
Concept-based Co-migration of Test Cases

Ivan Jovanovikj, Enes Yigitbas, Stefan Sauer and Gregor Engels
Software Innovation Lab, Paderborn University, Fürstenalle 11, Paderborn, Germany

Keywords: Test Case Migration, Co-migration, Co-evolution, Concept Modeling, Method Engineering.

Abstract: Software testing plays an important role in software migration as it verifies its success. As the creation of test
cases is an expensive and time consuming activity, whenever test cases are existing, their reuse should be con-
sidered, thus implying their co-migration. During co-migration of test cases, two main challenges have to be
addressed: situativity and co-evolution. The first one suggests that when a test migration method is developed,
the situational context has to be considered as it influences the quality and the effort regarding the test case
migration. The latter suggests that the changes that happen to the system have to be considered and eventually
reflected to the test cases. We address these challenges by proposing a solution that applies situational method
engineering extended with co-evolution analysis. The development of the test migration method is centered
upon the identification of concepts describing the original tests and original system. Furthermore, the impact
of the different realization of the system concepts in source and target environments is analyzed as part of
the co-evolution analysis. Lastly, based on this information, a selection of suitable test migration strategies is
performed.

1 INTRODUCTION

Software migration is a well-established method for
transferring software systems in new environments
while keeping the data and the functionality of the
system (Bisbal et al., 1999). A widely used validation
technique in software migration projects is software
testing. As test case design, in general, has been seen
as an expensive and time consuming activity (Sneed,
1999), reusing existing in migration context test cases
is certainly worth considering. Reusing test cases can-
not only substantially reduce the cost of testing the
migrated system, but can also help to retain valuable
information about the expected functionality of the
original system and thus the desired functionality of
the migrated system.

The migration of the test cases comes down to the
problem of co-migration, i.e., the test cases have to
be migrated along with the system as their migra-
tion is dependent on the system migration. The co-
migration is practically defined by the co-evolution of
the test cases and the corresponding system. In gen-
eral, co-evolution refers to two or more objects evolv-
ing alongside each other, such that there is a relation-
ship between the two that must be maintained (Mens
and Demeyer, 2008). In our case, this refers to the
test cases evolving alongside the code being migrated,
such that the test cases remain correct for testing

the migrated system. Hence, co-evolution analysis
should be incorporated in the test case migration in
order to provide a proper evolution of the test cases
and thus, their proper migration.

When performing a test migration, a transforma-
tion method is required which serves as a techni-
cal guideline and describes the activities necessary to
perform, tools to be used, and roles to be involved
in order to migrate given test cases. The develop-
ment of the transformation method is a very impor-
tant task as it influences the overall success of the
migration project in terms of effectiveness (e.g., non-
functional properties of the migrated system) and ef-
ficiency (e.g., the time required or the budget). To
achieve this, the situational context of the migration
project should be taken into consideration. The sit-
uational context comprises different influence factors
like characteristics of the original system or target en-
vironment, the goals of the stakeholders etc. Con-
cerning test case co-migration, the situational context
gets even more complex as beside the influence fac-
tors of the system migration, test-specific influence
factors like characteristics of the original test cases or
test target environment have to be considered as well.
To develop a situation-specific transformation method
is an important and challenging task, as the previ-
ously discussed co-evolution aspect should be incor-
porated when identifying the situational context from

Jovanovikj, I., Yigitbas, E., Sauer, S. and Engels, G.
Concept-based Co-migration of Test Cases.
DOI: 10.5220/0009171404490456
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 449-456
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

449



Concept
Identification

Impact
Model

Concept
Model

Situational
Context 
Model

Co-Evolution
Analysis

Influence
Factor

Identification

Method 
Patterns

Method 
Fragments

Situational Context Identification

Method Development Method Enactment

Tool 
Implementation Transformation

Situation-Specific
Test Migration Method

Specification
Situation-Specific
Test Tool Chain

Method Base

Method 
Construction

Figure 1: Overview of the Method Engineering Process with the main focus on the Situational Context Identification Activity.

both system and test perspectives.
In order to address the previously mentioned chal-

lenges, based on the Method Engineering Framework
for Situation-Specific Software Transformation Meth-
ods (MEFiSTo) (Grieger, 2016), we provide a solution
that combines techniques from Situational Method
Engineering (SME) (Henderson-Sellers et al., 2014)
and Software Evolution (Mens and Demeyer, 2008).
Figure 1 depicts the overview of our method engi-
neering process whose activities are split in two main
disciplines: Method Development and Method En-
actment. Beside the Method Engineering Process,
another integral part of the solution approach is the
Method Base. The Method Base contains the build-
ing blocks, Method Fragments and Method Patterns,
needed for assembling the test migration method.
Method Fragments are atomic building blocks of a
migration method, whereas Method Patterns repre-
sent a proven migration strategy and indicate which
fragments are necessary and how to assemble them
together. The suitability of each pattern to a certain
situation is expressed by a set of characteristics. Us-
ing the Method Base, the Method Engineering Pro-
cess guides the development and the enactment of the
situation-specific test migration method. By perform-
ing activities of the Method Development discipline, a
situation-specific test method gets developed. It com-
prises the following two activities: Situational Con-
text Identification and Transformation Method Con-
struction. As our focus is on the incorporation of the
co-evolution analysis in the method engineering pro-
cess, in this paper, we mainly focus on the Situational
Context Identification activity. During this activity,
the situational context is analyzed and characterized
from both system migration and testing perspective.
Firstly, in the Concept Identification activity, both the
source and the target tests and system are represented
as a set of concepts by applying concept modeling.
Then, based on this concept representation in terms
of a Concept Model the impact of the system changes
on the test cases is identified and captured in terms

of an Impact Model in the Co-Evolution Analysis ac-
tivity. Lastly, as part of the Influence Factor Identi-
fication activity, the influence factors are identified.
Having the context information collected in terms of
a Situational Context Model, the Method Construc-
tion activity can be initiated and a situation-specific
test migration method gets constructed. The over-
all outcome of Method Development is a Situation-
Specific Test Migration Method Specification which
defines how to do the migration by defining the activ-
ities to be performed and the artifacts that should be
generated. During the first activity of Method Enact-
ment, namely the Tool Implementation, a Situation-
Specific Tool Chain is developed that is required for
the automation of the migration method. Thereafter,
during the Transformation activity, the test migration
method is enacted as defined in the test migration
method specification.

The structure of the rest of the paper is as follows:
In Section 2, we introduce the running example that
we use throughout the paper. In Section 3, we present
the identification of the concepts. In Section 4, the co-
evolution analysis is explained. The influence factor
identification is introduced in Section 5. In Section 6,
we discuss related work and at the end, in Section 7,
we conclude our paper and give an outlook on future
work.

2 RUNNING EXAMPLE

As a running example, we use a real-world migra-
tion project (Schwichtenberg et al., 2018), where
the problem of enabling cross-platform availability of
the well-known Eclipse Modeling Framework (EMF)
was addressed. EMF is highly adopted in practice
and generates Java code from platform independent
models with embedded Object Constraint Language
(OCL) expressions. EMF provides an implementation
of OCL which is an OMG standardized formal lan-

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

450



guage used to describe expressions over UML mod-
els. As feature-complete Ecore and OCL runtime
APIs are not available for some platforms, their func-
tionality has to be re-implemented for each of them.
The EMF Code Generator component embeds native
string-based OCL expressions directly in the emitted
Java code with the help of Java Emitter Templates.
The interpretation of the OCL expressions is dele-
gated by the EMF Runtime API to the OCL Inter-
preter. The interpreter firstly parses the string-based
OCL expressions and evaluates them at run-time, i.e.,
in Just-In-Time (JIT) manner.

CrossEcore (Schwichtenberg et al., 2018), a cross-
platform enabled modeling framework, addresses this
problem by providing a code generation of platform-
specific code from platform-independent Ecore mod-
els with embedded OCL expressions. The OCL com-
piler (OCL Visitor), as part of the CrossEcore Code
Generator, transcompiles the string-based OCL ex-
pressions into expressions of the target programming
language. Hence, the OCL expressions are trans-
lated at design-time and ahead of compilation, i.e., in
Ahead-Of-Time (AOT) manner.

As EMF’s OCL implementation is well-tested,
with more than 4000 JUnit test cases being available
on public code repositories1, their reuse was a very
intuitive solution to be selected. However, their reuse
was not that straightforward as CrossEcore’s OCL im-
plementation was completely different in comparison
to EMF’s OCL implementation. As the migration was
performed to different target platforms, i.e., program-
ming languages, a ”one-size-fits-all” approach is not
the perfect solution. This implies usage of a situation-
specific transformation method, for example, suitable
for the situation characterized by the target language
or the target testing platform. This example scenario
is used thoughout the paper to present each of the ac-
tivities of the situational context identification.

3 CONCEPT IDENTIFICATION

The purpose of the Concept Identification activity is
to model a decomposition of the system and the test-
ing artifacts into distinct parts for both the source
and the target environment. We use the principles
of Concept Modeling (Kozaczynski et al., 1992) to
represent the functionality of the system as a set of
concepts. The concepts are split into two differ-
ent groups, namely language concepts and abstract
concepts. Language concepts directly correspond to
syntactic entities of the programming language, like

1http://git.eclipse.org/c/ocl/org.eclipse.ocl.git/tree/tests/

variables, declarations, statements etc. (Kozaczynski
et al., 1992). The abstract concepts, on the contrary,
represent language-independent ideas of computation
and problem solving methods (Kozaczynski et al.,
1992). Abstract concepts are further classified into ar-
chitectural and programming concepts. The architec-
tural concepts are associated with interfaces or com-
ponents whereas the programming concepts represent
a general coding strategy, data structure or algorithm.
Concepts can be related to each by is-a relation, to
express a hierarchy between concepts, and consists-of
relation to express dependencies between concepts.
In (Grieger, 2016), when applying the idea of Concept
Modeling to software modernization, three classes of
concepts are distinguished: original system concepts,
target system concepts, and shared system concepts.
Regarding the original system, the language concepts
are determined by the language elements that are al-
ready used, whereas language concepts regarding the
target system concepts are those language concepts
that will be used after the transformation. Finally, a
shared concept is an abstract concept of the original
system that can be realized in the target environment.
All in all, the concept model is defined as a directed,
acyclic and connected graph. The nodes represent
the concepts, whereas the edges between them rep-
resent is-a or consists-of relations. In the following,
we present the concept model as well as the concept
identification process.

As shown in Figure 2, our Concept Model is a
part of the Situational Context Model. The Con-
cept Model, which extends the concept model intro-
duced in (Grieger, 2016), can contain a set of Con-
cerns which can further contain sub-Concerns and
a set of Concepts. Beside the SystemConcept sub-
class which expresses system related concepts, the
ConceptModel contains an additional subclass for ex-
pressing test-related concepts, namely the TestCon-
cept class. This class has additional subclasses like
the AbstractTestConcept which is further specialized
into ProgrammingTestConcept and ArchitecturalTest-
Concept, and the LanguageTestConcept for express-
ing concrete syntactic entities related to testing. As
defined by the conceptClass attribute in the Concept
class, each Concept belongs to one out of six classes
as defined by the enumeration type ConceptClass.
Furthermore, a Concept can be related to other con-
cepts by the consists-of and is-a relations. The in-
variants of the concept model instances are ensured
by the OCL constraints. For example, the two OCL
constraints shown in Figure 2 define that the target of
a consists-of relation for a SystemConcept or a Test-
Concept can only be another SystemConcept or Pro-
grammingConcept, respectively.

Concept-based Co-migration of Test Cases

451



Constraint InheritanceArtifact CompositionAssociation

TestConcept

LanguageTestConcept AbstractTestConcept

ProgrammingTestConcept ArchitecturalTestConcept

self.consistsOf.oclIsTypeOf(TestConcept)

SystemConcept

LanguageConceptAbstractConcept

ProgrammingConcept ArchitecturalConcept

self.consistsOf.oclIsTypeOf(SystemtConcept)

Concept

Concept

SituationalContextModel ConceptModel

Concern

concerns

concept

consistsOf

<<enumeration>>
ConceptClass

SharedConcept
SourceConcept
TargetConcept
SharedTestConcept
SourceTestConcept
TargetTestConcept

isA
concern

conceptClass :ConceptClass

Figure 2: The concept metamodel to formalize the concept models in co-migration context.

The concept identification process defines the nec-
essary steps to be performed in order to capture the
test and system concepts for both source and target
environment. The process is target-driven as the de-
sired transformation outcome that is desired delivers
the concepts to be identified. Firstly, a set of con-
cerns is identified based on system and test target ar-
chitectures, which in turn provides a coarse-grained
structure of the concept model. The next three ac-
tivities (A - C) are performed repeatedly for each
concern. Firstly, concepts for the current concern
are identified based on the target system and the tar-
get tests (A). This activity is based solely on the ex-
perience of the expert or by evaluating supporting
materials like development or test tutorials. Fig-
ure 3 shows the concept model of the example in-
troduced in Section 2. From system perspective, we
have identified the abstract architectural concept OCL
(Ahead-of-Time) which represents the realization of
the shared abstract concept Object Constrain Lan-
guage (OCL) in CrossEcore. It further consists of
a concrete programming concept named Language-
specific OCL-Expression, which represents the OCL
expression that is defined in CrossEcore by using lan-
guage constructs. This class consists of Derived Ex-
pression, Operation, and Constraint. The first two
programming concepts consist of Functions, whereas
the last one is a Logical Expression. From testing
perspective, we have identified the OCL Test Case
as shared abstract test concept. As a target test con-
cept we have identified the language test concept OCL
Test Case (AOT), which further consists of the lan-
guage test concepts Action, Expected Result, and As-
sertion. Secondly, by performing a superficial analy-

sis of the original system and original tests the identi-
fied concepts are validated (B). This is necessary, be-
cause the concepts have so far been identified with-
out considering the original system and the original
tests. Thirdly, a concluding source-driven identifica-
tion takes place as original system and original tests
are analyzed to eventually identify additional con-
cepts that are specific to the original system and the
original test cases (C). From system perspective, we
have identified the abstract architectural concept OCL
(Just-in-Time) which represents the realization of the
shared abstract concept Object Constrain Language
(OCL) in EMF. It consists of a concrete program-
ming concept named Native OCL-Expression which
represents the OCL expression in EMF which further
consists of Derived Expression, Operation, and Con-
straint all of them, as typical for EMF, being String
Literals. From testing perspective, we have identified
the source test concept OCL Test Case (AOT). This
concept consists of Assertion, which further consists
of the two language test concepts Action and Expected
Result.

4 CO-EVOLUTION ANALYSIS

Having identified the concepts, from both system and
test perspective, in terms of a concept model, in this
step a co-evolution analysis is performed. According
to (Mens and Demeyer, 2008), the co-evolution pro-
cess consists of several activities from which Change
Detection and Impact Analysis are relevant during the
situational context identification. During Change De-
tection, all changed parts of the system being mi-

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

452



Object Constraint
Language (OCL)

Shared System Concept

OCL
(Just-in-Time)

OCL
(Ahead-of-Time)

Native
OCL-Expression

Language-specific
OCL-Expression

Derived
Expression Operation Constraint Derived

Expression Operation Constraint

String
Literal

String
Literal

String
Literal Function Function Logical

Expression

Source System Concepts Target System Concepts

OCL 
Interpeter

OCL 
Comiplier

contains-trace

OCL Test Case

OCL Test Case 
(AOT)

Action Expected
Result Assertion

OCL Test Case 
(JIT)

Source Test Concepts

Assertion

Action Expected
Result

Target Test Concepts

Shared Test Concept

consists-of relation

is-a relation

Language Concept

Abstract Concept

Set of Concepts corresponds-to-trace

Abstract Test Concept

Language Test Concept

Figure 3: Concept model and impact model of the example scenario.

Constraint InheritanceArtifact CompositionAssociation

source

self.source.oclIsTypeOf(SystemConcept) && 
self.target.oclIsTypeOf(SystemConcept)

target

ContainsTraceCorrespondsToTrace

TestConcept
(from Concept)

SystemConcept
(from Concept)

Concept
(from Concept)

self.source.oclIsTypeOf(TestConcept) && 
self.target.oclIsTypeOf(SystemConcept)

trace

Impact

SituationalContextModel ImpactModel

Trace

Figure 4: The impact metamodel to formalize the relation between the test and system concepts in the co-migration context.

grated are identified. Having identified these changes,
all affected parts of the test cases are identified in the
next step called Impact Analysis. Finally, an estimate
of the effort required to accomplish the changes to-
gether with involved risks is made. Therefrom, the
main idea is to describe the changes that happened to
the system by identifying and relating corresponding
source and target system concepts to each other.

Then, the relation between the source and target
test concepts to their corresponding system concepts
is also established. Having these relations, the impact
of the system changes on the test cases can be de-
rived. In order to enable these activities, we provide a
metamodel (shown in Figure 4) that formalizes the re-
lations between the system and test concepts in terms
of traces. Furthermore, we also introduce the impact
analysis process which defines the necessary actions
to perform the impact analysis.

As can be seen in the upper left of Figure 4, we

consider the Impact Model to be a part of the Situ-
ationalContextModel. The ImpactModel can contain
a set of Traces which can be either CorrespondsTo-
Trace or a ContainsTrace. Each Trace has a source
and a target Concept. In the case of a Correspond-
sToTrace, as defined by the related OCL constraint,
both target and source are of the type SystemConcept.
On the other hand, a ContainsTrace, as defined by the
related OCL constraint, has as target a TestConcept
and a SystemConcept as source.

As previously introduced, the co-evolution anal-
ysis addresses two main activities, namely, the detec-
tion of the changes and the impact analysis. Firstly, on
the basis of the input concept model, for each source
system concept, a corresponding target system con-
cept is identified and a CorrespondsToTrace is cre-
ated. Then, each test concept, both source and target,
is related to the corresponding system concept that it
tests (contains) by establishing a ContainsTrace. Af-

Concept-based Co-migration of Test Cases

453



ter the second activity is done, a complete traceabil-
ity model is produced in terms of an ImpactModel.
The traces in the ImpactModel express the actual im-
pact. Related to the example shown in Figure 3,
the source system concept Native OCL-Expression
corresponds to the target system concept Language-
specific OCL-Expression. Regarding the test con-
cepts, on the one hand, the source system concept Na-
tive OCL-Expression is contained by the source test
concepts Action and Assertion. On the other hand,
the corresponding system target concept Language-
specific OCL-Expression is contained by the target
test concepts Action, Expected Result, and Assertion.
These relations suggest indirectly in which way the
tests are influenced by the system changes. Namely,
the test cases have to be changed in a way that the con-
tained part of the system should be changed in accor-
dance to the correspondence relation between the sys-
tem concepts Native OCL-Expression and Language-
specific OCL-Expression.

5 INFLUENCE FACTOR
IDENTIFICATION

In this activity, similarly to (Grieger, 2016), for each
identified concept, a method pattern is chosen. In or-
der to decide which test method pattern to use, one
needs to systematically search for characteristics that
influence pattern’s efficiency or effectiveness. Each
pattern has a set of characteristics which actually ex-
press its suitability to a certain situation. To support
the influence factor identification, we provide an in-
fluence factor metamodel and a general guideline for
identifying influence factors.

The InfluenceFactorModel is a part of the Situa-
tionalContextModel (Figure 5). It can contain a set
of InfluenceFactors, further split into two subclasses:
TestInfluenceFactor and SystemInfluenceFactor. An
influence factor is defined as a characteristic of a co-
migration project that has some impact on the effi-
ciency or effectiveness of a transformation method.
The TestInfluenceFactor is used to describe the test-
related influence factors for both source and target en-
vironments as well as organizational and test tooling-
related influence factors. Similarly, one can use
the SystemInfluenceFactor to specify influence factors
from system perspective. Note that an additional class
appears, namely the TransformationInfluenceFactor,
which has the role to specify the influence that the
system migration could eventually have on the test
case migration. A given Concept is associated with
a set of suitable MethodPatternAlternatives, showing
that each MethodPatternAlternative can be influenced

by InfluenceFactors. Then, one pattern can be cho-
sen to be applied, which is expressed by the Applied-
MethodPattern class. For both MethodPatternAl-
ternative AppliedMethodPattern classes, we distin-
guish between test and system migration patterns,
indicated by the subclasses SystemMethodPatternAl-
ternative and TestMethodPatternAlternative, and Ap-
pliedSystemMethodPattern and AppliedTestMethod-
Pattern, respectively. For example, the realization of a
concept in the original system will influence all suit-
able method patterns. However, the InfluenceFactor
only needs to be specified once and can be linked
to all affected MethodPatternAlternatives. In order
to ensure invariants in the model, OCL constraints
are used. For example, the OCL constraint related to
the class TestInfluenceFactor defines that each TestIn-
fluenceFactor can influence only a TestMethodPat-
ternAlternative.

In the following, we describe the necessary steps
for instantiating of an influence factor model. Firstly,
a fine-grained analysis of the test and system realiza-
tion, both source and target, for each concept is per-
formed. In contrast to the coarse-grained superficial
analysis from context identification, here we identify
influence factors that may allow exclusion of some of
the possible test method patterns, thus reducing the
overall analysis effort. For example, if the realization
of the given concept in the original and the target envi-
ronment is significantly different, the patterns which
do not include conceptual transformation are not suit-
able. Once a set of suitable test method patterns is
obtained, influence factors for each pattern are iden-
tified and described. In order to systematize the pro-
cess of identifying influence factors, each test method
pattern is analyzed from the perspective of the com-
prising method fragments. For example, as illustrated
in the third pattern (from left to the right) in Figure 6,
a method fragment defines that a parser is needed. In
this case, the availability of such a parser is an influ-
ence factor. The situational context model contains
the identified abstract test concept, namely the OCL
Test Case, its realization in the source test environ-
ment as well as the planned realization in the target
test environment. Additionally, it also contains the as-
sessed suitability of the possible test method patterns,
in terms of effectiveness and efficiency. For exam-
ple, regarding the leftmost method pattern, the testers
would be challenged with re-implementing the tests
cases as they are not experienced with CrossEcore.
The second pattern has been identified as not suitable
as it does not provide a way to interact directly with
the test concepts like expected result or the test ac-
tion. Having the influence factors identified, all suit-
able test method patterns are analyzed and assessed.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

454



Constraint InheritanceArtifact CompositionAssociation

Concept

MethodPatternAlternative

type: MethodPatternType
pros: String
cons: String

influences
1..*

suitableMethodPattern

chosen

0..1

1..1

1..1

1..*

SituationalContextModel InfluenceFactorModel

InfluenceFactor

description :String
implication :String

AppliedMethodPattern

rationale: String

1..*

appliedMethodPattern

influenceFactor

Influence

self.suitableMethodPattern.oclIsTypeOf
(SutiableTestMethodPattern)

self.suitableMethodPattern.oclIsTypeOf
(SutiableSystemMethodPattern)

ToolingTestInfluenceFactor

self.appliedMethodPattern.oclIsTypeOf
(AppliedSystemMethodPattern)

<<enumeration>>
MethodPatternType

LanguageTransformation
ConceptualTransformation
Reimplementation
CodeRemoval
LanguageTestTransformation
ConceptualTestTransformation
TestReimplementation
TestCodeRemoval

AppliedSystemMethodPattern

SystemConcept

SystemMethodPatternAlternative

TargetSystemInfluenceFactor

OriginalSystemInfluenceFactor

TransformationInfluenceFactor

SystemInfluenceFactor

OrganizationalInfluenceFactor

TestInfluenceFactor

TestToolingInfluenceFactor

OrganizationalInfluenceFactor

OriginalTestInfluenceFactor

TargetTestInfluenceFactor

self.influences.oclIsTypeOf
(TestMethodPatternAlternative)

AppliedTestMethodPattern

TestMethodPatternAlternative

TestConcept

self.appliedMethodPattern.oclIsTypeOf
(AppliedTestMethodPattern)

Figure 5: The influence factor metamodel for the co-migration context.

OCL Test Case

OCL Test Case
(AOT)

OCL Test Case
(JIT)

Shared

Original Test Target Test

Testers
unexperienced

in target
environment

Not suitable Meatmodel
unavailable

Parser
available

migration strategy
alternative

is-a relation

class of concepts

abstract test concept

language test concept

indicator on the
efficiency or
effectiveness
test migration

pattern

Transformation
available

automated
transformation

Activity Specification

manual
transformation

Model Code

Artifact Specification

Figure 6: Excerpt of the situational context model showing
the evaluated suitability of the test method patterns.

6 RELATED WORK

Different categories of method engineering ap-
proaches exist, namely those that provide fixed meth-
ods, a selection out of a set of fixed methods, con-
figuration of a method, tailoring a method or a mod-
ular construction of the method (Grieger, 2016).
Here, we only consider the last two, as they pro-
vide higher level of flexibility. The method tailor-
ing approaches enable tailoring of a provided method,
which can be changed arbitrarily (REMICS (Mo-
hagheghi, 2010), SOAMIG (Zillmann et al., 2011),

ARTIST (Menychtas et al., 2014). The problem is,
however, that the process of changing the provided
method is not guided by a method engineering pro-
cess. The approaches that provide modular construc-
tion of a method rely on a set of predefined building
blocks for methods and a method engineering pro-
cess that guides the method construction. A method
engineering approach that enables modular construc-
tion is presented in (Khadka et al., 2011), but is spe-
cific for migration to service-oriented environments.
The MEFiSTO framework (Grieger, 2016) overcomes
this issue by providing a general solution for modular
construction of situation-specific migration methods.
However, all of these methods do not provide support
for migration of test cases (except ARTIST (Meny-
chtas et al., 2014) to some extent), namely the con-
sideration of the test context, as well as the analy-
sis of the impact that the system changes have on the
test cases. In the area of test case evolution, work is
predominantly oriented to the continuous evolution of
test cases with the system. Compared to the evolution
of test cases in a migration setting, it is much more
fine-grained. In (Farooq et al., 2010), a model-based
regression testing approach is proposed for evolving
systems with flexible tool support. However, this
method does not address the conceptual changes in
the system migration as well as their impact on the

Concept-based Co-migration of Test Cases

455



test cases. (Mirzaaghaei et al., 2012) provides a semi-
automatic approach that supports test suite evolution
through test case adaptations by automatically repair-
ing and generating test cases during software evolu-
tion. This approach deals with the problem of re-
pairing existing test cases and generating new ones to
react to incremental changes in the software system.
Lastly, (Rapos, 2015) proposes a method for improv-
ing the model-based test efficiency by co-evolving
test models alongside system models. To enable this,
software model evolution patterns and their effects on
test models are analyzed. As all these approaches deal
with incremental changes, none of them is able to de-
tect conceptual changes.

7 CONCLUSION AND FUTURE
WORK

In this paper, we presented a method engineering pro-
cess that enables a modular construction of situation-
specific test migration methods. The process consists
of two main disciplines, namely method development
and method enactment, and relies on a method base.
The focus in this paper is on the method develop-
ment, particularly on the situational context identifi-
cation. Firstly, the identification of system and tests
concepts realized in both source and target environ-
ments is performed. Then, the different realization
of the system and test concepts is analyzed as part
of the co-evolution analysis. Finally, test and sys-
tem influence factors are identified and, based on this
information, a selection of a suitable test migration
strategy is performed. As future work we plan to de-
velop tool support for the activities of the proposed
approach, e.g., to support the modeling of the situ-
ational context. Furthermore, automation of the im-
pact analysis based on the obtained concept models is
also planned. Additionally, a quality analysis of the
constructed test migration methods regarding quality
criteria like completeness or correctness is planned.

REFERENCES

Bisbal, J., Lawless, D., Bing Wu, B., and Grimson, J.
(1999). Legacy information systems: issues and di-
rections. IEEE Software.

Farooq, Q., Iqbal, M. Z. Z., Malik, Z. I., and Riebisch, M.
(2010). A model-based regression testing approach
for evolving software systems with flexible tool sup-
port. In 2010 17th IEEE International Conference and
Workshops on Engineering of Computer Based Sys-
tems, pages 41–49.

Grieger, M. (2016). Model-Driven Software Modern-
ization: Concept-Based Engineering of Situation-
Specific Methods. PhD thesis, Paderborn University.

Henderson-Sellers, B., Ralyté, J., Ågerfalk, P. J., and Rossi,
M. (2014). Situational method engineering. In
Springer Berlin Heidelberg.

Khadka, R., Reijnders, G., Saeidi, A., Jansen, S., and Hage,
J. (2011). A method engineering based legacy to soa
migration method. In 27th IEEE International Con-
ference on Software Maintenance (ICSM).

Kozaczynski, W., Ning, J., and Engberts, A. (1992). Pro-
gram concept recognition and transformation. IEEE
Transactions on Software Engineering.

Mens, T. and Demeyer, S. (2008). Software Evolution.
Springer, 1 edition.

Menychtas, A., Konstanteli, K., Alonso, J., Orue-
Echevarria, L., Gorronogoitia, J., Kousiouris, G.,
Santzaridou, C., Bruneliere, H., Pellens, B., Stuer,
P., Strauss, O., Senkova, T., and Varvarigou, T.
(2014). Software modernization and cloudification us-
ing the ARTIST migration methodology and frame-
work. Scalable Computing: Practice and Experience.

Mirzaaghaei, M., Pastore, F., and Pezze, M. (2012). Sup-
porting test suite evolution through test case adapta-
tion. In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, pages
231–240.

Mohagheghi, P. (2010). Reuse and Migration of
Legacy Systems to Interoperable Cloud Services-
The REMICS project. In Mda4ServiceCloud 2010.
Springer.

Rapos, E. J. (2015). Co-evolution of model-based tests for
industrial automotive software. In 2015 IEEE 8th In-
ternational Conference on Software Testing, Verifica-
tion and Validation (ICST), pages 1–2.

Schwichtenberg, S., Jovanovikj, I., Gerth, C., and Engels,
G. (2018). Poster: Crossecore: An extendible frame-
work to use ecore and ocl across platforms. In 2018
IEEE/ACM 40th International Conference on Soft-
ware Engineering: Companion (ICSE-Companion).

Sneed, H. (1999). Risks involved in reengineering projects.
In Sixth Working Conference on Reverse Engineering,
pages 204–211.

Zillmann, C., Winter, A., Herget, A., Teppe, W., Theurer,
M., Fuhr, A., Horn, T., Riediger, V., Erdmenger, U.,
Kaiser, U., Uhlig, D., and Zimmermann, Y. (2011).
The SOAMIG Process Model in Industrial Applica-
tions. In 2011 15th European Conference on Software
Maintenance and Reengineering. IEEE.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

456


