Arnold, 1994)
identify known malicious programs, these systems
can be bypassed by unknown malware. However, the
signature-based methods are still popular because of
their low false positive rate. Instead of using static
signatures, an effective alternative solution is to use
machine learning methods to detect malware.

Malware detection techniques can be typically
classified into two categories depending on how code
is analyzed: static and dynamic analysis. Static ana-
lysis (Nath and Mehtre, 2014), (Alrabaee et al., 2016)
aims at searching information about structure of a
file. Disassembly technique is one of the techniques
of static analysis which is used for extracting various
features from the executables. Dynamic analysis (Or-
Meir et al., 2019), (Egele et al., 2012) aims to exa-
mine a program which is executed in a real or virtual
environment.

Our research is based on static analysis and feature
vectors used in the experiments contains data from the
portable executable (PE) file format. Several works

(Saad et al., 2019), (Damodaran et al., 2017) have
described various limitations of static analysis. The
most important drawback is that data captured from
static analysis does not describe the complete beha-
vior of a program since the program is not executed.
However, dynamic analysis is more time-consuming
in comparison to static analysis and there are anti-
virtual machine technologies that evade detection sys-
tems based on dynamic analysis. Consequently, dyna-
mic analysis could be impractical for a large volume
of samples that come to antivirus vendors every day.
For these reasons, static analysis has still its place in
malware detection systems.

Good similarity measure plays an important role
in the performance of geometric-based classifiers,
such as k-nearest neighbors (KNN). The similarity be-
tween two feature vectors is determined by the dis-
tance metric between them. The distance between
two feature vectors having the same class label must
be minimized while the distance between two feature
vectors of different classes must be maximized.

A distance metric learning algorithm aims at fin-
ding the most appropriate parameters of the metric
with respect to some optimization criteria. This task is
typically formulated as an optimization problem and
in this work, it is related to the malware detection
problem. This work concerns with learning a distance
function used in the KNN classifier for the malware
detection problem. Note that learning the distance
metric is an important preprocessing step which is of-
ten ignored in practice.

Jureček, M. and Lórencz, R.
Distance Metric Learning using Particle Swarm Optimization to Improve Static Malware Detection.
DOI: 10.5220/0009180807250732
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 725-732
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

725

The main contribution of this paper is in finding
an appropriate weights for the heterogeneous distance
function used in the KNN classifier, and as a results,
improving classification accuracy of malware detec-
tion system. Searching for the most suitable weights
with respect to classification accuracy can be consid-
ered as an optimization problem. Evolutionary algo-
rithms, swarm algorithms and other heuristics (Luke,
2013) are suitable for our optimization problem. In
our experiment, a biologically motivated algorithm
called particle swarm optimization (PSO) was used to
solve this problem. Experimental results indicate that
the performance of KNN using the weighted distance
function is considerably better than the performance
of KNN without weights.

The rest of the paper is organized as follows. Sec-
tion 2 briefly reviews some related work in the field of
malware detection based on data mining techniques.
Some weighted distance functions and distance met-
ric learning techniques are also reviewed in this sec-
tion. Our proposed malware detection model and the-
oretical background are presented in Section 3. Ex-
perimental setup and results are presented in Section
4. Conclusion and future work are given in Section 5.

2 RELATED WORK

In this section, we briefly review some works related
to malware detection based on machine learning tech-
niques. We also review several approaches of how to
find the most suitable feature weights for a distance
function used in KNN or other techniques working
with distances.

2.1 Malware Detection

Over the past two decades, a large number of mal-
ware detection techniques has been proposed. To
evade malware classifiers, malware writers usually
employ obfuscation techniques such as encryption,
binary packers, or self-modifying code. In recent
years, many malware researchers have focused on
data mining and machine learning algorithms to de-
tect unknown malware (Gandotra et al., 2014), (Ye
et al., 2017).

(Schultz et al., 2000) were the first who introduced
the concept of data mining techniques for detection
of malicious code. The authors used three different
features: information from the PE header, string fea-
tures, and byte sequences extracted from binaries.
They used three machine learning algorithms: Naive
Bayes, Multinomial Naive Bayes, rule induction al-
gorithm called Ripper (Cohen, 1996), and compared

them with the signature-based method. Their results
indicate that the data mining detection rate of previ-
ously unknown malware was twice as high in compa-
rison to the signature-based method.

(Shafiq et al., 2009) extracted structural informa-
tion from the PE file format and selected the most
important features with respect to distinguishing be-
tween benign files and malware. The authors have
used three feature selection algorithms: Redundant
Feature Removal (RFR), Principal Component Ana-
lysis (PCA), and Haar Wavelet Transform (HWT)
(Witten et al., 2016), and applied five machine lear-
ning classifiers: instance based learner (IBk), decision
tree (J48), naive bayes (NB), inductive rule learner
(RIPPER), and support vector machine (SVM) using
sequential minimal optimization. The authors con-
cluded that J48 outperforms the rest of the classifiers
in terms of the detection accuracy.

More recently, (Zhong and Gu, 2019) improved
performance of deep learning models by organi-
zing them to the tree structure called Multiple-Level
Deep Learning System (MLDLS). Each deep learning
model focuses on specific malware family. As a re-
sult, the MLDLS can handle complex malware data
distribution. Experimental results indicate that pro-
posed method outperforms the SVM, decision tree,
the single deep learning method and ensemble based
approach.

2.2 Weighted Distance Functions for
KNN Classifier

The k-nearest neighbors classifier (Cover and Hart,
1967) is one of the simplest and best-known nonpara-
metric algorithms in machine learning. Several ap-
proaches have been proposed to increase the perfor-
mance of KNN. The work (Ghosh, 2006) presents the
technique for estimation of the optimal parameter k.
Many studies include research on the similarity mea-
sures. The work (Yu et al., 2008) studies distance
measure based on statistical analysis and presents
boosting heterogeneous measure for similarity esti-
mation. Work (Hsu and Chen, 2008) has derived con-
ditions for stability of the distance function in high-
dimensional space.

Several distance functions have been presented
(Wilson and Martinez, 1997). To improve results,
many weighting schemes were proposed. Review
of feature weighting methods for lazy learning algo-
rithms was proposed in (Wettschereck et al., 1997).

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

726

2.3 Distance Metric Learning

Distance metric learning is an active research area
(Yang and Jin, 2006), (Kulis et al., 2013). Dis-
tance metric learning is defined as follows. Let
T = {(x1,c1), . . . ,(xm,cm)} be the training set of m
feature vectors xi in d-dimensional metric space S ,
and ci be class labels. The goal is to learn a line-
ar transformation L : S → S , where squared distance
between two feature vectors xi and x j is defined as
d(xi,x j) = ‖L(xi−x j)‖2. Note that d is a valid metric
if and only if the matrix L is full rank. We reformulate
the definition of the squared distance as D(xi,x j) =
(xi− x j)

T M(xi− x j), where M = LT L. Matrix M is
guaranteed to be positive semidefinite and the dis-
tance D is called Mahalanobis metric. Note that when
M is equal to the identity matrix, then the distance D
is reduced to Euclidean distance metric. The goal is to
find a matrix M which is estimated from the data, that
leads to the highest classification accuracy of KNN
classifier.

Large Margin Nearest Neighbor (LMNN) (Wein-
berger et al., 2006) classification is used to learn a
Mahanalobis distance metric for KNN classification.
LMNN consists of two steps. In the first step, set of k
similarly labeled neighbors is identified for each fea-
ture vector. In the second step, the Mahalanobis dis-
tance metric is learned using convex optimization.

Similar to our approach, (Xu et al., 2017) searched
for suitable weight vector using PSO. However, there
are several differencies: we used a heterogeneous dis-
tance function that can handle both nominal and nu-
meric features, we used different classifier for evalu-
ation, we applied different modification of the PSO
algorithm, and our goal is to improve malware detec-
tion for a different operating system. (Kong and Yan,
2013) proposed a malware detection method based on
structural information. Discriminant distance metric
is learned to cluster the malware samples belonging
to same malware family.

3 THE PROPOSED MALWARE
DETECTION MODEL

In this section, we present our proposed malware de-
tection system and describe all its components. Ar-
chitecture of the detection system is illustrated in
Fig. 1.

The detection system consists of the metric lear-
ning phase and the classification phase. First, rele-
vant features are extracted from the binaries. Then
we split the dataset into two disjoint subset: Tpso for

the metric learning phase, and Teval for the classifi-
cation phase. In the metric learning phase, feature
weights are learned from the data. The feature selec-
tion method described in Section 3.3 is performed, as
a results, dimension of the feature vectors is reduced.
Then the data is split into training (80%) and testing
(20%) subsets and they are used for computation of
the fitness function used in the PSO algorithm.

In the classification phase, we evaluate the best
weight vector from the metric learning phase using
the KNN classifier. First, we also reduce the dimen-
sion of the feature vectors with respect to the feature
selection results from the metric learning phase. Then
we apply KNN with fivefold cross validation (Picard
and Cook, 1984) to obtain reliable experimental re-
sults. Teval is randomly divided into five subsets of
equal size, where four subsets are used for training
and one subset for testing. The experiment is repeated
five times on different subsets of data. The accuracies
obtained for each fold are averaged to produce a sin-
gle cross validation estimate.

We do not use cross-validation in the metric lear-
ning phase since evaluation of the fitness function
is very time consuming. Note that if we used the
same training dataset in the metric learning phase and
also in the classification phase, we could possibly ob-
tain better classification results than when the training
datasets in both phases were disjoint. The aim of this
architecture is to show robustness of the resulted fea-
ture weights.

3.1 Heterogeneous Distance Metric

In this section, we describe weighted heterogeneous
distance function that is used in our experiments. The
distance without weights was proposed in (Jureček
and Lórencz, 2018). Let x and y be two feature vec-
tors of dimension m, and let wa be weight correspon-
ding to the attribute (feature) a. The weighted distance
is defined as follows:

D(x,y) =

√
m

∑
a=1

w2
ad2

a(xa,ya) (1)

where

da(x,y) =


H (x,y) if a is a bit array
δ(x,y) if a is a checksum
Norm diffa(x,y) if a is a numeric
Norm vdma(x,y) otherwise.

(2)
H (x,y) denotes Hamming distance defined for binary
vectors x = (x1, . . . ,xn),y = (y1, . . . ,yn) as

H (x,y) = |{i|xi 6= yi, i = 1, . . . ,n}| (3)

Distance Metric Learning using Particle Swarm Optimization to Improve Static Malware Detection

727

Parsing

binaries

Split

dataset

Evaluation

KNN with
5-fold
cross-

validationreduction

Classification Phase

Feature

selection

Split

dataset
PSO

Metric Learning Phase

Dimensio-

nality

Figure 1: Architecture of our proposed malware detection system.

and δ(x,y) is the characteristic function defined as

δ(x,y) =
{

0 if x = y
1 otherwise. (4)

The Value Difference Metric (VDM) was introduced
by (Stanfill and Waltz, 1986) and the normalized
VDM is defined as

Norm vdma(x,y) =
C

∑
c=1

∣∣∣∣na,x,c

na,x
−

na,y,c

na,y

∣∣∣∣ (5)

where

• C is the number of classes,

• na,x,c is the number of instances in the training set
T which have value x for attribute a and the in-
stance belongs to class c,

• na,x is the number of instances in T that have
value x for attribute a.

Function Norm diffa(x,y) is defined as:

Norm diffa(x,y) =
|x− y|
4σa

(6)

where σa is the standard deviation of the values of
numeric attribute a.

The distance D is a modification of Heteroge-
neous Value Difference Metric (HVDM) (Wilson and
Martinez, 1997), and it can be used for our PE fea-
ture space since it handles both numeric and nominal
attributes.

3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic
optimization algorithm proposed by (Eberhart and
Kennedy, 1995). Many variants and modifications of
PSO are described in (Wang et al., 2018).

PSO is a biologically motivated algorithm based
on swarm intelligence. Each particle is represented
as a point in the search space and the quality of each
point is determined by a fitness function. Each par-
ticle updates its position which is influenced by: the
current velocity, previous best particle’s position and
position of the most successful particle in the swarm.

Concept and notation of the PSO elements with re-
spect to our distance metric learning problem applied
on malware detection, is as follows:
• Particle represents vector of weights w. The cur-

rent position of i-th particle is denoted by xi and
vi denotes its current velocity.

• Swarm or population is an array of all particles
considered in the PSO algorithm.

• Local best position pi of i-th particle is its best po-
sition among all positions visited so far, and pbesti
is the corresponding value of the fitness function
f , i.e. pbesti = f (pi).

• Global best position pg is the position of the most
successful particle in the swarm, and gbesti =
f (pg).

• Fitness function f is an objective function that is
used to measure the quality of a particle. In our
malware detection problem, the fitness function is
defined as the accuracy of the KNN classifier.
The pseudocode of the PSO algorithm is presented

in Algorithm 1.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

728

Algorithm 1: PSO algorithm.

Input: fitness function f , Tpso
Output: vector of weights

1: initialize particles with random positions xi and
velocities vi

2: repeat
3: for each particle xi do
4: compute fitness function f (xi)
5: if f (xi)> pbesti then
6: pbesti = f (xi)
7: pi = xi
8: end if
9: end for

10: select the most successful particle in swarm so
far, and denote it by pg

11: for each particle xi do
12: vi = vi + Rand(0,φ1) ⊗ (pi − xi) +

Rand(0,φ2)⊗ (pg− xi)
13: xi = xi + vi
14: end for
15: until maximum number of iterations or suffi-

ciently good fitness is attained
16: return global best position

Rand(0,ε) represents a vector of random numbers
uniformly distributed in [0,ε]. Operation ⊗ denotes
component-wise multiplication. Note the each parti-
cle is able to memorize its best previous position and
also it knows the best position of the whole swarm
so far. Each component of velocity v is kept in the
range [−Vmax,Vmax], where parameter Vmax influences
search ability of the particles.

To better control the scope of the search and re-
duce the importance of Vmax, (Shi and Eberhart, 1998)
proposed the following modification of particle’s ve-
locity equation (step 12 of Algorithm 1):

vi = ωvi +Rand(0,φ1)⊗ (pi− xi)+

+Rand(0,φ2)⊗ (pg− xi), (7)

where ω is an inertia weight. Higher values of
ω tend to global search while lower values tend to
local search. Parameters φ1,φ2 and ω represents the
weights and they are used to balance the global and
the local search.

The PSO was chosen among other optimization
heuristics because its convergence rate is fast and the
algorithm is easy to implement and execute in paral-
lel. The drawback of the algorithm is that it is vulne-
rable to stuck into the local minima.

3.3 Feature Selection

In the proposed approach, the feature vector consists
of information from PE file format (Microsoft, 1999)
which is the most widely used file format for malware.
Gain ratio (GR) (Quinlan, 1986) is used to determine
the most useful features with respect to discriminating
between malware and benign files.

Gain ratio is a modification of entropy-based mea-
sure called information gain (IG) (Mitchell, 1997).
Information gain IG(T ,a) is the expected reduction
in entropy caused by knowing the value of an attribute
a relative to training dataset T , and it is defined as

IG(T ,a) = Entropy(T)− ∑
v∈V (a)

|Tv|
|T |

Entropy(Tv),

(8)
where V (a) denotes the set of all possible values for
attribute a, and Tv denotes the subset of T for which
attribute a has value v.

Gain ratio penalizes attributes with large numbers
of possible values by incorporating a term called split
information (SI):

SI(T ,a) =−
d

∑
i=1

|Ti|
|T |

log2
|Ti|
|T |

, (9)

where Ti are the d subsets of training dataset T re-
sulting from partitioning T by the d-valued attribute
a. Split information SI(T ,a) is the entropy of T with
respect to the values of attribute a. The gain ratio is
then defined as

GR(T ,a) =
IG(T ,a)
SI(T ,a)

. (10)

The more the gain ratio, the more relevant a fea-
ture will be.
The following feature set with the highest gain ratio
was extracted and used in our experiment:

• Fields from the PE headers: number of sec-
tions, date/time stamp, major or minor versions of
linker, operating system, image, subsystem; sizes
and addresses of data directories; DLL character-
istics, and many others.

• Features from sections and their headers: Virtu-
alSize, VirtualAddress, SizeOfRawData, Pointer-
ToRawData, Section Flags.

• Resources: number of resources and the number
of types of resources.

• Overlay: size of the overlay.

• Other features: entropies and checksums of sec-
tions, the size of all imports, the number of DLLs
referred, the number of APIs referred.

Distance Metric Learning using Particle Swarm Optimization to Improve Static Malware Detection

729

Detailed description of these features can be found
in the documentation (Microsoft, 1999).

3.4 Performance Metrics

In this section, we present the performance metric
we used to measure the accuracy of our proposed ap-
proach for the detection of unknown malicious codes.
For evaluation purposes, the following classical quan-
tities are employed:

- True Positive (TP) represents the number of mali-
cious samples classified as malware

- True Negative (TN) represents the number of be-
nign samples classified as benign

- False Positive (FP) represents the number of be-
nign samples classified as malware

- False Negative (FN) represents the number of ma-
licious samples classified as benign

The performance of our classifier on the test set is
measured using three standard parameters. The most
intuitive and commonly used evaluation measure in
Machine Learning is the accuracy (ACC):

ACC =
TP+TN

TP+TN+FP+FN
(11)

It is defined on a given test set as the percentage
of correctly classified instances. The second param-
eter, True Positive Rate (TPR) (or detection rate), is
defined as:

TPR =
TP

TP+FN
(12)

TPR is the percentage of truly malicious samples
that were classified as malware. The third parameter
is False Positive Rate (FPR), and it is defined as fol-
lows:

FPR =
FP

TN+FP
(13)

FPR is the percentage of benign samples that were
wrongly classified as malware.

4 EXPERIMENTAL SETUP AND
RESULTS

In this section, we describe experimental setup and
present the results of our experiments.

4.1 Experimental Setup – Dataset and
Implementation

In this research, we use dataset consisting of 150,145
Windows programs in the PE file format, out of which
74,978 are malware, and 75,167 are benign programs.
The malicious and benign programs were obtained
from the laboratory of the industrial partner and also
from (VirusShare, 2019).

There are many variants and modifications of the
PSO algorithm. Initialization of the population con-
cerns with random generation of particles and their
velocities, however there are more advadced meth-
ods, such as nonlinear simplex method or centroidal
Voronoi tessellations and many others (Wang et al.,
2018). In our implementation of modified PSO, re-
sults from the feature selection algorithm (described
in Section 3.3) are used for initialization of the par-
ticles, instead of random initialization. Values of the
gain ratio can be considered as particle p and each
particle is initialized as p⊗Rand(0,ε), where ε is a
small constant. The purpose of this initialization is in
the acceleration of PSO, i.e. reducing the searching
space is done using results of the feature selection al-
gorithm.

Another modification in our implementation is
feature scaling of the weight vector. Since each com-
ponent wi of the weight vector has to be non-negative,
in computing the fitness function, we use a normali-
zed weight vector where each component is rescaling
using min-max normalization:

xnorm =
x−min

max−min
, (14)

where x is an original value and min, resp. max, is
minimal, resp. maximal value of the original vector.

There are several control techniques (Robinson
and Rahmat-Samii, 2004) that are able to avoid par-
ticles running out of the search space. In our imple-
mentation, positions of particles are not constrained.
We use a static topological structure where each par-
ticle is fully informed, i.e. it uses information of the
entire neighborhood.

Our implementation was executed on a single
computer platform having two processors (Intel Xeon
Gold 6136, 3.0GHz, 12 cores each), with 32 GB of
RAM running the Ubuntu server 18.04 LTS operating
system.

4.2 Experimental Results

To ensure a fine tuning of the hyperparameters of our
malware detection model, grid search (Bergstra and

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

730

Bengio, 2012) was used to explore the following PSO
parameters:

• φ1,φ2 ∈ {0.5,1.,1.5,2.},
• Vmax ∈ {0.5,1.,2.,4.}.

The rest of the PSO parameters are considered as
constants: population size is 40, and number of iter-
ations is 30. At the first iteration, inertia weight ω is
set to one, and it linearly decreases at each iteration to
the value ωmin = 0.8. All these parameters were cho-
sen following the guidelines from (Wang et al., 2018)
and (Poli et al., 2007). However, the choice of pa-
rameters of the PSO is problem-specific, and to deter-
mine the parameters appropriately and effectively is
an open problem (Wang et al., 2018).

We evaluated the performance of KNN (k = 5)
with respect to the following initialization techniques
in PSO:

• PSO-RAND denotes PSO where position and ve-
locity of each particle are initialized randomly

• PSO-GR denotes PSO where velocity of each par-
ticle p is initialized randomly, however, its posi-
tion is initialized as p⊗Rand(0,ε), where ε is a
small constant and p is the vector of gain ratio
values.

For our experiments, we used the heterogeneous
distance function described in Section 3.1. The clas-
sification results of the KNN with fivefold cross vali-
dation are listed in Table 1.

Table 1: Classification results of the KNN classifier with
and without feature weights.

KNN TPR FPR ACC
without weights 96.51% 4.03% 96.24%
PSO-RAND 96.69% 3.46% 96.59%
PSO-GR 96.67% 3.30% 96.72%

Using weighted distance, we reduced the average
KNN classification error rate from 3.76% to 3.28%,
i.e. the error rate has been decreased by 12.77%.

5 CONCLUSIONS

We applied the PSO algorithm to the problem of fin-
ding the most appropriate feature weights used in the
heterogeneous distance function defined for the fea-
tures extracted from PE file format. Our results in-
dicate that classification performance of KNN can
be improved by using weighted distance function.
By comparing with the experiment of KNN without
weights, classification error rate of KNN with weights

has been decreased by 12.77%. As a results, the accu-
racy of malware detection system using a geometric-
based classifier such as KNN, can be increased signi-
ficantly by using appropriate weights of the features.

For future work, it would be interesting to experi-
ment with several distance metric learning algorithms
and incorporate them in our proposed malware detec-
tion system. Important goal for future work is to learn
weights that vary between malware families.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the OP VVV
MEYS funded project CZ.02.1.01/0.0/0.0/16 019/
0000765 ”Research Center for Informatics”.

REFERENCES

Alrabaee, S., Shirani, P., Debbabi, M., and Wang, L.
(2016). On the feasibility of malware authorship at-
tribution. In International Symposium on Foundations
and Practice of Security, pages 256–272. Springer.

Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. Journal of Machine
Learning Research, 13(Feb):281–305.

Cohen, W. W. (1996). Learning trees and rules with set-
valued features. In AAAI/IAAI, Vol. 1, pages 709–716.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern clas-
sification. IEEE transactions on information theory,
13(1):21–27.

Damodaran, A., Di Troia, F., Visaggio, C. A., Austin,
T. H., and Stamp, M. (2017). A comparison of
static, dynamic, and hybrid analysis for malware de-
tection. Journal of Computer Virology and Hacking
Techniques, 13(1):1–12.

Eberhart, R. and Kennedy, J. (1995). Particle swarm
optimization. In Proceedings of the IEEE inter-
national conference on neural networks, volume 4,
pages 1942–1948. Citeseer.

Egele, M., Scholte, T., Kirda, E., and Kruegel, C. (2012). A
survey on automated dynamic malware-analysis tech-
niques and tools. ACM computing surveys (CSUR),
44(2):6.

Gandotra, E., Bansal, D., and Sofat, S. (2014). Malware
analysis and classification: A survey. Journal of In-
formation Security, 5(02):56.

Ghosh, A. K. (2006). On optimum choice of k in near-
est neighbor classification. Computational Statistics
& Data Analysis, 50(11):3113–3123.

Hsu, C.-M. and Chen, M.-S. (2008). On the design and ap-
plicability of distance functions in high-dimensional
data space. IEEE Transactions on Knowledge and
Data Engineering, 21(4):523–536.

Distance Metric Learning using Particle Swarm Optimization to Improve Static Malware Detection

731

Jureček, M. and Lórencz, R. (2018). Malware detection
using a heterogeneous distance function. Computing
and Informatics, 37(3):759–780.

Kephart, J. O. and Arnold, W. C. (1994). Automatic extrac-
tion of computer virus signatures. In 4th virus bulletin
international conference, pages 178–184.

Kong, D. and Yan, G. (2013). Discriminant malware dis-
tance learning on structural information for automated
malware classification. In Proceedings of the 19th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1357–1365.
ACM.

Kulis, B. et al. (2013). Metric learning: A survey. Founda-
tions and Trends R© in Machine Learning, 5(4):287–
364.

Luke, S. (2013). Essentials of Metaheuristics. Lulu, second
edition.

Microsoft (1999). Microsoft portable executable and com-
mon object file format specification.

Mitchell, T. M. (1997). Machine learning. New York.
Nath, H. V. and Mehtre, B. M. (2014). Static malware

analysis using machine learning methods. In Interna-
tional Conference on Security in Computer Networks
and Distributed Systems, pages 440–450. Springer.

Or-Meir, O., Nissim, N., Elovici, Y., and Rokach, L. (2019).
Dynamic malware analysis in the modern era—a state
of the art survey. ACM Computing Surveys (CSUR),
52(5):88.

Picard, R. R. and Cook, R. D. (1984). Cross-validation of
regression models. Journal of the American Statistical
Association, 79(387):575–583.

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle
swarm optimization. Swarm intelligence, 1(1):33–57.

Quinlan, J. R. (1986). Induction of decision trees. Machine
learning, 1(1):81–106.

Robinson, J. and Rahmat-Samii, Y. (2004). Particle swarm
optimization in electromagnetics. IEEE transactions
on antennas and propagation, 52(2):397–407.

Saad, S., Briguglio, W., and Elmiligi, H. (2019). The cu-
rious case of machine learning in malware detection.
In Proceedings of the 5th International Conference on
Information Systems Security and Privacy - Volume 1:
ICISSP, pages 528–535. INSTICC, SciTePress.

Schultz, M. G., Eskin, E., Zadok, F., and Stolfo, S. J. (2000).
Data mining methods for detection of new malicious
executables. In Proceedings 2001 IEEE Symposium
on Security and Privacy. S&P 2001, pages 38–49.
IEEE.

Shafiq, M. Z., Tabish, S. M., Mirza, F., and Farooq, M.
(2009). Pe-miner: Mining structural information to
detect malicious executables in realtime. In Interna-
tional Workshop on Recent Advances in Intrusion De-
tection, pages 121–141. Springer.

Shi, Y. and Eberhart, R. (1998). A modified particle
swarm optimizer. In 1998 IEEE international confer-
ence on evolutionary computation proceedings. IEEE
world congress on computational intelligence (Cat.
No. 98TH8360), pages 69–73. IEEE.

Stanfill, C. and Waltz, D. L. (1986). Toward memory-based
reasoning. Commun. ACM, 29(12):1213–1228.

VirusShare (2019). Virusshare.com.
Wang, D., Tan, D., and Liu, L. (2018). Particle swarm op-

timization algorithm: an overview. Soft Computing,
22(2):387–408.

Weinberger, K. Q., Blitzer, J., and Saul, L. K. (2006). Dis-
tance metric learning for large margin nearest neigh-
bor classification. In Advances in neural information
processing systems, pages 1473–1480.

Wettschereck, D., Aha, D. W., and Mohri, T. (1997). A
review and empirical evaluation of feature weighting
methods for a class of lazy learning algorithms. Arti-
ficial Intelligence Review, 11(1-5):273–314.

Wilson, D. R. and Martinez, T. R. (1997). Improved het-
erogeneous distance functions. Journal of artificial
intelligence research, 6:1–34.

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016).
Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann.

Xu, Y., Wu, C., Zheng, K., Wang, X., Niu, X., and Lu, T.
(2017). Computing adaptive feature weights with pso
to improve android malware detection. Security and
Communication Networks, 2017.

Yang, L. and Jin, R. (2006). Distance metric learning:
A comprehensive survey. Michigan State Universiy,
2(2):4.

Ye, Y., Li, T., Adjeroh, D., and Iyengar, S. S. (2017). A
survey on malware detection using data mining tech-
niques. ACM Computing Surveys (CSUR), 50(3):41.

Yu, J., Amores, J., Sebe, N., Radeva, P., and Tian, Q.
(2008). Distance learning for similarity estimation.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(3):451–462.

Zhong, W. and Gu, F. (2019). A multi-level deep learning
system for malware detection. Expert Systems with
Applications, 133:151–162.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

732

