
Towards a Generalized Queuing Network Model for Self-adaptive
Software Systems

Davide Arcelli1,2 a

1Università degli Studi dell’Aquila, via Vetoio 1, L’Aquila, Italy
2Department of Information Engineering, Computer Science and Mathematics, L’Aquila, Italy

Keywords: Self-adaptive Software Systems, Software Architecture, Architectural Patterns, Performance, Queuing
Networks.

Abstract: A Self-adaptive Software Systems (SASSs) is composed by a managing and a managed subsystem. The
former comprises system’s adaptation logic and controls the latter, which provides system’s functionalities by
perceiving and affecting the environment through its sensors and actuators, respectively. Such control often
conforms to a MAPE-K feedback loop, i.e. a Knowledge-based architecture model that divides the adaptation
process into four activities, namely Monitor, Analyze, Plan and Execute. Performance modeling notations,
analysis methods and tools, have been coupled to other kinds of techniques (e.g. control theory, machine
learning) for modeling and assessing the performance of managing subsystems, possibly aimed at supporting
the identification of more convenient architectural alternatives. The contribution of this paper is a generalized
Queuing Network model for SASSs, where the managed subsystem is explicitly modelled, thus widening
performance modeling and analysis scope to the whole system. Job classes flowing through the QN represent
activities of a global feedback control loop, which is based on the system’s mode profile and implemented
by class-switches operating in conformance to proper predefined class-switching and routing probabilities.
Results obtained by means of a proof-of-concept addressing a realistic case study show that the generalized
QN model can usefully support performance-driven architectural decision-making.

1 INTRODUCTION

Self-adaptation has emerged as a primary concern in
the context of modern software systems, due to the
high dynamicity of the environments where they oper-
ate, which implies the need for such systems to prop-
erly face significant degrees of uncertainty (Perez-
Palacin and Mirandola, 2014; Cámara et al., 2017).
To this aim, much work has been done, mainly by
introducing autonomic managers – namely managing
subsystems – comprising the adaptation logic; The
latter are coupled with managed subsystems, which
comprise the application logic providing system’s do-
main functionalities while perceiving and affecting
the environment (Weyns et al., 2012). Such coupling
often results into MAPE-K feedback loop(s) (Kephart
and Chess, 2003), i.e. “an architecture model that di-
vides the process of adaptation into four phases: Mon-
itor (M), Analyze (A), Plan (P), and Execute (E). Data
that is collected and used during adaptation is stored

a https://orcid.org/0000-0002-8919-9831

in the so-called Knowledge base (K)” (Becker et al.,
2012).

In such a context, performance is a top concern,
as from (Weyns et al., 2012; Shevtsov et al., 2018;
Becker et al., 2012). In fact, performance modeling
notations, analysis methods and tools, have been in-
troduced and coupled to techniques of different na-
ture, in order to support performance modeling and
assessment of managing subsystems. For example,
Control Theory allowed to introduce (global or lo-
cal) MAPE feedback controllers able to provide for-
mal guarantees within performance models such as
Queuing Networks (QNs) (Arcelli et al., 2015; Ar-
celli et al., 2016; Incerto et al., 2017); Machine Learn-
ing and Model-Driven Engineering (MDE) have been
used in heuristic or semi-formal approaches to (semi-
)automatically reasoning and deciding about (read an-
alyzing and planning) adaptation, driven by perfor-
mance requirements (Jung et al., 2008; Elkhodary
et al., 2010; Barati et al., 2019; Grassi et al., 2009;
Becker et al., 2013; Calinescu et al., 2011; Lung
et al., 2016; Kounev et al., 2010). While the math-

Arcelli, D.
Towards a Generalized Queuing Network Model for Self-adaptive Software Systems.
DOI: 10.5220/0009180304570464
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 457-464
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

457



ematical underpinning and soundness of those tech-
niques are assumed for granted but usually not pro-
vided, their different natures and the specificity of the
introduced adaptation mechanisms bring to a global
under-exploitation of methods and tools in the field
(Weyns et al., 2012).

This paper presents an approach to enhance the
casting of a Self-Adaptive Software System (SASS)
as a QN (Lazowska et al., 1984), and to thus be able
to leverage queuing networks analysis tools and meth-
ods in analyzing the performance of the system, in
ways that were not previously possible.

In fact, differently from existing approaches,
whose main goal is to introduce and validate the per-
formance of autonomic managing subsystem(s) en-
abling self-adaptation mechanisms, we introduce in
this paper a generalized performance model – in
the form of QN – that widens the focus of perfor-
mance analysis from the self-adaptation mechanisms
(in charge of the managing subsystem only) to the
whole SASS, thus involving sensing and actuating
components belonging to the managed subsystem.

Hence, both the subsystems are abstracted by our
QN models. In particular, system’s components are
represented by stations, which are visited by job
classes corresponding to the different tasks performed
by the managing and managed subsystems, i.e. MAPE
and sensing/actuating, respectively. A MAPE feedback
loop is implemented by exploiting advanced QN con-
structs supported by JMT (Bertoli et al., 2018) (i.e. a
standard de-facto), namely class switches, which en-
able dynamic job transformation conforming to the
system’s mode profile (Musa, 1993).

The paper is structured as follows: Section 2 re-
views existing approaches exploiting the QNs as per-
formance notation for SASSs. Section 3 illustrates the
generalized QN model and the underlying reference
self-adaptation model. Section 4 provides a proof-of-
concept showing our approach can usefully support
performance-driven architectural decisions. Section 5
concludes the paper and points out our future intents.

2 RELATED WORK

We consider related work approaches relying on the
QN paradigm for performance assessment of SASSs.
In this context, (Weyns et al., 2012) and (Becker
et al., 2012) surveyed the state-of-art on address-
ing non-functional concerns through formal notations
and MDE, respectively, until 2012. A more re-
cent study by (Shevtsov et al., 2018) reviewed ap-
proaches exploiting Control Theory, able to provide
non-functional formal guarantees.

Among the approaches included in those studies,
five exploit the QN paradigm to address performan-
ce modeling and analysis, namely SimuLizar (Becker
et al., 2013), QoSMOS (Epifani et al., 2009; Cali-
nescu et al., 2011), SAFCA (Zhang et al., 2010; Lung
et al., 2016), ICAC (Jung et al., 2008)1 and Adaptive
Queuing Networks (AQNs) (Arcelli et al., 2015; Ar-
celli et al., 2016). By additional search, we identified
a recent work by (Incerto et al., 2017) exploiting Ef-
ficient Model Predictive Control (EMPC2) to enable
performance-driven self-adaptation within QNs.

SimuLizar, QoSMOS, SAFCA and ICAC intro-
duce self-adaptation by enabling architecture recon-
figuration. SimuLizar and QoSMOS enable recon-
figuration onto architecture models, which implies a
need for model transformation towards the QN no-
tation; in SAFCA and ICAC, instead, reconfigura-
tion takes place directly onto QNs, without involving
any additional architecture model3. Both SAFCA and
ICAC rely on Layered Queuing Networks (LQNs) –
i.e. a well-known extension of QNs – as performance
notation, which likely resulted suitable for the archi-
tectural paradigms addressed by those approaches, i.e.
concurrent and multi-tier systems, respectively.

Differently from the four aforementioned ap-
proaches, EMPC and AQNs – that rely on control
theory – introduce self-adaptation by automated tun-
ing of predefined knobs (i.e. routing probabilities,
concurrency level and components’ service rates) in
a proactive and reactive manner, respectively, aimed
at satisfying global (EMPC) or local (AQNs) perfor-
mance requirements. It is worth to notice that, in
AQNs, the system can adapt over a (discrete) set of
predefined service rates that abstract the provision
of different service quality levels (e.g. gold, silver,
bronze users), thus resulting into a mode-based adap-
tation type (Shevtsov et al., 2018). Such kind of adap-
tation is the one supported by our approach and it can
be suitably modeled by exploiting the class-switch
QN construct, which is able to transform jobs modulo
available job classes, conforming to predefined prob-
abilities. Such probabilities are fundamental doma-
in-specific input parameters to be provided – as for
any stochastic performance model – representing a
part of the system’s operational profile, often referred
as mode profile (Musa, 1993). However, since they
strictly depend on the specific application domain,

1This approach has not been named, so we introduced
the acronym ICAC from its publication venue.

2This acronym will be be used throughout the paper to
refer (Incerto et al., 2017).

3Readers interested in a comparison between working at
software and performance model sides may refer to (Arcelli
and Cortellessa, 2013).

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

458



their setting is out from the scope of this paper, that is
introducing a generalized QN model supporting per-
formance modeling and analysis of SASSs.

Performance analysis methods of related work
equally distributes between analytical and simulative.
Our approach adopts the latter, due to advanced con-
structs (e.g. class-switches) within the QN models,
which inhibit the former methods. This might limit
the adoption of the approach at run-time, i.e. when
several performance models are generated from an
existing SASSs and analyzed to explore better per-
forming architectural alternatives, because simulation
might take long with respect to dynamics occurring
at run-time, especially in the context of safety-critical
systems with real-time performance requirements.

3 APPROACH DESCRIPTION

As mentioned before, the goal of this paper is to in-
troduce a generalized QN model supporting perfor-
mance modeling and analysis of SASSs, in terms of
both managing and managed subsystems. To this aim,
prior to the definition of the generalized QN model,
we define the underlying reference model for self-
adaptation, which comes from a reworking on the
autonomic control loop model proposed by (Weyns
et al., 2013).

3.1 Self-adaptation Model

Figure 1 illustrates the reference self-adaptation
model our approach relies on. The managed sub-
system represents an interface through which the sys-
tem perceives the environment – by means of sensors
within a Perception Layer (PL) – and applies onto the
latter – by means of actuators within an Application
Layer (AL); The managing subsystem interprets such
perceptions and may consequently react with adapta-
tion of system’s behavior – by means of controllers
within an Intermediate Layer (IL), aimed at achiev-
ing system’s goals. The two subsystems are usually
connected through network(s) (see the dashed line).

Conforming to (Weyns et al., 2013), adaptation
logic involves MAPE control loops (Kephart and Chess,
2003) and its four sequential activities. As from Table
1, our self-adaptation model devises two additional
activities, namely (0) Sense and (5) Actuate, both lo-
cated within the managed subsystem. Sense is associ-
ated to the term “measure” to distinguish raw data re-
trieval from their subsequent aggregation (read “col-
lect”) performed during Monitor. Moreover, we asso-
ciate the term “contrive” to Plan, whilst “prepare” and
“act” shift to Execute and Actuate, respectively. We

Figure 1: Reference model for self-adaptation.

think that Plan activity is better associated to conceiv-
ing (read “contrive”) a solution rather than its prepa-
ration. The latter, in turn, remains in charge of the
managing subsystem, but is associated to Execute.

Table 1: MAPE Vs SMAPEA control loops.

Order
Activities

(Weyns et al., 2013) Our approach
0 - Sense (measure)
1 Monitor (collect) Monitor (collect)
2 Analyze (determine) Analyze (determine)
3 Plan (prepare) Plan (contrive)
4 Execute (act) Execute (prepare)
5 - Actuate (act)

Devising the two activities within the managed sub-
system allows to widen the modeling scope to the
boundaries of the system, i.e. sensing and actuat-
ing components – where interactions with the en-
vironment take place. Furthermore, (Weyns et al.,
2013) directly map MAPE activities to ad-hoc com-
ponents, each dedicated to perform the correspond-
ing activity, whilst SMAPEA activities are properly
performed spanning among sensors (responsible for
Sense), controllers (responsible for Monitor, Analyze,
Plan and Execute) and actuators (responsible for Ac-
tuate). Such distinction brings to a natural mapping
of: (i) system’s components onto QN stations and (ii)
activities onto QN job classes, resulting into the gen-
eralized model described in the next section.

The concept of mode is known by more than a
decade in the context of dynamic adaptive systems
and it has been used to devise different configurations
among which a system may transit for self-adaptation
(Morin et al., 2009), based on predefined probabilities
representing a mode profile (Musa, 1993). As an ex-
ample, Figure 2 shows a mode profile of a SASS for
emergency response.

Towards a Generalized Queuing Network Model for Self-adaptive Software Systems

459



Figure 2: Example of self-adaptation within SMAPEA Queuing Networks.

Figure 3: Generalized SMAPEA Queuing Network Model.

The system is allowed to switch between normal
and critical modes with 12% and 88% probability, re-
spectively. Such probabilities allow to switch from
Sense to mode-based Monitor jobs, corresponding to
the adoption of a particular mode. Monitor, Analyze,
Plan, Execute and Actuate classes shall be thus “in-
stantiated” modulo those two modes, resulting into
10 MAPEA instances, i.e. tNormal,Criticalu

Ś

tMo-
nitor,Analyze,Plan,Execute,Actuateu.

Actuate instantiation depends on the specific
type of actuations across the different system
modes. For example, supposing the SASS
for emergency response above has two actuating
components, namely Dashboard and Evacuation-
Signs, four Actuate instances might be devised,
i.e. tNormal,Criticalu

Ś

tDashboardActuate,Eva-
cuationSignsActuateu. Similarly, Sense instantiation
depends on the specific type of sensing activities. For
example, assuming two sensing components, namely
Camera and Temperature, two Sense instances might
be devised, i.e. CameraSense and TemperatureSense.

3.2 Generalized Queuing Network
Model for SASSs

Figure 3 depicts the generalized QN conforming to
the reference self-adaptation model of Section 3.1, in
terms of (i) stations and their connections and (ii) job
classes visiting such stations.

The QN is partitioned in three parts, namely S,
MAPE and A, each containing a conceptual macro-
component corresponding to PL, IL and AL, respec-
tively. The actual system’s components belonging to
macro-components, i.e. sensors, controllers and ac-

tuators, are mapped onto (properly connected and pa-
rameterized) stations. Hence, SMAPEA activities natu-
rally map onto job classes visiting QN stations.

PL and AL, that are the parts of the managed
subsystem interacting with the environment, are con-
nected to Sampling and Done, i.e. a source and a sink
node that participate to Perceive and Affect inter-
actions, respectively (Figure 1). In particular, at the
S-side, Sampling emulates environmental stimuli by
generating SENSE jobs, based on a certain probabil-
ity distribution to be specified4. For example, a single
workload source is illustrated in Figure 3, i.e. sen-
sors have the same sampling rate, although introduc-
ing more workload sources to differentiate sampling
rates is possible. At the A-side, instead, Done repre-
sents the fact that actuation has been performed and
the environment has been (possibly) affected.

Both the PL and the AL are connected to the IL
– which contains controllers – through PL2IL and
IL2AL delay stations, respectively. The latter rep-
resent the network(s) between the managed and the
managing subsystems.

In order to implement the SMAPEA control loop,
two class-switches are introduced, namely SÑM
and MÑAÑPÑEÑA , placed before and after the
IL, respectively. SÑM transforms SENSE jobs
into MONITOR, whilst MÑAÑPÑEÑA transforms
each MAPEA job into a job of the subsequent type.

Transformation from SENSE to MONITOR
grounds on mode-switching probabilities mentioned

4By uppercase words we denote all Sense,
Monitor, Analyze, Plan, Execute and Actuate job
classes. E.g., with respect to Figure 2, MONITOR “
tNormalMonitor,CriticalMonitoru.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

460



in Section 3.1 and exemplified in Figure 2. Mode-
specific MONITOR jobs are forwarded to the con-
trollers, spending their demands before visiting
MÑAÑPÑEÑA . The latter transforms them into
ANALY ZE jobs, which are routed back to SÑM . The
loop is further iterated by producing the subsequent
mode-specific PLAN, EXECUT E and ACTUAT E
jobs. Finally, ACTUAT E jobs are forwarded to the
A-side for actuation.

When a MAPE job is forwarded back to the IL,
it must be decided which controller shall serve the
job. This choice is part of the so-called Controller
Selection Policy (CSP), demanded to SÑM . Hence,
specifying a CSP for a SMAPEA QN corresponds to
the specification of SÑM routing strategies for each
job class. Several routing strategies are available
and some of them allow to introduce run-time self-
adaptation. However, the latter is out of the scope
of this paper, which covers probability-based rout-
ing strategies only, leaving other strategies as future
work without jeopardizing paper contribution. In fact,
a probability-based strategy for SÑM could be ex-
ploited to implement several architectural patterns, as
shown later in the paper (Section 4).

4 EVALUATION

This section provides a proof-of-concepts for the gen-
eralized QN model, by exploiting a revised version of
the case study addressed in our previous work (Arbib
et al., 2019). The considered SASS grounds on a reac-
tive IoT architecture for emergency response designed
for a real exhibition venue in Alan Turing Building
– Department of Information Engineering, Computer
Science and Mathematics – L’Aquila, Italy.

CCTV cameras detect people position and move-
ment, used in conjunction with data from temperature
and CO2 sensors to feed an algorithm run by control
components. The latter decide on the actuation set
based on the situation: (i) In normal mode, the system
shows a 2D-representation of the monitored space on
a dashboard, locating crowds and tracing their move-
ments, while periodically estimating the minimum
evacuation time required under current conditions; In
critical mode – e.g. an emergency happens needing
people evacuation – additional information is shown
on the dashboard, alarm actuators are activated and
evacuation signs indicate the best evacuation routes.

Figure 4 shows a SMAPEA QN representing an ar-
chitecture model for the case study. Note that, S,
MAPE and A partitions, are actually delimited by
forks/joins, needed to create sensor/actuator-specific
jobs and properly route them to the corresponding

sensing/actuating component. Beside these PL/AL
components, we introduce two local controllers –
namely CentralController and PeerController – and
a remote controller deployed at the cloud – namely
CloudController, placed between Uplink and Down-
link delay stations (i.e. the cloud access network).

Concerning service demands distributions, we
reuse most of the ones exploited in our previous work
(Arbib et al., 2019), since they resulted from a deep
investigation conducted by means of other simulation
tools – i.e. CAPS (Muccini and Sharaf, 2017) and the
well-known CPLEX5 – which carried out transmis-
sion and propagation delays for sensing, actuating and
networking components, as well as controllers’ pro-
cessing times for performing the different MAPE ac-
tivities6. Notice that, the combination between high
demands for planning and IL2AL during emergen-
cies makes the critical mode crucial as it determines
a physiological lower bound to system performance.
For this reason, we assume a mode adaptation proba-
bility of 12% for Normal and 88% for Critical), which
allow to stress the system during emergencies.

The (shared) sampling rate is modeled by a deter-
ministic distribution, denoted by det(k), as the latter
describes a constant flow of customers, arriving ex-
actly every k time units (Bertoli et al., 2018).

We thus conduct an experiment aimed at finding
convenient IL patterns in terms of NormalActuate and
CriticalActuate response times, i.e. the performance
indices of interest. By means of a probability-based
CSP, we devise centralized, collaborative and
hybrid IL patterns, as reported in Table 2. Per-
formance are assessed with respect to several inter-
arrival time (deterministic) distribution means, to-
wards a sensitivity analysis modulo different work-
load intensities.

The investigation starts with the identification of a
workload intensity that can be faced by all the patterns
without saturation. We thus tried different mean val-
ues for the inter-arrival time distribution, finding 2.5
as a reasonable workload intensity that results into the
(heterogeneous) mean response times reported in Ta-
ble 27.

5http://www.cplex.com/.
6In order to avoid unnecessary complexity in the inter-

pretation of performance analysis results, all the controllers
have the same MAPE processing times.

7All the QN models have been developed and simulated
within the JSimGraph tool available within JMT 1.0.3, run-
ning onto a machine equipped with an Intel Core i5 CPU
and 16 GB of DDR3 RAM at 1867 MHz. For sake of
space, we do not provide simulation configuration param-
eters. However, they can be found in the JSimGraph .jsimg
file at https://gofile.io/?c=S5gWYV, which can be used to
replicate the experiment and to devise new ones.

Towards a Generalized Queuing Network Model for Self-adaptive Software Systems

461



Figure 4: SMAPEA QN for the considered case study. For sake of illustration SÑM routing probabilities are not reported,
due to the fact that they vary during the experimentation.

Table 2: Considered patterns and corresponding SÑM routing probabilities (rp). Performance indices of interest, i.e. Nor-
malActuate and CriticalActuate mean response times under det(2.5) workload, are also reported.

Pattern Normal/Critical System Response Time (s)
Name Routing probabilities M A P E NormalActuate CriticalActuate

Centralized.local rp(CentralController) 1 1 1 1 0.4828 3.6604
Centralized.remote rp(CloudController) 1 1 1 1 5.4192 8.7421

Collaborative
rp(CentralController) 0.5 0.5 0.5 0.5

0.4313 3.6488rp(PeerController) 0.5 0.5 0.5 0.5

Hybrid

rp(CentralController) 0.334 0.334 0.334 0.334
1.9206 5.1792rp(PeerController) 0.333 0.333 0.333 0.333

rp(CloudController) 0.333 0.333 0.333 0.333

We observe that Centralized.remote performs
much worse than the other patterns. This is intu-
itive, because in such pattern any job spends pos-
itive delays at Uplink and Downlink in order to
be processed by CloudController, which has the
same demands of local controllers. These de-
lays make Centralized.remote “dominated” by
Centralized.local by construction8, hence the for-
mer can be immediately discarded.

The investigation continues by considering more
intense workloads. The mean value of the determin-
istic inter-arrival time distribution is thus decreased
by 0.5 (seconds) at each step of the sensitivity analy-
sis. Simulation results under the 9 workload intensi-
ties are shown in Figure 5. Response times increase
exponentially, as expected, since QN stations service
demands are modeled as exponential distributions and
workloads as deterministic. For the last three work-
load intensities (i.e. 1, 0.75 and 0.5, respectively), at
least one pattern saturates, hence those workloads are
referred as “most intense” (conversely, the remaining
six workloads are referred as “least intense”).

The obtained results pave the way to several hints:

• Collaborative manages least intense workloads
better than the other patterns. Also, it can manage

8A pattern dominates another pattern when the former
shows both NormalActuate and CriticalActuate mean re-
sponse times lower than the latter.

Figure 5: Patterns mean response times for NormalActuate
(top) and CriticalActuate (bottom) under different workload
intensities. Values overcoming the maximum y value de-
note saturation.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

462



two out of the three most intense workloads, while
dominating Hybrid once (i.e. for det(1)).

• Centralized.local can manage least intense
workloads only, for which it represents the sec-
ond better option, except for det(1.25), which can
be better handled by Hybrid (and, optimally, by
Collaborative).

• Hybrid is the only pattern able to handle all the
considered workloads. However, it represents the
best solution for the two most intense workloads
only, while being dominated by (i) Collabora-
tive for det(1) and det(1.25) and (ii) any other
pattern for the remaining least intense workloads.

Consequently, architectural decisions could be carried
out based on specific requirements, e.g.:

• If saturation is not allowed, then Hybrid is the
unique option. However, it is dominated by both
the other patterns under five out of six least intense
workloads, while worsening its performance by
few seconds for NormalActuate and fractions of
second for CriticalActuate; This could represent
an acceptable trade-off in a real context, as degra-
dation mostly affects the non-critical scenario (i.e.
NormalActuate).

• If saturation is allowed, then Collaborative
may represent the best solution, since it dominates
any other pattern for seven out of the nine con-
sidered workloads (i.e. 77.7%). Moreover, un-
der the remaining 2 workloads (i.e. det(0.75) and
det(0.5)), it is dominated by Hybrid only.

• As a consequence of the two points above,
Centralized.local is always dominated by at
least one of the other patterns hence, in gen-
eral terms, it would never be chosen. However,
economic constraints could inhibit some patterns,
thus forcing the consideration of non-optimal so-
lutions like that.

5 CONCLUSION

In this paper, we have introduced a generalized QN
model enabling performance modeling and assess-
ment of SASSs, aimed at supporting performance-
driven architectural decision-making. Differently
from existing approaches, our model includes sensing
and actuating components, thus widening the scope of
performance modeling and assessment to the whole
system. Jobs flowing through the QN represent se-
quences of Sense, Monitor, Analyze, Plan, Execute
and Actuate (SMAPEA) activities, each visiting specific
parts of the model. A global MAPE control loop is im-
plemented by two class-switches embracing system’s

controllers and operating in conformance to prede-
fined class-switching and routing probabilities: the
former are used to progress through the control loop,
whilst the latter implement controller selection poli-
cies.

We have preliminary evaluated our work with re-
spect to a realistic case study for emergency response,
by a workload-driven sensitivity analysis of four ar-
chitectural patterns. Results have shown that the gen-
eralized QN model can usefully support decision-
making towards convenient alternative architectures.

However, further experiments are needed in or-
der to enforce the validity of this work. Such ex-
periments might represent an opportunity for investi-
gating additional controller selection policies deriving
from the different routing strategies available in JMT,
especially the ones considering controllers’ metrics at
the time the routing is performed (e.g. routing to the
controller showing the shortest queue length), which
seem particularly suitable to introduce dynamic adap-
tation of the controller selection policy.

The generalized QN model introduced in this pa-
per supports a single MAPE loop. This does not al-
low to model decentralized architectural patterns such
as the ones introduced by Weyns et al (Weyns et al.,
2013), where different MAPE loops (or parts of them)
interact each other and participate to the adaptations
concerning other portions of the system. To this aim,
we plan to address SMAPEA QNs “composition”, i.e.
two ILs belonging to different QNs might be con-
nected such that controllers within an IL can process
activities from the other IL.

In terms of practical applicability, we plan to de-
velop a pattern-based model-driven framework aimed
at introducing automation in performance modeling,
analysis and decision-making, along SASS’s life-
cycle. Key-capabilities of such framework might be:
(i) designing SMAPEA QNs; (ii) generating huge sets of
SMAPEA QNs, analyzing them and suggesting conve-
nient alternative architectures; (iii) deriving SMAPEA
QNs from existing SASSs and/or from their archi-
tecture models conforming to modeling notations that
allow to embed performance parameters (e.g. work-
load, demands, indices), such as UML (Rumbaugh
et al., 2004) with MARTE (Selic and Grard, 2013).

ACKNOWLEDGEMENTS

This research has been funded by the Italian Ministry
of Education, University and Research – MIUR, L.
297, art. 10.

Towards a Generalized Queuing Network Model for Self-adaptive Software Systems

463



REFERENCES

Arbib, C., Arcelli, D., Dugdale, J., Moghaddam, M. T., and
Muccini, H. (2019). Real-time Emergency Response
through Performant IoT Architectures. In Interna-
tional Conference on Information Systems for Crisis
Response and Management (ISCRAM).

Arcelli, D. and Cortellessa, V. (2013). Software model
refactoring based on performance analysis: better
working on software or performance side? In Buh-
nova, B., Happe, L., and Kofron, J., editors, FESCA,
volume 108 of EPTCS, pages 33–47.

Arcelli, D., Cortellessa, V., Filieri, A., and Leva, A. (2015).
Control theory for model-based performance-driven
software adaptation. In QoSA, pages 11–20. ACM.

Arcelli, D., Cortellessa, V., and Leva, A. (2016). A li-
brary of modeling components for adaptive queuing
networks. In EPEW, volume 9951 of LNCS, pages
204–219. Springer.

Barati, S., Bartha, F. A., Biswas, S., Cartwright, R., Duracz,
A., Fussell, D. S., Hoffmann, H., Imes, C., Miller,
J. E., Mishra, N., Arvind, Nguyen, D., Palem, K. V.,
Pei, Y., Pingali, K., Sai, R., Wright, A., Yang, Y.-H.,
and Zhang, S. (2019). Proteus: Language and runtime
support for self-adaptive software development. IEEE
Software, 36:73–82.

Becker, M., Becker, S., and Meyer, J. (2013). Simulizar:
Design-time modeling and performance analysis of
self-adaptive systems. In Kowalewski, S. and Rumpe,
B., editors, Software Engineering, volume 213 of LNI,
pages 71–84. GI.

Becker, M., Luckey, M., and Becker, S. (2012). Model-
driven performance engineering of self-adaptive sys-
tems: A survey. In QoSA, pages 117–122. ACM.

Bertoli, M., Casale, G., and Serazzi, G. (2018). Java Mod-
elling Tools – user manual. http://jmt.sourceforge.
net/Papers/JMT users Manual.pdf. [Online; accessed
20th January, 2020].

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola,
R., and Tamburrelli, G. (2011). Dynamic qos man-
agement and optimization in service-based systems.
IEEE Trans. on Softw. Eng., 37(3):387–409.

Cámara, J., Garlan, D., Kang, W. G., Peng, W., and
Schmerl, B. R. (2017). Uncertainty in self-adaptive
systems categories, management, and perspectives.
Technical report, Institute for Software Research,
Carnegie Mellon University.

Elkhodary, A., Esfahani, N., and Malek, S. (2010). Fusion:
A framework for engineering self-tuning self-adaptive
software systems. In FSE, pages 7–16. ACM.

Epifani, I., Ghezzi, C., Mirandola, R., and Tamburrelli, G.
(2009). Model evolution by run-time parameter adap-
tation. In ICSE, pages 111–121. IEEE Computer So-
ciety.

Grassi, V., Mirandola, R., and Randazzo, E. (2009). Model-
driven assessment of qos-aware self-adaptation. In
Cheng, B. H. C., de Lemos, R., Giese, H., Inver-
ardi, P., and Magee, J., editors, Software Engineering
for Self-Adaptive Systems, pages 201–222. Springer
Berlin Heidelberg.

Incerto, E., Tribastone, M., and Trubiani, C. (2017). Soft-
ware performance self-adaptation through efficient
model predictive control. In ASE, pages 485–496.

Jung, G., Joshi, K. R., Hiltunen, M. A., Schlichting, R. D.,
and Pu, C. (2008). Generating adaptation policies for
multi-tier applications in consolidated server environ-
ments. In ICAC, pages 23–32.

Kephart, J. O. and Chess, D. M. (2003). The vision of auto-
nomic computing. Computer, 36(1):41–50.

Kounev, S., Brosig, F., Huber, N., and Reussner, R. (2010).
Towards self-aware performance and resource man-
agement in modern service-oriented systems. In
ICSC, pages 621–624.

Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik,
K. C. (1984). Quantitative system performance - com-
puter system analysis using queueing network models.
Prentice Hall.

Lung, C., Zhang, X., and Rajeswaran, P. (2016). Improving
software performance and reliability in a distributed
and concurrent environment with an architecture-
based self-adaptive framework. JSS, 121:311–328.

Morin, B., Barais, O., Nain, G., and Jezequel, J.-M. (2009).
Taming dynamically adaptive systems using models
and aspects. In ICSE, pages 122–132. IEEE Computer
Society.

Muccini, H. and Sharaf, M. (2017). Caps: Architecture de-
scription of situational aware cyber physical systems.
In Software Architecture (ICSA), 2017 IEEE Interna-
tional Conference on, pages 211–220. IEEE.

Musa, J. D. (1993). Operational profiles in software-
reliability engineering. IEEE Software, 10(2):14–32.

Perez-Palacin, D. and Mirandola, R. (2014). Uncertainties
in the modeling of self-adaptive systems: A taxonomy
and an example of availability evaluation. In ICPE,
pages 3–14. ACM.

Rumbaugh, J., Jacobson, I., and Booch, G. (2004). Uni-
fied Modeling Language Reference Manual, The (2nd
Edition). Pearson Higher Education.

Selic, B. and Grard, S. (2013). Modeling and Analysis
of Real-Time and Embedded Systems with UML and
MARTE: Developing Cyber-Physical Systems. Mor-
gan Kaufmann Publishers Inc., 1st edition.

Shevtsov, S., Berekmeri, M., Weyns, D., and Maggio, M.
(2018). Control-theoretical software adaptation: A
systematic literature review. IEEE Trans. on Softw.
Eng., 44(8):784–810.

Weyns, D., Iftikhar, M. U., de la Iglesia, D. G., and Ahmad,
T. (2012). A survey of formal methods in self-adaptive
systems. In C3S2E, pages 67–79. ACM.

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola,
R., Prehofer, C., Wuttke, J., Andersson, J., Giese, H.,
and Göschka, K. M. (2013). On patterns for decentral-
ized control in self-adaptive systems. In Software En-
gineering for Self-Adaptive Systems II, volume 7475
of LNCS, pages 76–107. Springer, Berlin, Heidelberg.

Zhang, X., Lung, C., and Franks, G. (2010). Towards
architecture-based autonomic software performance
engineering. In Drira, K., editor, CAL, volume L-5 of
Revue des Nouvelles Technologies de l’Information,
pages 144–156. Cépaduès-Éditions.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

464


