Automated Acquisition of Control Knowledge for Classical Planners

Marta Vomlelova!®?, Jindfich Vodrazka', Roman Bartdk!®° and Luk43 Chrpa'2©°
YFaculty of Mathematics and Physics, Charles University, Czech Republic

2 Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

Keywords:

Abstract:

Automated Planning, Control Knowledge, Acquisition, Finite State Automata, PDDL.

Attributed transition-based domain control knowledge (ATB-DCK) has been proposed as a simple way to

express expected (desirable) sequences of actions in a plan with constraints going beyond physics of the en-
vironment. This knowledge can be compiled to Planning Domain Description Language (PDDL) to enhance
an existing planning domain model and hence any classical planner can exploit it. In the paper, we propose a
method to automatically acquire this control knowledge from example plans. First, a regular expression rep-
resenting provided plans is found. Then, this expression is extended with attributes expressing extra relations
among the actions and hence going beyond regular languages. The final expression is then translated, through
ATB-DCK, to PDDL to enhance a planning domain model. We will empirically demonstrate that such an
enhanced domain model improves efficiency of existing state-of-the-art planning engines.

1 INTRODUCTION

Domain Control Knowledge (DCK) is an approach
to describe useful information for planning that is
going beyond the description of physical interac-
tion among the actions. Automated planners can be
built to exploit domain control knowledge, for ex-
ample in the form of control rules (Kabanza et al.,
1997) or hierarchical task networks (HTNs) (Erol
et al., 1996), or DCK can be compiled to the domain
model, for example in Planning Domain Descrip-
tion Language (PDDL) (McDermott et al., 1998), so
any automated planner (using PDDL as its input)
can exploit it (Chrpa and Bartak, 2016). Control
rules, represented by, for instance, Linear Temporal
Logic (Kvarnstrom and Doherty, 2000; Bacchus and
Kabanza, 2000), describe desired evolution of states
of the environment and state sequences violating the
rules are pruned by a forward-search algorithm. The
idea behind HTNss is that the planning domain model
is described as a hierarchy of tasks, where the top task
represents the goal to reach and the task is solved by
decomposing it to sub-tasks and so on until primitive
tasks — actions — are obtained (alternative decomposi-
tions might be used). Since HTN planning is more
expressive than classical planning, only a fragment
HTN formalism such as tasks consisting of fully or-
dered primitive tasks (actions) and simple recursive

https://orcid.org/0000-0001-9104-804X
@ https://orcid.org/0000-0002-6717-8175
¢ https://orcid.org/0000-0001-9713-7748

Vomlelova, M., Vodréazka, J., Bartak, R. and Chrpa, L.
Automated Acquisition of Control Knowledge for Classical Planners.
DOI: 10.5220/0009175209590966

tasks can be compiled into classical planning (Alford
et al., 2009; Alford et al., 2015).

The major motivation behind DCK is speeding-
up the planing process by providing useful guide-
lines, for example, in the form of recommended ac-
tion sequences to achieve specific goals. One of the
major challenges here is how to obtain useful DCK.
Currently, DCK is usually constructed by a human
modeller, which is a tedious task as it requires ex-
pert knowledge not only about the domain but also
about the planning techniques. It would be benefi-
cial, if DCK is acquired automatically by using exam-
ple plans that include typical sequencing of actions to
achieve the goal. The DCK can encode such a knowl-
edge that can be used later for other problems in the
same domain.

Automated acquisition of domain models have a
history with works such as ARMS (Wu et al., 2007)
and LOCM (Cresswell et al., 2013). With regards to
automated acquisition of DCK, in order to enhance
the planning process, there are several techniques that
are being leveraged. Probably the best known tech-
nique is generating macro-operators that represent se-
quences of ordinary operators (Botea et al., 2005;
Chrpa et al., 2014; Chrpa and Vallati, 2019). Macro-
operators, roughly speaking, stand for “short-cuts” in
the state space, therefore, planning engines can find
plans in fewer steps. On the other hand, only static op-
erator sequences that frequently occur in plans can be
encoded as macro-operators. Another work concerns
learning control rules, which describe what states or

959

In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020) - Volume 2, pages 959-966

ISBN: 978-989-758-395-7; ISSN: 2184-433X

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

their sequences are admissible (Yoon et al., 2008).
Closer to our proposal, there is a technique that learns
planning programs, which encode routines in form of
sequences of instructions for plan generation (Aguas
et al., 2019). Similarities can be found also with
workflow mining research (Yaman et al., 2009).

In this paper, we address the problem of fully
automated acquisition of domain control knowledge
from example plans. Even a single example plan
may be used for this purpose, which is a great ad-
vantage over machine learning techniques dependent
on huge amount of data. The learned control knowl-
edge is encoded in the form of attributed finite state
automaton. The non-deterministic automaton models
the suggested sequences of actions and the attributes
are used to pass additional information between the
actions (for example, about the objects participating
in the actions). The acquired knowledge can then be
compiled back to the PDDL domain model and hence
any PDDL-based planner can immediately exploit it.

The paper is organized as follows. We will first
give necessary background on automated planning.
Then we will describe a method of constructing finite-
state automaton (regular expression) capturing se-
quencing of actions in example plans. After that we
enhance this automaton by adding attributes to actions
that pass information about common objects between
the actions. Finally, we will empirically justify that
the proposed method of generating control knowledge
indeed improves performance of classical planners.

2 BACKGROUND ON PLANNING

Classical STRIPS planning (Fikes and Nilsson, 1971)
deals with sequences of actions transferring the world
from a given initial state to a state satisfying certain
goal conditions. World states are modelled as sets of
propositions that are true in those states, and actions
are modelled to change the validity of certain propo-
sitions.

Formally, let P be a set of all propositions mod-
elling properties of world states. Then a state S C P is
a set of propositions that are true in that state (every
other proposition is false).

Each action a is described by three sets of proposi-
tions (B} ,A} A,), where BJ /AT A, CPATNA, =
0. Set B/ describes positive preconditions of action a,
that is, propositions that must be true right before ap-
plying the action a. Some modeling approaches allow
also negative preconditions, but these preconditions
can be compiled away. Action a is applicable to state
S iff Bf C S. Sets Ajand A, describe positive and
negative effects of action a, that is, propositions that

960

will become true and false in the state right after exe-
cuting the action a. If an action a is applicable to state
S then the state right after the action a is:

Y(S,a) = (S\A;) UA. (1

while y(S,a) is undefined if an action a is not ap-
plicable to state S.

The classical planning problem, also called a
STRIPS problem, consists of a set of actions A, a set
of propositions P, an initial state S, and a set of goal
propositions G describing the propositions required
to be true in the goal state (again, negative goal is
not assumed as it can be compiled away). A solu-
tion to the planning problem is a sequence of actions
ay,ay,...,a, such that S = y(..y(Y(So,a1),a2), ..., an)
and G C S. This sequence of actions is called a plan.

Rather than specifying each action separately, it is
common to specify an action schema or an operator
with attributes describing specific objects that the ac-
tion deals with. The action is then obtained by substi-
tuting constants for these attributes. Figure 1 shows
an example of such an operator in PDDL (Planning
Domain Description Language that is a de-facto stan-
dard language to model planning problems).

(raction drive_tent
:parameters (?xl - person ?x2 - place ?x3 - place
?x4 - car ?x5 - tent)
:precondition (and (at_tent ?x5 ?x2)
(at_car ?x4 ?x2)
(at_person ?xl ?x2)
(down ?x5))
teffect (and (not (at_person ?x1 ?x2))
(not (at_car ?x4 ?x2))
(not (at_tent ?x5 ?x2))
(at_tent ?x5 ?x3)
(at_person ?x1 ?x3)
(at_car ?x4 ?x3))

Figure 1: Example of planning operator in PDDL.

A part of a plan, which can be generated by
domain-independent planning engines, is presented in
Figure 2. Only a sequence of actions and the attribute
assignment is provided. The full body with precon-
ditions and effect can be derived from this informa-
tion and the operator definition (Figure 1) and stays
not listed until compiling the DCK to PDDL in Sec-
tion 4.3.

(put_down guy0 placel TENTO)

(drive_tent guy2 placel place2 car0 TENTO)

(put_up guy2 place2 tent0)

(drive guy0 placel place2 CARI)

(drive_passenger guy0 place2 placel car0 GUY2)
(walk_together tentO place2 guy2 placel girl2 COUPLE2)

Figure 2: Example of (a part of) a plan.

3 CONSTRUCTING REGULAR
EXPRESSION FROM EXAMPLE
PLANS

In this Section, we consider a plan as a sequence of
action names only (i.e., without attributes). Such a
plan can be seen as a string of a regular language.

Common algorithms learning deterministic regu-
lar grammars use either full set of positive and nega-
tive examples or a stochastic language (Carrasco and
Oncina, 1999) represented by positive examples that
are assumed to be random samples. In our case, we
do not assume rich set of examples that guarantees
stochastic properties. We do not assume complete list
of positive examples therefore we are not able to iden-
tify negative examples either. On the other hand, we
do not aim to perfectly distinguish positive and nega-
tive examples. We aim to restrict the search space of
the planner. That is, to find a domain knowledge that
covers all positive examples tight. In brief, we heuris-
tically select a *milestone’ action and assume the au-
tomaton state after this action is always the same with
the exception of the first and the last occurrence of the
action. If no such action can be found, we allow any
of the remaining actions and leave the search on the
planner.

Our method for learning domain control knowl-
edge starts with capturing typical action sequences in
the form of a regular expression (equivalent to a finite
state automaton). At this stage we use action names
only and we ignore attributes of actions.

We are given a set of example plans — a single
plan per problem is sufficient — these plans should
describe typical sequences of actions to achieve the
goal. We select an action that appears in all input
plans and based on that action we split each plan into
three parts. One part is a piece of plan before the first
occurrence of that action (the same action may appear
at several positions in the plan). One part is a piece of
plan after the last occurrence of the action. The final
part consists of continuous sub-plans between subse-
quent occurrences of the action. Note that all these
sub-plans do not contain the selected action. Figure 3
shows how the splitting is done for a single plan.

The plans before the selected action are put to-
gether, and similarly the plans after the action, and fi-
nally the plans between occurrences of the action. On
each of these sets of plans we apply recursively the
same learning process. The process is stopped when
there is no action that appears in all the plans. Let J be
all actions from these plans, we construct a regular ex-
pression J* for these plans (if there is an empty plan
among the input plans, the expression is J*; if there is
exactly one action in each plan, the expression is J).

Automated Acquisition of Control Knowledge for Classical Planners

input plan

77

e 1

plans before ‘a* plans between ‘a’ plans after ‘a’

Figure 3: Splitting the plan to three sections based on se-
lected action a.

Let I be the regular expression obtained for plans
before the selected action a, E be the regular expres-
sion for plans after a, and M be the regular expres-
sion for plans between the occurrences of a. Then
we construct a regular expression I.a.(M.a)*.E for
plans with a (under several conditions a simplified ex-
pression is generated, see Algorithm 1. For example,
for a plan "drive,walk,walk,walk,drive’ an expression
"drive.walk.(walk)*.drive’ is generated.

Algorithm 2 is a formal description of the regular
expression construction process. One may ask, which
action to split the plans is selected in case there are
more actions appearing in all plans. Based on prelim-
inary experiments we use the action with the small-
est number of occurrences, but a deeper study about
which action to select is needed.

Algorithm 1: An expression generated from a split action
a and sup-expressions I,M,E. Specific number of occur-
rences of a in the plans Plans enables simplified versions of
the expression.
1: procedure ExP(a,I,M,E,Plans)
2: 0 <+ the number of occurrence of a in all plans
and switch
if o is always 1 then
return L.a.E
else if o is always 2 then
return l.a.M.a.E
else if o is always more than 1 then
return La.(M.a)*.E
else
10: return La.(M.a)*.E
11: end if
12: end procedure

R e AR A

Figure 4 shows a regular expression generated for
plans in the classical domain Hiking used in Interna-
tional Planning Competitions. We added attributes to
actions as we shall now show how to connect these
attributes from different actions (actually, the regular
expression already presents attributes shared by ac-
tions). The first action selected to split is put_down,
then put_up, then in some branches drive_tent in
other branches drive_passenger.

961

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

Algorithm 2: Algorithm for constructing a regular expres-
sion describing a set of plans.

procedure REGEXPGEN(Plans - list of plans)

2: if exists an action in all plans then
a < select an action in all plans
4. for each plan in Plans do
parts <— plan.split(a)
6: I <—RegExpGen([parts.first()])
E +RegExpGen([parts.last()])
8: M +RegExpGen(parts[1:len-1])
return Exp(a,[,M,E,Plans)
10: end for
else
12: join present actions to a set J

return J, (J)* or (J)* as appropriate
14: end if
end procedure

0 drive_tent {0: "quy0’, 2: ’placel’, 4: ’tent3’}

1 put_up {0: 'qguy0’, 1: ’'placel’, 2: ’tent3’}

2 drive {1: ’'place0’, 2: ’'placel’}

3 drive_passenger {1: ’placel’, 2: ’'place0’}

4 walk_together {0: 'E’, 1: ’placel’, 3: ’place0’}

5 (walk_together)+ {0: 'E’, 1: 'placel’, 3: ’place0’}

6 drive_passenger {1: ’placel’, 2: ’'place0’}

7 drive {l: 'place0’, 2: 'placel’}

8 drive ({1: ’place0’, 2: 'placel’}

9 put_down {0: ’girl0’, 1: ’placel’, 2: 'F’}

10 (drive_tent {0: ’girl0’, 1: ’'placel’, 2: ’place2’, 4: 'F'}
11 put_up {0: 'girl0’, 1: ’place2’, 2: 'F'}

12 drive ({0: ’I', 1: 'H', 2: ’place2’}

13 drive_passenger {l: ’place2’, 2: 'H’, 4: 'I'}

14 walk_together {0: ’D’, 1: ’place2’, 3: 'H'}

15 (walk_together)+ {0: ’D’, 1: ’place2’, 3:
16 drive_passenger {l: ’place2’, 2: "H'}

17 drive {1: 'H', 2: ’"place2’}

18 drive ({1: ’"H'", 2: 'place2’}

19 put_down)+ {1: ’'place2’, 2: 'C’}

Figure 4: Attributed Regular Expression Example.

4 CONNECTING ATTRIBUTES IN
ACTIONS

Assume now, that we got a regu-
lar expression with sequence of actions
put_down, drive_tent, put_up describing
tent transport. If action attributes are ignored then
these actions may deal with different tents and
different locations and, hence, the action sequence
may be meaningless. The meaning of the control
knowledge was that we put.down some ?tent at
certain location ?from, then we drive that tent to
another location ?to, where we put that tent up. This
information can be encoded via shared attributes of
the actions, for example:

(put_down ? ?from ?tent)
(drive_tent ? 2from ?to ? ?tent)
(put_up ? ?to ?tent)

In this section we address the problem how to connect
the attributes of actions or, in other words, how to find
equivalence classes of actions’ attributes.

962

Figure 4 shows the final equivalence classes as
part of the regular expression, so we will use it to ex-
plain the notation used. Each line contains exactly
one action (and possibly some delimiters ’(’, ’)’, ’+’).
We number the attributes of each action starting with
0, Figure 4 shows only the attributes that are shared
between the actions (for example, attributes 1 and 3
are missing in the first action drive_tent as they are
not shared with other actions). The group of shared
attributes is identified by a specific label. For ex-
ample, the label placel tells: the attribute 2 of ac-
tion 0 should be passed as attribute 1 to action 1 and
then as attribute 2 in action 2 etc. The same attribute
is used up to the line 10 as the attribute 1 of action
drive_tent and then forgotten (not used in the rest
of the plan).

This shared attribute is represented
by the label placel and the set of pairs
{(0,2),(1,1),(2,2),(3,1),(4,2),...,(10,1)}, where
each pair means (actionLine,attributePosition). We
will call the label with the corresponding set an
equivalence class. A set of equivalence classes is
called a pattern.

While we construct the underlying regular expres-
sion top-down, the pattern is constructed bottom-up,
starting from the elementary parts of the regular ex-
pression.

The same recursive tree structure as in Algo-
rithm 1 is followed. Compared to Algorithm 1, the
sub-plan is extended by the immediate predecessor
and the immediate successor (if they exist).

Consider the example in Table 1. The first ac-
tion to split is put.down. Assume the action ap-
pears four times in the plan, therefore three sub-plans
P{VI ,Pé” ,Pg” are sent to the middle part in the brack-
ets. The second split in the middle part is put_up, a
single remaining /I is action drive_tent. The sequence
of three actions, ’put_down,drive_tent,put_up’, is sent
to the leaf *drive_tent’ for each of the three sub-plans
PY. PY PY. These action triples are listed in Table 2
(we will denote them as Py, P>, P3).

Table 1: Regular expression evolution: at the first level, ac-
tion put_down is chosen for the split. On the second level
in the middle is the split put_up. I contains a single action
drive_tent in all plans.
I,. put-down.(M. put_down)*. Ej
1. put-down.(b. putup. E;. putdown)*. E;
I;. putdown.(drive_tent. putup. E,. putdown)*. E;

Table 2: Elementary Pattern Generation.

Py | (put-down g0 p0t0) (drive-tent g0 pO p1 c0 t0)
P, | (put-down g0 p1t0) (drive-tent g0 p1 p2 c0 t0) (put-up g0 p2 t0)
P; | (put-down g0 p2t4) (drive-tent g0 p2 p3 c0 t0) (put-up g0 p3 t0)
P \ (put-down 0:G 1:X) (drive-tent 0:G 1:X 2:Y 4:T) (put-up 0:G 1:Y 2:T)

(put-up g0 p1 t0)

First, we construct an elementary pattern from the
sub-plan P;. Then, we apply function AddToPattern
to all remaining sub-plans P,, P3. The same is done in
the leaf E. Then, patterns from both leaves are com-
bined together by the function ExtendPattern. Fur-
ther, patterns are recursively extended to the top level.

4.1 Elementary Pattern Construction

Assume that we have three plans in the plan list,
P;, P, and P; as depicted in Table 2. For each
plan, we identify the equivalence classes by tracing
the attributes with the same constant. In plan P
we have constants (objects) g0, pO,...,p4, cO and
t0. Four of them — g0, p0, pl, and 0 — appear
more times among the attributes of actions so we
will get a pattern with four equivalence classes
’G’:(put-down,0)(drive-tent,0),(put-up,0), ’*X’:(put-
down,1)(drive-tent,1), ’Y’:(drive-tent,2),(put-up,2)
and T :(put-down,2)(drive-tent,4),(put-up,3) (for
clarity, we use the action names there rather than the
action numbers). We can construct a similar pattern
for the second plan, the only difference is that it uses
different constants (pl and p2), but the pattern struc-
ture is identical. So when we intersect the patterns,
we preserve the equivalence classes. Now, we add
Ps. Since the object p2’ covers the equivalence class
(put-down, 1)(drive-tent,1), the original group 'X’ is
preserved. On the other hand, the objects at positions
(put-down,2),(drive-tent,4) differ and therefore the
group "T” is split to a class *T’:(drive-tent,4),(put-up,
3) a singleton (put-down,2) (which is removed as it
does not represent any information passing between
actions). The last line in Table 2 shows the regular
expression with the pattern found. The reader may
notice that constant g0 appears in all plans as the
second argument of the first action. This can also be
reflected in the pattern (meaning that a given constant
is always used at given attributes).

Algorithm 3 shows how the patterns of two plans
are combined together. Basically, we intersect the
equivalence classes constructed for both plans.

Algorithm 3: AddToPattern: Pattern - pattern,Plan - partial
plan.

1: procedure ADDTOPATTERN(Pattern,Plan)

2 partition P < Pattern partition

3 partition P < Plan partition

4: partition By, <— {uNv; foru € P,u € P}

5

6:

return P,
end procedure

Automated Acquisition of Control Knowledge for Classical Planners

4.2 Pattern Concatenation

Consider Table 1 again. We have a pattern for the
leaf ’drive-tent’. Assume we have also a pattern for
the sub-tree E representing a general sub-tree. We
need to concatenate the patterns. In particular, in the
bottom-up traverse of the regular expression, initial,
middle and the end parts are concatenated in Algo-
rithm 1. These patterns share the split action a, so
we specifically combine equivalence classes contain-
ing this action. See Table 3 for an example.

Table 3: Example of Pattern Concatenation.

P (put-up X1 t4 X2) (walk X3 X1 X4)
7 (walk Y1 Y2 Y3)
| (putupY214X2) (walk Y1 Y2Y3)

(drive Y2 Y4)
(drive Y2 Y4)

There is an equivalence class X1: (put-up, 0),
(walk, 1) from the first expression and an equivalence
class Y2: (walk, 1), (drive, 0) from the second expres-
sion. By joining them, we get Y2: (put-up, 0), (walk,
1), (drive, 0) (any label of the class can be chosen).
Algorithm 4 describes the concatenation process.

Algorithm 4: ExtendPattern:

1: procedure EXTENDPATTERN:(Pyef1,Prign:)

2 A < first action of Pyjgp;

3: Pyew < new pattern, initially empty

4 shift all action indexes in Py;¢;; by the last ac-
tion of Pleft

5 for each attribute of A do

6: right < class of (A, attribute) in Pyjgp

7

8

Piefr,Prigns - Patterns.

left + class of (A,attribute) in P, s
: join < left Uright; use the right label
9: add join to Py,

10: end for

11: rename classes in Py, s; to avoid duplicates

12: add to Py, all classes from Py, Prigpe DOt
used for any join

13: return Py,

14: end procedure

4.3 Compiling Attributed Regular
Expressions to PDDL

To compile the attributed regular expression to a stan-
dard PDDL domain, we are inspired by the DCK
representation (Chrpa and Bartdk, 2016). First,
some pruning is performed. Assume an expression
l.a.(M.a)*.E. If E is an initial sub-sequence of M
then E can be omitted. The accepting condition is
a correct plan of the planning engine, the DCK has
no final states and may end in the middle of M ex-
pression. Similarly, if / is a final sub-string of M, the

963

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

initial action of the DCK may ’jump’ into M avoiding
separate listing of /.a. This way, we make the au-
tomaton smaller, which is important for efficiency of
planning.

Then, for each line ID in the regular expression
a new predicate 'DCK_(ID)’ is introduced. The at-
tributes to be carried from the previous action and to
the next action can be recognized from the pattern.
For a pattern in Table 3, class Y2, that is (put-up,0)
is taken into walk operator and class Y2:(walk,1) is
stored for the next action drive. In general, more than
one attribute is stored.

For example, the state ’DCK_10" derived from
Figure 4 has three attributes, ’girl0’, *placel’ and "F’.
This state is used as a precondition of action at the
given line, drive_tent in this case. Note also, that
we include the line index in the name of new oper-
ator drive_tent10 as that operator may appear at
several locations in the regular expression. The same
action deletes the old state and introduces the next
state among its effects — in this example, the next state
’DCK_11" is used with attributes *girl0’, ’place2’ and
’F’. Figure 5 shows such a modified operator.

(raction drive_tentl0
:parameters (?x1 - person ?x2 - place ?x3 - place
?x4 - car ?x5 - tent)
:precondition (and (at_tent ?x5 ?x2)
(at_car ?x4 ?x2)
(at_person ?x1 ?x2)
(down ?x5) (DCK_10 ?x1 ?x2 ?x5))
:effect (and (not (at_person ?x1 ?x2))
(not (at_car ?x4 ?x2))
(not (at_tent ?x5 ?x2))
(not (DCK_10 ?x1 ?x2 ?x5))
(DCK_11 ?x1 ?x3 ?x5)
(at_tent ?x5 ?x3)
(at_person ?x1 ?x3)
(at_car ?x4 ?x3))
)

Figure 5: Example of translated planning operator in
PDDL.

S EMPIRICAL EVALUATION

To evaluate the proposed technique we did a prelim-
inary experiment with a single domain and several
planners. The aim of this experiment is verifying
whether the learned domain control knowledge helps
planners to improve efficiency and what type of con-
trol knowledge contributes most.

We used the Hiking domain for which we man-
ually constructed domain control knowledge that we
then compiled to the domain model. In the experi-
ments, we used the original domain model without
any control knowledge (called ’original’). The hand-
written attributed domain control knowledge added to
the domain model is named ’atbDck’. The model
called 'RegExp’ is the original domain model ex-
tended just with the regular expression (the first stage

964

of learning) without any attributes connected. The
full learned regular expression with all identified at-
tributes is denoted ’fullLearned’. Finally, we con-
structed a domain model, where only the attributes
in the regular expression that last more than two sub-
sequent actions were kept. We name this model ’Re-
stricted’. We used 20 plans to learn the domain con-
trol knowledge.

We used three different planners to compare their
efficiency on constructed domain models: FF, Mada-
gascar, and Probe. FF has been selected as it is a stan-
dard heuristic-search planner and many other planners
are built on top of it. Madagascar is a very different
type of planner that is doing parallel planning (tries
to plan several actions in a single parallel step) and
uses SAT-based type of planning. Probe is also a dif-
ferent style of planner based on novelty search. The
computer used for experiments was equipped with In-
tel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz and the
time limit for solving each problem was 900 seconds.

We used 20 problems from the same domain
to evaluate different versions of control knowledge.
Three measures were evaluated: coverage counts the
number of solved problems, IPC Score takes the
shortest solution of a given problem Nj and for any
configuration C reports N, /N, (C) if the problem was
solved, 0 otherwise. PARI0 takes the time of the solu-
tion, if the problem was solved, and ten times the time
limit, that is 9000, otherwise. IPC Score combines in-
formation about the number of solved problems and
their quality (shorter plans preferred) and hence pro-
vides slightly more information than coverage only.
For each problem we calculated the above scores and
in Table 4 we report their sums over all 20 problems.
For PAR10, the lower values are better (less runtime
needed), for the other two scores, the higher values
are better (more problems solved in better quality).

From these preliminary results, we can already
draw some conclusions. First, the added control
knowledge indeed helps (to some planners) and this
knowledge can be learned automatically from a small
number of example plans. Second, the contribution
of control knowledge depends a lot on a planner used.
For Madagascar, the parallel planner, the sequential
control knowledge actually hurts performance. This
is not surprising, as Madagascar tries to put as many
parallel actions as possible to a single step, while, the
learned control knowledge consists of additional se-
quencing constraints and hence forces more parallel
steps. For forward-planning based planners, this con-
trol knowledge is however beneficial. The automat-
ically learned knowledge seems even comparable to
carefully designed manual control knowledge, which
is a particularly promising result. The third observa-

Table 4: Empirical results: PDDL solvers Madagascar, FF
and Probe on models with different control knowledge com-
pared using PAR10, Coverage and IPC scores.

PAR10 ff mada probe
original 5052.58 6751.06 609.64
atbDck 0.04 8550.09 2261.26
RegExp 6346.84 8550.09 2805.19
fullLearned 1.50 7200.99 6339.99
Restricted 8.91 7200.77 83.41
Coverage ff mada probe
original 9 5 19
atbDck 20 5 15
RegExp 6 1 14
fullLearned 20 4 6
Restricted 20 4 20
IPC Score ff mada probe
original 0.45 0.13 0.80
atbDck 0.89 0.18 0.63
RegExp 0.14 0.03 0.34
fullLearned 0.90 0.14 0.20
Restricted 0.90 0.14 0.88

tion is that the granularity of control knowledge is
also important. Using just the finite state automa-
ton (regular expression) actually hurts performance
as it brings additional constraints to action sequenc-
ing, but (probably) does not guide the planner regard-
ing which objects participate in the actions. On the
other side, adding too much additional connections
between the attributes of actions may add extra over-
head that does not pay-off for some planners (Probe).

6 CONCLUSIONS

In this paper we proposed a fully automated method
to acquire domain control knowledge from example
plans. The control knowledge is expressed in the form
attributed regular expression and it can be compiled
back to the PDDL model and hence used by any con-
temporary automated planner. The regular expression
is constructed in two steps. First, we build the core
of the regular expression consisting of action names
only. Second, we connect the attributes of actions to
model information passing between the actions. The
biggest advantage of the proposed method is that it
does not require a large number of examples to learn
from; even one plan is enough to construct the control
knowledge.

The preliminary empirical evaluation confirmed
that the obtained control knowledge indeed helps to
improve efficiency of planning. It also showed that
the effect is different for different planners and that
the right granularity of control knowledge is also im-
portant.

Automated Acquisition of Control Knowledge for Classical Planners

The open problems to study further are which ac-
tion to use for splitting the plans during construc-
tion of regular expressions and which attribute equiv-
alence classes should be represented in control knowl-
edge.

ACKNOWLEDGEMENTS
This research was funded by the Czech
Science Foundation under the project 18-

07252S and by the OP VVV funded project
CZ.02.1.01/0.0/0.0/16-019/0000765 “Research
Center for Informatics”.

REFERENCES

Aguas, J. S., Celorrio, S. J., and Jonsson, A. (2019). Com-
puting programs for generalized planning using a clas-
sical planner. Artif. Intell., 272:52-85.

Alford, R., Bercher, P., and Aha, D. W. (2015). Tight
bounds for HTN planning. In Proceedings of the
Twenty-Fifth International Conference on Automated
Planning and Scheduling, ICAPS 2015, Jerusalem, Is-
rael, June 7-11, 2015., pages 7-15.

Alford, R., Kuter, U., and Nau, D. S. (2009). Translating
htns to PDDL: A small amount of domain knowledge
can go a long way. In IJCAI 2009, Proceedings of
the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17,
2009, pages 1629-1634.

Bacchus, F. and Kabanza, F. (2000). Using temporal log-
ics to express search control knowledge for planning.
Artificial Intelligence, 116(1-2):123-191.

Botea, A., Enzenberger, M., Miiller, M., and Schaeffer, J.
(2005). Macro-ff: Improving Al planning with au-
tomatically learned macro-operators. J. Artif. Intell.
Res., 24:581-621.

Carrasco, R. and Oncina, J. (1999). Learning deterministic
regular grammars from stochastic samples in polyno-
mial time. RAIRO - Theoretical Informatics and Ap-
plications, 33.

Chrpa, L. and Bartdk, R. (2016). Guiding planning engines
by transition-based domain control knowledge. In
Principles of Knowledge Representation and Reason-
ing: Proceedings of the Fifteenth International Con-
ference, KR 2016, Cape Town, South Africa, April 25-
29, 2016., pages 545-548.

Chrpa, L. and Vallati, M. (2019). Improving domain-
independent planning via critical section macro-
operators. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First In-
novative Applications of Artificial Intelligence Con-
ference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019, pages 7546-7553.

965

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

Chrpa, L., Vallati, M., and McCluskey, T. L. (2014). MUM:
A technique for maximising the utility of macro-
operators by constrained generation and use. In Pro-
ceedings of the Twenty-Fourth International Confer-
ence on Automated Planning and Scheduling, ICAPS
2014, Portsmouth, New Hampshire, USA, June 21-26,
2014.

Cresswell, S., McCluskey, T. L., and West, M. M. (2013).
Acquiring planning domain models using LOCM.
Knowledge Eng. Review, 28(2):195-213.

Erol, K., Hendler, J. A., and Nau, D. S. (1996). Complexity
Results for HTN Planning. Ann. Math. Artif. Intell.,
18(1):69-93.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving. In Proceedings of the 2nd international
Jjoint conference on Artificial intelligence, 1JCAI'71,
pages 608—620, San Francisco, CA, USA.

Kabanza, F., Barbeau, M., and St-Denis, R. (1997). Plan-
ning control rules for reactive agents. Artificial Intel-
ligence, 95(1):67 — 113.

Kvarnstrom, J. and Doherty, P. (2000). TALplanner: a tem-
poral logic based forward chaining planner. Annals of
Mathematics and Artificial Intelligence, 30(1-4):119—
169.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C.,
Ram, A., Veloso, M., Weld, D., and Wilkins, D.
(1998). PDDL - The Planning Domain Definition
Language. Technical Report TR-98-003, Yale Center
for Computational Vision and Control,.

Wu, K., Yang, Q., and Jiang, Y. (2007). ARMS: an au-
tomatic knowledge engineering tool for learning ac-
tion models for Al planning. Knowledge Eng. Review,
22(2):135-152.

Yaman, F., Oates, T., and Burstein, M. (2009). A context
driven approach for workflow mining. In Proceed-
ings of the 21st International Jont Conference on Ar-
tifical Intelligence, IJCAI’09, page 1798-1803, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Yoon, S. W., Fern, A., and Givan, R. (2008). Learning con-
trol knowledge for forward search planning. J. Mach.
Learn. Res., 9:683-718.

966

