
Adaptive Classifiers: Applied to Radio Waveforms 

Marvin A. Conn1,2,* and Darsana Josyula1,** 
1Army Research Laboratory, 2800 Power Mill Rd., Adelphi MD 20783, U.S.A. 

2Bowie State University, 14000 Jericho Park Rd., Bowie, MD 20715, U.S.A. 

Keywords: CNN, Convolutional Neural Networks, Classification, Adaptive, Anomaly, Detection, Radio Waveforms, 
Modulation, Transfer Learning. 

Abstract: Adaptive classifiers detect previously unknown classes of data, cluster them and adapt itself to classify the 
newly detected classes without degrading classification performance on known classes. This study explores 
applying transfer learning from pre-trained CNNs for feature extraction, and adaptive classifier algorithms 
for predicting radio waveform modulation classes. It is surmised that adaptive classifiers are essential 
components for cognitive radio and radar systems. Three approaches that use anomaly detection and 
clustering techniques are implemented for online adaptive RF waveform classification.  The use of CNNs is 
explored because they have been demonstrated previously as highly accurate classifiers on two-dimensional 
constellation images of RF signals, and because CNNs lend themselves well to transfer learning applications 
where limited data is available. This study explores replacing the last softmax layer of CNNs with adaptive 
classifiers to determine if the resulting classifiers can maintain or improve the original accuracy of the CNNs, 
as well as provide for on-the-fly anomaly detection and clustering in nonstationary RF environments.

1 INTRODUCTION 

Radio frequency (RF) spectrum systems are facing 
increasing challenges with respect to electromagnetic 
spectrum access and RF interference (RFI) caused by 
other RF sources in or near the bands of device 
operations. For example, it has been shown that RFI 
significantly degrades performance for radars such as 
air traffic control and weather (Martone, 2018).   RF 
spectrum is a limited resource where access is 
typically managed by government organizations to 
prevent interference (Tang, 2010), (Ali, 2008).   

Although governing organizations have attempted 
to keep RF interference to a minimum, regulations do 
not always resolve interference between devices that 
operate on the same RF band. This forces legacy RF 
users to investigate alternative methods of 
cooperation and co-design as increasing numbers of 
systems clog the RF bands. The Defense Advanced 
Research Projects Agency (DARPA) has conducted 
extensive research in developing software-defined 
radio systems that autonomously collaborate, called 
“Collaborative Intelligent Networks” (Paul, 2017), 

                                                                                                 
* https://www.arl.army.mil/ 
** https://www.bowiestate.edu 

(Chaudhari, 2018). To mitigate RF spectrum 
interference, (Paul, 2017) views the future of RF 
devices where transceiver architectures will not 
function strictly as fixed function devices, but as 
universal RF transceiver platforms that dynamically 
reconfigure themselves as cognitive devices, meeting 
the immediate functional demand. Commercial 
software-defined radios available on the market have 
the potential to implement such architectures, but 
there is much needed research on applying artificial 
intelligence and/or machine learning algorithms 
(AI/ML) to provide these devices with the cognitive 
abilities to operate adaptively in nonstationary 
environments. 

2 MOTIVATION OF THIS STUDY 

An important component of a cognitive RF 
communication system is the ability to accurately 
classify multiple classes of waveforms acquired by its 
sensors. Such classifiers are typically trained using 
supervised learning techniques on known data sets. 

Conn, M. and Josyula, D.
Adaptive Classifiers: Applied to Radio Waveforms.
DOI: 10.5220/0009180609870994
In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020) - Volume 2, pages 987-994
ISBN: 978-989-758-395-7; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

987



However, when one of these classifiers is presented 
with unknown waveform classes it was not trained on, 
it will surely fail.  Therefore, there is the need while 
in online operation to not only classify the known 
waveform classes, but to also recognize the presence 
of anomalous waveforms. Upon recognizing such 
anomalies there is a desire to adaptively cluster them 
into unknown subclasses. The ability of RF devices 
to adaptively classify activity in nonstationary 
environments is a crucial component of cognitive RF 
systems.  Therefore, the purpose of this study is to 
explore approaches for offline training of classifiers 
on known classes and to augment them with adaptive 
algorithms for online unsupervised waveform 
detection, clustering, and classification.  

3 BACKGROUND 

3.1 Transfer Learning with CNNs 

The understanding of the human vision system has 
inspired tremendous research in the development of 
convolutional neural networks (CNNs) providing 
image classification accuracies surpassing that of 
humans.  CNNs became of great importance in image 
classification when AlexNet was created for the 
ImageNet Large Scale Visual Recognition Challenge 
competition (ILSVRC-2010),(Krizhevsky, 2012).  
Deep learning networks achieve state-of-the-art 
performance; however, training such models requires 
large data sets that can take tremendous time, and the 
number of available training samples may be limited. 
A common approach to overcome this is to use 
transfer learning. To take advantage of their high 
accuracy and generalization, transfer learning is used 
where CNNs previously trained on massive data sets 
are repurposed for different domains. The initial 
feature extraction layers are transferred while the last 
layers used for classification are retrained for the new 
problem (Soekhoe, 2016), (Conn, 2019).  

3.2 Constellation Images 

Table 1: Sample of 3-Channel images. 

8PSK 16QAM 

 
 

In RF digital communications the information 
carrying signals are modulated onto a carrier 
waveform before transmission. The carrier is 

modified by a triplet of attributes consisting of the 
carrier’s amplitude, phase, and frequency. Modifying 
these parameters in relation to the information 
bearing signal allows for the superposition of the 
information onto the carrier for RF communications. 
To visualize these digitally modulated waveforms, 
constellation images in the complex in-phase and 
quadrature plane are often used. A technique defined 
by (Peng, 2017) uses constellation images to map the 
complex real and imaginary components to generate 
RGB 3-Channel images. The images are used as 
inputs to CNN classifiers. Two 3-Channel image 
examples shown in Table 1, generated per (Conn,, 
2019). The first image is 8 phase shift keying (8PSK) 
and the second is 16 quadrature amplitude modulation 
(16QAM). It is clear the images are discernible for 
classification. 

3.3 Clusters, Centroids and Euclidian 

A cluster defines a set of objects in which each object 
is closer to or more similar to an example object that 
defines the cluster than to the example of any other 
cluster. Clusters of objects are also often referred to 
as classes. For data with continuous attributes, the 
representative example of a cluster is often referred to 
as a centroid, and it is often defined as the average of 
all the points in the cluster.  To assign a point to the 
closest centroid, a proximity measure that quantifies 
the concept of "closest" for the specific data under 
consideration must be defined. The Euclidean (L2) 
distance is often used for real data points in the 
Euclidean space and is the most widely used distance 
measurement because it is preserved under 
orthogonal transformations such as the Fourier 
transform (Tan, 2006) (Der, 2013). Given two ݊ 
dimensional vectors ࢖  and ࢗ , where ࢖ ൌ
ሺ݌ଵ, ,ଶ݌ … ௡ሻ݌  andࢗ ൌ ሺݍଵ, ,ଶݍ … ௡ሻݍ , the Euclidian 
L2 Distance between them is defined as: 
 

,࢖ሺܦ ሻࢗ ൌ෍ ඥሺ݌௜ െ ௜ሻଶݍ
௡

௜ୀଵ
 (1)

3.4 Dynamic Online Growing Neural 
Gas (DYNG) 

Approaches based on topological feature maps such 
as self-organizing maps (SOM) (Kohonen, 1990), 
neural gas (NG) (Hohonen, 1982), and growing 
neural gas (GNG) (Fritzke, 1995) have been 
successfully applied to online clustering problems.  
Although successful, their architectures do not allow 
for the labelling of different classes of data presented 
to the networks. To address this DYNG (Beyer, 2013) 

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

988



extends GNG by allowing for online training and 
class labelling of known data presented to a GNG 
network. Figure 1  depicts a simplified diagram of a 
DYNG network. DYNG exploits labelled data (C1, 
C2, and C3) during training to adapt the network 
structure to the requirements of the classification task. 
 

 

Figure 1: Dynamic Online Growing Neural Gas (DYNG). 

While the network is in online training mode it 
can be presented with labelled and unlabelled data. 
The labelled data are clustered into a set of neurons 
marked with the same label. All unlabelled data 
presented to the network are labelled as “?” and the 
generated associated neurons are also labelled as “?”. 
Then using a relabelling strategy, DYNG allows for 
latent online labelling of unlabelled data when future 
inputs with a new label falls within a predefined 
distance from the unlabelled neurons.  

A key limitation of DYNG is it does not allow for 
the distinct labelling of different “unknown” classes 
of stimuli as they are presented to the network. 
DYNG does not explicitly detect when the unlabelled 
data entries are from different classes or from 
different population distributions, and then label them 
as such. It is only at a later time when DYNG is 
presented with a newly labelled stimulus that some 
subset of the “unknown” neurons that fall within the 
criteria of distance measures are relabelled to the new 
label name. The research herein will attempt to 
address this by providing a mechanism to 
immediately detect and cluster anomalies as they 
occur online.  

4 METHODOLOGY 

4.1 Overall Approach 

CNNs have been demonstrated in countless 
applications as highly accurate classifiers. However, 
they are brittle in the sense that once trained they 
cannot adapt to processing anomalous data and will 
fail under such circumstances. To address this, a 
twofold approach has been taken. First, we make use 

of transfer learning and take advantage of the feature 
extraction expertise that pre-trained CNNs have 
gained from training on massive amounts of data. 
This is done by freezing the weights and biases of all 
but the last fully connected layer of the CNNs. 
Secondly, we remove the last fully connected 
classification layer of the CNNs and replace it with an 
adaptive classification layer capable of maintaining 
the original accuracy of the CNN. This adaptive layer 
also provides for online anomaly detection, 
adaptation, and clustering (or categorization) of the 
anomalies into new unknown classes. Three such 
adaptive classification algorithms are presented in the 
remaining sections.  

4.2 Training and Test Data 

For this study, the GoogleNet, AlexNet, ResNet, 
Inception, and MobileNet CNN architectures were 
used to get a sampling of performance across various 
architectures. Transfer learning was used by replacing 
the last 1000-class output layer of the pre-trained 
CNN with a 9-class softmax output layer with the 
weights and biases trained on the waveform data sets. 
The original weights and biases of all other layers 
were frozen. For this work only known data sets are 
trained on and presented to the classifiers for testing. 
As of the writing of this paper, the results of 
anomalous stimuli data are not presented; however, 
preliminary results have shown favourable 
performance accuracies. This study focuses on how 
accurate the adaptive classifiers are in classifying the 
known data they were trained upon.  For each known 
class type, there were 750 training samples, and for 
validation there were 300 samples. The training data 
set consisted of sample sets from nine different 
waveforms. The nine classes were bipolar phase shift 
keying (BPSK), quadrature amplitude shift keying 
(4ASK), quadrature phase shift keying (QPSK), 
orthogonal quadrature phase shift keying (OQPSK), 
8PSK, 16QAM, 32QAM, 64QAM, and Noise. Using 
the approach detailed in (Conn, 2019) and (Peng, 
2017) for training, the modulated waveforms were 
used to generate the 3-Channel constellation images 
as shown in Table 1. The simulated waveforms had 
varying levels of White-Gaussian noise with SNRs 
ranging from -6 dB to 14 dB.  

4.3 Baseline Accuracy Procedure 

To establish the CNN-baseline accuracy, transfer 
learning was used by replacing the last 1000-class 
output layer of the pre-trained CNN with a 9-class 
softmax output layer as shown in Figure 2. The 

Adaptive Classifiers: Applied to Radio Waveforms

989



weights and biases of the new classification layer 
were trained on the waveform data sets. Following the 
training, accuracy of the networks was assessed using 
the validation data. After the baseline accuracy of the 
CNNs was established, the last 9-class layer of the 
CNNs was removed and replaced with one of the 
three adaptive classifiers discussed in section 4.4.   
 

 

Figure 2: CNN Baseline Classifier. 

Then each adaptive classifier was trained by 
inputting the training data through the CNN 
networks, therefore allowing the adaptive classifiers 
to dynamically form their model structures. Then the 
accuracy of the adaptive classifiers was determined 
by using the validation data set. 

4.4 Adaptive Classifiers 

Three adaptive classifiers are explored in this 
research: 1) Centroid with Anomaly Detection and 
Clustering (CADC) algorithm; 2) Frequency Hits 
Anomaly Detection and Clustering (FHITS-ADC); 
and 3) DYNG Extended with CADC (DYNG-
CADC). For each of these algorithms the following 
are defined: the specific model; the model training 
phase; the online predictions, anomaly detection and 
adaptation process; and finally the anomaly insertion 
operation.  

4.4.1 CADC Algorithm 

The CADC algorithm is designed to perform class 
predictions, anomaly detections, and semi-supervised 
clustering (adaptation) functions. For each class, the 
CADC algorithm generates a prototype node as 
shown in Figure 3. The CADC prototypes have four 
attributes. The class label λ defines the name of the 
class (for example “BPSK”). φ defines a feature 
vector of length N where each component defines the 
mean of each corresponding feature from all training 
data of the class. The φ dimension is of length N with 
the value defined by the length of the CNN output 
layer from which the centroid node takes input. φ is 
considered the centroid of all training samples from 
the same class. The L2 standard deviation ߪ௅ଶ  and 
mean ߤ௅ଶ  establish boundaries on the use of the 
centroid feature vector and play a significant role in 
prediction decisions.  

4.4.2 CADC Training 

Before the CADC can perform classification, 
anomaly detection, and anomaly clustering, it must 
first be trained on C number of known training classes 
to generate a CADC node for each known class.  
 

 

Figure 3: CADC centroid node. 

After training, the CADC will be composed of C 
centroid nodes. Each centroid node will have a unique 
label λ derived from the labelled training data and it 
will have a feature vector φ. φ for each centroid is the 
result of averaging the values at the corresponding 
feature index positions from all training samples in 
the same class. Once C prototype centroids are 
established, the statistics ߪ௅ଶ and ߤ௅ଶ	are computed. 
This is done by reiterating through the training data 
for each class and calculating the mean and standard 
deviation of the L2 distances between a class centroid 
and all training samples with the same class label. 
Once trained, all centroids and associated statistics 
for the known classes are defined, and the CADC 
algorithm can then be taken online. 

4.4.3 CADC Online Prediction & 
Adaptation 

With the trained CADC model taken online, it can 
perform class predictions and adaptations when 
anomalies are detected. As a stimulus is presented to 
the centroid network, the L2 distance is computed 
between the input stimulus and all centroid nodes. 
The centroid with the smallest L2 distance is selected 
as the candidate predicted class. To confirm 
acceptance of the candidate, the number of standard 
deviations hyper-parameter ( ηሻ  is used.  The L2 
distance is checked to determine if the stimulus falls 
within η standard deviations of the centroids (η=3 
used for reported results). If the stimulus’ L2 distance 
falls within the thresholds, it is accepted as classified. 
If the stimulus is successfully declared as one of the 
known classes, that prediction stands and no further 
processing is required for that stimulus. However, if 

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

990



the stimulus is successfully predicted as one of the 
unknown classes (as discussed in the next section), 
the L2 standard deviation and mean statistic values 
for that unknown class are updated. This action 
provides for online refinement of the unknown class 
statistics each time a stimulus is declared a particular 
unknown class. If the incoming stimulus prediction is 
rejected because the calculated L2 distance falls 
outside of the selected centroid’s threshold, the 
stimulus is declared and processed as an anomaly as 
discussed in the next section. 

4.4.4 CADC Anomaly Class Insertion & 
Adaptation 

The insertion of an unknown stimuli into the model is 
a critical step of the adaptive learning process. When a 
stimulus is declared an “anomaly” the goals are to: 1) 
create a new unknown centroid class; 2) establish 
prediction statistics for the new unknown class; and 3) 
report the anomaly as a new unknown class. The 
approach relies on the concept of one shot learning, and 
the current statistics of all nodes of the CADC model. 
When the first anomaly is detected a new centroid class 
is created and labelled as “unknown1”, and when a 
second anomaly is detected a new centroid class is 
created and labelled as “unknown2”, etc.  The feature 
vector of the new unknown centroid is initialized to the 
value of the stimulus vector.  Then, to establish a model 
on the new class, the statistical knowledge already 
established on the centroids presently in the network 
model is leveraged. In doing this, the L2 standard 
deviation and mean for the new centroid is initialized 
to be the average of all the L2 standard deviations and 
means of all the existing centroid nodes. This average 
includes averaging the statistics from the known and 
unknown classes. Upon insertion completion, a new 
unknown node has been generated with a reasonable 
starting vector and statistics. 

4.4.5 FHITS-ADC Algorithm 

 

Figure 4: FHITS-ADC Node. 

For each class, the FHITS-ADC algorithm generates 
a prototype node as shown in Figure 4. The class label 
λ defines the name of the class (for example 
“BPSK”). The standard deviation (σ) and mean (μ) 
vectors establish decision boundaries for predictions. 
FHITS-ADC also requires two hyper-parameters, η 
and β. The integer η defines the number of standard 
deviations a feature vector’s components can fall 
outside of boundary before an error is declared. The 
real number β (can take on any value from 1.0 to 0) is 
used to define the percentage of feature vector 
components that can be in error before a stimulus is 
declared an anomaly. 

4.4.6 FHITS-ADC Training 

The FHITS-ADC training algorithm begins with 
generating labelled centroid nodes, ݊௞ . The nodes 
have a class label, a standard deviation feature vector 
(σ), and a mean feature vector (μ).  The feature vector 
dimension is defined by the length of the CNN output 
layer that the centroid node will take input from (this 
size is N). Before FHITS-ADC can be taken online, it 
must first be trained on the C known classes. 
Thereafter the FHITS-ADC model will consist of C 
nodes. The μ feature vector is calculated similarly to 
CADC. It is the result of averaging the values at the 
corresponding feature index positions from all ݔ௜ 
training samples within the same class. The σ feature 
vector is the result of calculating the standard 
deviation at the corresponding feature index positions 
from all ݔ௜ training samples within the same class.  

4.4.7 FHITS-ADC Online Prediction and 
Adaptation 

With the trained network online, it can perform class 
predictions, anomaly detection, and adaptation.  As a 
 ௜ stimulus is presented to the network, the frequencyݔ
of error hits parameter ݁ݐ݊ݑ݋ܥݎ݋ݎݎ  is computed 
between the input stimulus and all class nodes in the 
network. To carry out this computation, for all 
centroid classes ݊௞, each component of the stimulus 
vector (ݔ௜ሾ݂ሿ) is checked to determine if it falls within 
േη standard deviations of the component’s average 
using the statistics computed during training. If a 
corresponding value of the stimulus vector falls 
outside the statistical limits, ݁ݐ݊ݑ݋ܥݎ݋ݎݎ is increased 
indicating a non-match. The class with the least hits 
is a candidate for the predicted class of the stimulus. 

To confirm acceptance of the class prediction, the 
hyper parameter threshold β is used. The β parameter 
defines the maximum percentage of error hits allowed 
before the stimulus is declared an anomaly. If the 
stimulus’ hit counter falls below the threshold, the 

Adaptive Classifiers: Applied to Radio Waveforms

991



stimulus is accepted as classified. If the stimulus is 
successfully declared as one of the known classes 
defined in the training set, then the prediction is 
accepted. However, if the stimulus is predicted as an 
unknown class (as discussed in the next section), the 
mean statistic values are updated using the stimulus 
value. This action provides for online refinement of 
the unknown class statistics each time a stimulus is 
declared as a particular unknown class. If the 
incoming stimulus prediction is rejected because the 
calculated hit counter falls above the threshold, the 
stimulus is declared as an anomaly and insertion 
processed as discussed in the next section. 

4.4.8 FHITS-ADC Anomaly Insertion 

When a stimulus is declared an “anomaly” the goals 
are to: 1) create a new unknown node class; 2) quickly 
establish prediction statistics for the new unknown 
class; and 3) report the anomaly as a new unknown 
class. To create unknown centroid classes, a running 
index counter is used starting at value 1. When the 
first anomaly is detected a new centroid class is 
created and labelled as “unknown1”, and when a 
second anomaly is detected a new centroid class is 
created and labelled as “unknown2”, etc.  To quickly 
establish the centroid statistics, the feature vector of 
the new unknown centroid is initialized to the value 
of the stimulus vector.  Then to establish a statistical 
model of the new class, the knowledge already 
established on the centroids presently in the network 
model is leveraged by assigning the standard 
deviation and mean vector of the new centroid to be 
the average of all the standard deviations and means 
of the statistics of all the existing centroid classes. 
This includes averaging the statistics from the known 
and unknown classes. 

4.4.9 DYNG-CADC Algorithm 

There is interest in exploring use of DYNG for online 
streaming data classification because of its great 
flexibility in adapting its structure to non-stationary 
data while online. The strategy used is to extend (or 
augment) the DYNG network with the CADC 
algorithm to allow for the online rapid detection and 
unique labelling of new anomaly classes as they are 
input to the network. A similar approach could have 
been taken by extending DYNG with FHITS-ADC. 
The remainder of this subsection discusses DYNG 
training and how CADC is used to extend the DYNG 
network’s functionality.  
 
 
 

4.4.10 DYNG-CADC Training 

A complete description of the training algorithm for 
DYNG is provided in (Beyer, 2013). Before the 
DYNG-CADC algorithm is taken online, they both 
must be trained on C known classes of training data.  
The feature vector’s ݔ௜  dimension is defined by the 
length of the CNN’s output layer that the DYNG 
nodes will take input from (this size is N).  

After training, the initial DYNG model is 
composed of C clusters of nodes representing the C 
known classes. The number of nodes within each 
cluster varies per class, and is determined 
dynamically by the DYNG training algorithm. The 
CADC network structure is also created and trained 
on the training data set as described in the CADC 
training section. In the DYNG-CADC algorithm, the 
CADC structure is only used as an online adaptive 
anomaly detector, and the DYNG network is used for 
classification. It is expected (not proven) that the 
DYNG network will provide greater classification 
accuracy than CADC because it has multiple nodes 
representing each class (therefore more voting power) 
than CADC, which has only one node structure per 
class. The hyper-parameters for the DYNG networks 
are shown in Table 2. MAX_NODES was set to 100 
nodes to limit the growth of the DYNG networks. 
That yields approximately 11 DYNG nodes for each 
of the 9 training classes. The MAX_AGE was set 
relatively low to help minimize growth of the 
network. 

Table 2: DYNG Hyper-parameters. 

EB	0.1;	EN	0.0006;	ALPHA	0.5;	D	0.0005;	
LAMBDA	30;	MAX_AGE	25;		
MAX_NODES	100;	NUM_STD	5.0;	

4.4.11 DYNG-CADC Online Prediction and 
Adaptation 

Once DYNG-CADC is trained on the known data set, 
it can be taken online for classification, anomaly 
detection, and clustering of unknown stimuli. In this 
mode, CADC processes the stimuli first to determine 
if the stimuli is declared an anomaly. If not declared 
as such, DYNG is used to perform the stimuli 
classification. If CADC declares the stimuli an 
anomaly, a unique label is generated and the stimuli 
with the new label is input to the DYNG in its training 
mode to incorporate the new class into the network. 
See section 4.4.1 for the CADC algorithm. 
 
 
 

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

992



5 EXPERIMENTAL RESULTS 

5.1 CNN Results 

Figure 5 shows the performance of the five CNN 
networks retrained for the nine classes. Overall, the 
networks perform well. In general and as expected, 
the accuracy of the classifiers increases as the SNR 
increases. An unexpected observation for high SNRs 
between 6 to 14 dB is that ResNet50, AlexNet, and 
GoogleNet performances tend to drop, although their 
overall performance is still above or near 90%. It is 
not clear why these drops occur, as this behaviour 
does not show itself in MobileNet and Inception. The 
speculation is that additional training or hyper-
parameter adjustments on those networks will correct 
for the degraded performance on the higher SNRs. 
 

 

Figure 5: CNN Accuracy wrt. SNR. 

5.2 CNN-DYNG Results 

Figure 6 shows the overall classification performance 
of the CNN-DYNG networks, with AlexNet 
performing the least accurate and MobileNet 
providing the best overall accuracy at about 85%. 
 

 

Figure 6: CNN-DYNG Accuracy wrt. SNR. 

5.3 CNN-CADC Results 

CNN-DYNG generally performed better than the 
CNN-CADC results, as shown in Figure 7 with 
Inception for CNN-CADC giving the best 
performance. For CNN-DYNG, MobileNet gives the 
best performance. AlexNet consistently performed 
the poorest. 
 

 

Figure 7: CNN-CADC Accuracy wrt. SNR. 

5.4 CNN-FHITS-ADC Results 

The CNN-FHITS-ADC results in Figure 8 gives a 
comparable performance to the other algorithms. It 
stabilizes at about SNRs of 6 dB and above. 
 

 

Figure 8 : CNN-FHITS-ADC Accuracy wrt. SNR. 

5.5 Overall Accuracy Summary 

Table 3 shows the overall performance of all algorithm 
configurations. The top three performers are CNN-
FHITS-ADC-ResNet50, CNN-MobileNet, and CNN-
GoogleNet. In some cases, the standard softmax layer 
for CNNs does not provide optimal classification 
accuracy. For example, CNN-FHITS-ADC-ResNet50 
provides greater performance (87.19%) than CNN-

Adaptive Classifiers: Applied to Radio Waveforms

993



resenet50 (83.63%). Another similar case is where 
CNN-FHITS-ADC-AlexNet performance (84.63%) is 
greater than CNN-AlexNet (84.10%).  

Table 3: Overall Accuracy. 

Order	by	
Accuracy	

Algorithm	
Overall	
Accuracy

1	 CNN‐FHITS‐ADC‐ResNet50	 87.19
2	 CNN‐MobileNet 87.17
3	 CNN‐GoogleNet 86.60
4	 CNN‐FHITS‐ADC‐GoogleNet	 86.24
5	 CNN‐FHITS‐ADC‐MobileNet	 86.24
6	 CNN‐Inceptionv3	 86.05
7	 CNN‐DYNG‐MobileNet	 85.33
8	 CNN‐DYNG‐ResNet50	 85.13
9	 CNN‐FHITS‐ADC‐Inceptionv3	 85.05
10	 CNN‐CADC‐Inceptionv3	 84.71
11	 CNN‐FHITS‐ADC‐AlexNet	 84.63
12	 CNN‐CADC‐MobileNet	 84.20
13	 CNN‐AlexNet	 84.10
14	 CNN‐DYNG‐Inceptionv3	 84.06
15	 CNN‐CADC‐ResNet50	 83.68
16	 CNN‐ResNet‐50 83.63
17	 CNN‐DYNG‐GoogleNet	 82.68
18	 CNN‐CADC‐GoogleNet	 81.54
19	 CNN‐DYNG‐AlexNet	 79.11
20	 CNN‐CADC‐AlexNet	 70.67

 
However, use of these alternative last layer 

classifiers does not guarantee greater performance 
than softmax. For example, CNN-MobileNet using 
the standard softmax layer outperforms all other 
variants of MobileNet.  

6 CONCLUSIONS 

This work investigated using transfer learning and 
adaptive classifiers for RF waveform classification 
with various CNN architectures. This research 
presented three online adaptive classifier frameworks 
for the replacement of the last layer of CNNs to allow 
for high accuracy classification performance in 
nonstationary environments. 

7 FUTURE WORK 

Future research will investigate performance of the 
online anomaly detection and adaptation capability of 
these algorithms to demonstrate that such algorithms 
can sustain acceptable accuracies in non-stationary 
environments.  Preliminary work has in fact shown that 
these algorithms can provide acceptable performance. 

ACKNOWLEDGEMENTS 

We would like to thank Mr. Kwok Tom and Dr. 
Anthony Martone of the Army Research Laboratory 
for discussions on this topic. 

REFERENCES 

Conn, M., Darsana, D., 2019. Radio Frequency 
Classification and Anomaly Detection using 
Convolutional Neural Networks. IEEE Radar 
Conference, Xplore. 

Martone, A. F., et al., 2018. Spectrum Allocation for 
Noncooperative Radar Coexistence. IEEE Transactions 
on Aerospace and Electronic Systems. 

Chaudhari, A., D. S., Tilghman, P., 2018. Colosseum: A 
Battleground for AI Let Loose on the RF Spectrum. 
Microwave Journal. 

Peng, S., Jiang, H., Wang, H., Alwageed, H., Yao, D., 2017. 
"Modulation classification using convolutional neural 
network based deep learning model", 26th Wireless and 
Optical Communication Conference. 

Paul, B., Chiriyath, R., and Bliss, W., 2017. Survey of RF 
Communications and Sensing Convergence Research. 
IEEE Access. 

Soekhoe, D., Plaat, A., 2016. On the Impact of Data Set Size 
in Transfer Learning Using Deep Neural Networks. 
Advances in Intelligent Data Analysis XV: 15th 
International Symposium. 

Beyer, O., 2013. Life-long Learning with Growing 
Conceptual Maps. Phd Thesis. Technische Fakultat der 
Universita Bielefeld. 

Der, V., et al., 2013. "Change Detection in Streaming 
Data". Ilmenau University of Technology, Dissertation. 

Krizhevsky, A., I. Sulskever, and G.E. Hinton, 2012. 
ImageNet Classification with Deep Convolutional 
Neural Networks. Advances in Neural Information and 
Processing Systems (NIPS). 

Tang, Y.-J., Q.-Y. Zhang, and W. Lin, 2010. Artificial 
Neural Network Based Spectrum Sensing Method for 
Cognitive Radio. 6th International Conference on 
Wireless Communications Networking and Mobile 
Computing (WiCOM). 

Ali, H., Zakieldeen, A., and Sulaiman, S., 2008. (Ldc S) for 
Adaptation To Climate Change (Clacc) Climate 
Change and Health in Sudan. (June). 

Tan, N., Ning, Kumar, V, 2006. Introduction to Data 
Mining. Pearson, Addison, Wesley 

Fritzke, B., 1995. A Growing Neural Gas Network Learns 
Topologies. Proceedings of International Conference 
on Advances in Neural Information. 

Kohonen, T., 1990. The Self-Organizing Map. Proceedings 
of the IEEE Access. 

Hohonen, T., 1982. Self-Organized Formation of 
Topologically Correct Feature Maps. Springer-Verlag, 
Biological Cybernetics. 

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

994


