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Abstract: Quality in the semiconductor manufacturing process, consisting of various production systems, leads to 
economic factors, which necessitates sophisticated abnormal detection. However, since the semiconductor 
manufacturing process has many sensors, there is a problem with the curse of dimensionality. It also has a 
high imbalance ratio, which creates a classification model that is skewed to multiple class, thus reducing the 
class classification performance of a minority class, which makes it difficult to detect anomalies. Therefore, 
this paper proposes AEWGAN (Autoencoder Wasserstein General Advertising Networks), a method for 
efficient anomaly detection in semiconductor manufacturing processes with high-dimensional imbalanced 
data. First, learn autoencoder with normal data. Abnormal data is oversampled using WGAN (Wasserstein 
General Additional Networks). Then, efficient anomaly detection within the potential is carried out through 
the previously learned autoencoder. Experiments on wafer data were applied to verify performance, and of 
the various methods, AEWGAN was found to have excellent performance in abnormal detection. 

1 INTRODUCTION 

Due to the influence of the recent fourth industrial 
revolution, the way of production in manufacturing is 
gradually being automated in digital way. In 
particular, the semiconductor manufacturing process 
is a very complex structure, and various production 
systems exist. Various sensor data are generated in 
real time from these automated production systems 
(Cen et al., 2017). 

System failures in production systems affect the 
entire process and result in economic losses to the 
business. Therefore, sophisticated anomaly detection 
technology for sensor data is required. However, the 
semiconductor manufacturing process with various 
processes is composed of complex systems, which 
have many variables and have few abnormal data, so 
it is not easy to detect them. 

Because of the variety of sensors that process, 
there are many variables in the data, which are likely 
to fall into the problem of curse of dimensionality 
(Indyk and Motwani, 1998). This is a problem in 
machine learning or deep learning where learning 
becomes more difficult and requires more data. In 
addition, the imbalance problem from less abnormal 
data than normal data occurs in a variety of real-world 

cases, such as fraud detection (Wei et al., 2013), 
medical diagnosis (Mazurowski et al., 2008), and 
semiconductor processes (Kerdprasop and 
Kerdprasop, 2011). This means when the number of 
instances in majority class is greater than the number 
of instances in minority class (Chawla et al., 2002). 
The ratio between the majority and minority class is 
called the imbalanced ratio. A high imbalance ratio 
causes the classifier to create a classification model 
that is biased against the majority class, thereby 
reducing the classification performance of the 
minority class (Chawla et al., 2004). For example, if 
the majority class has 99 instances and the minority 
class has one instance, classifying all instances into 
the majority class maximize misclassification error 
within the confusion matrix of the minority class. 

In many practical cases, instances belonging to the 
minority class are often more important than majority 
class instances. Therefore, it is necessary to minimize 
misclassification errors within minority class 
instances while improving their classification 
performance. 

In this paper, AEWGAN (Autoencoder 
Wasserstein Generative Adversarial Networks) is 
proposed as the way to solve high-dimensional 
imbalanced data in the semiconductor manufacturing 
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process. First, train the autoencoder using normal data. 
Then, oversampling abnormal data through WGAN 
(Wasserstein Generative Adversarial Networks). 
Finally, oversampled data is inputted into the 
previously trained autoencoder to perform anomaly 
detection within the latent space, a reduced dimension. 

The rest of this paper is organized as follows. 
Section 2, we look at the related work. Section 3, we 
address how proposed methods works with its 
architectural design. Section 4, describes 
experimental details and baseline methods while 
Section 5 discusses the conclusions. 

2 RELATED WORK 

2.1 Anomaly Detection 

Anomaly means data with low true probability 
density (Harmeling et al., 2006), and data that does 
not follow expected normal patterns (Chandola et al., 
2009). Anomaly detection is required because the 
analysis of data for any decision can affect the 
decision. 

Anomaly detection is one of the classifications of 
data for analysis purposes and is part of data mining. 
Anomaly detection is used as important and 
meaningful information in various fields. Examples 
include fraud detection of credit cards, health 
monitoring of patients in the medical field, and fault 
detection at manufacturing (Hodge and Austin, 
2004). 

Various methods have been proposed for the 
detection of anomaly using data, not through domain 
knowledge. The general method is to find an 
approximation of the data. The method uses the basic 
assumption of manifold learning that normal and 
abnormal data can be embedded into a low-
dimensional space with distinct differences. In other 
words, the method of finding an approximation is to 
use a combination of attributes that can capture the 
variability of the data (Chandola et al., 2009). This 
method includes the supervised learning method of 
knowing and analyzing the normal and abnormal 
status of each data at the algorithm learning stage, and 
the unsupervised learning method, which removes 
class labels and finds data showing different from 
most normal data. A typical method of unsupervised 
learning is an anomaly detection method using an 
autoencoder. 

The Autoencoder is an unsupervised neural 
network model which learns that output values can be 
reconstructed similarly to input value. It consists of 
encoder and decoder, as shown in Figure 1. Encoder 

compresses input data from the input layer to the 
hidden layer. Decoder reconstruct compressed data 
through the encoder. 

 
Figure 1: Architecture of an autoencoder. 

In equation (1) fθ is the result of the execution of 
the encoder and 𝜃 means the parameter of W and b. 
In equation (2) gϕ is the result of the execution of the 
decoder and ϕ means the parameter W', b'. In each 
equation, 𝑊(𝑊′) stands for weight, 𝑏(𝑏ᇱ) stands for 
bias, s for activation function (Vincent et al., 2010). 

fθ = s(Wx + b)    (1)

gϕ = s(W'h + b')    (2)
The procedure for anomaly detection through the 
autoencoder is as follows: 
(1) Using normal data only, learn encoder and 

decoder to create a model. 
(2) Pass abnormal data into the model learned above. 
(3) Check abnormal data that has been reconstructed 

to the original data through the decoder. 
(4) Calculate the anomaly score as shown in equation  
as the difference between the original and the restored 
data. 

Anomaly Score = ฮ𝒙 − 𝑔థ(𝑓ఏ(𝒙))ฮଶ (3)
(5) If the anomaly score is greater than the critical 
point, determine as the anomaly. 

2.2 Imbalanced Data Processing 
Technique 

Classification performance is more affected by the 
majority class than by the minority class (Akbani et 
al., 2004). Classification performance demands data 
that is uniformly distributed for each class, but actual 
semiconductor manufacturing process data are often 
extremely biased for some class. Using this 
imbalanced data will lead to learning outcomes and 
performance degradation, resulting in economic 
damage within the business (Freeman, 1995). 
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Oversampling is a popular method of anomaly 
detection using imbalanced data. It focuses on the 
bias between class in data where the ratio of abnormal 
data to normal data is overwhelmingly small. 

This paper solves the imbalance by using 
oversampling techniques such as Figure 2. 

 
Figure 2: Using oversampling techniques. 

Typical oversampling techniques include RO 
(Random Oversampling) (Liu, 2014), and SMOTE 
(Synthetic Minority Oversampling Technique) 
(Chawla et al., 2002), Borderline SMOTE (Han et al, 
2005) (More, 2016). 

RO is a method of random copying instances in 
the minority class to compensate for insufficient data. 
There is no loss of information, but there is a 
possibility of overfitting because it simply copies 
minority class. SMOTE, a method that has been 
developed to supplement this, is a method of 
generating new synthetic samples using k-NN (k-
Nearest Neighbors), focusing on minority class 
instances. In other words, artificial data is generated 
by selecting a point on the line that connects one of 
the closest neighbors in the data space to an object of 
a minority class. However, since sampling is 
performed without loss of information but does not 
take into account the location of adjacent majority 
class instances when generating data, class can 
overlap or creates noise, and high-dimensional data is 
not efficient. Borderline SMOTE is a method of 
generating synthetic data intensively near the 
classification boundary. It is characterized by better 
classification performance than SMOTE by 
generating more data on the classification boundary. 
Recently, it has been proposed to use GAN 
(Generative Adversarial Networks) to learn the 
distribution of minority class to generate artificial 
data (Douzas and Bacao, 2018). The use of WGAN 
as a method to solve the GAN shortcomings of 
vanishing gradient or mode collapse was also 
proposed (Wang et al., 2019). 

These methods focus primarily on generating data 
for the minority class. Therefore, in performing 
anomaly detection in this paper, abnormal data with 

relatively small proportion in the semiconductor 
manufacturing process are oversampled using 
WGAN. 

3 PROPOSED METHOD 

We propose a framework that integrates the concept 
of autoencoder in Section 2.1 and the oversampling 
method using WGAN in Section 2.2. The overall 
architecture is showed in Figure 3. The model 
consists of three main steps. The first step is to go 
through the process of normalizing the raw data and 
then create a model of learning the encoder and 
decoder of the autoencoder using normal data only. 
The second step is to perform an oversampling over 
the WGAN until the number of objects in the 
abnormal data is equal to the number of objects in the 
normal data. As a final step, pass abnormal data that 
has been oversampled in the second step to the 
autoencoder model created in the first step. Anomaly 
detection is then performed by utilizing a classifier in 
the latent space of the autoencoder. 

3.1 Step 1: Autoencoder 

Effective anomaly detection requires a model that can 
classify abnormal and unobserved data only with 
normal data. By learning autoencoder with normal 
data only, it is possible to classify normal and 
abnormal data that has not yet been observed at later 
time (An and Cho, 2015; Sun et al., 2018). 

The autoencoder model learns a combination of 
attributes that can express normal data well within the 
potential under the basic assumption of manifold 
learning. This represents a reduction in dimension 
and can solve the curse of dimensionality. 

3.2 Step 2: Oversampling with WGAN 

Manufacturing data are mostly in the normal 
category. However, abnormal data is often more 
important than normal data. This imbalance is 
problematic because it results in large 
misclassification errors within abnormal data, thereby 
reducing the classification performance. Therefore, 
we usethe oversampling method which is to randomly 
generate abnormal data as way to address the 
imbalance of abnormal data. 

The problem is that traditional oversampling 
methods do not use the distribution of data. WGAN 
is an algorithm that complements the shortcomings of 
the  GAN,  a  method  using  probability  distribution
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Figure 3: Architecture of AEWGAN. 

in a minority class (Arjovsky et al., 2017). 𝐷(𝑥) = 1∀𝑥 ∈ 𝑝, 𝐷(𝑥) = 0∀𝑥 ∈ 𝑝 (4)𝑚𝑖𝑛ீ𝑚𝑎𝑥V(D, G) = 𝐸௫~ೝ(௫)𝑙𝑜𝑔𝐷(𝑥) 
 

              +𝐸௭~(௭)log (1 − 𝐷൫𝐺(𝑧)൯)  
(5)

Typical problems with the GAN include 
vanishing gradient and mode collapse. Vanishing 
gradient refers to the problem of equation (4) being 
satisfied when discriminator is perfect, and the loss 
function of equation (5) being close to zero, thus 
failing to obtain the gradient in the course of learning. 
In equation (4) and equation (5), 𝑝 represents actual 
data, 𝑝 represents generated data, and 𝑝௭ represents 
a latent vector that follows the gaussian distribution. 
Mode collapse is a problem in which the generator 
always produces the same results in the course of 
learning. 

WGAN uses WD (Wasserstein Distance) such as 
equation (5) instead of JS (Jensen-Shannon) 
divergence as an indicator of the distance between the 
two probabilities distributions. Even when the two 
distributions do not overlap in low-dimensional 
manifolds, WD still has meaningful values and is 
expressed continuously, thus solving the problem of 
vanishing gradient and mode collapse (Arjovsky et al., 
2017). 𝑊൫𝑝, 𝑝൯ = infఊ~ ∏(ೝ,) 𝔼(௫,௬)~ஓሾ‖𝑥 − 𝑦‖]]  (6)

In equation (6), ∏(𝑝, 𝑝) represents a set of possible 
combined probability distributions between the actual 
data 𝑝 and the generated data 𝑝.  

𝑊൫𝑝, 𝑝൯ = 1𝑘 sup‖‖ಽஸ 𝔼௫~ೝሾf(𝑥)] − 𝔼௫~ሾ𝑓(𝑥)] 
(7)𝐿൫𝑝, 𝑝൯ = 𝑊൫𝑝, 𝑝൯ = max௪∈ௐ 𝔼௫~ೝሾ𝑓௪(𝑥)] − 𝔼௭~ೝ(௭)ሾ𝑓௪(𝑔ఏ(𝑥))] (8)

However, because it is not possible to estimate the 
number of possible cases, the newly modified form of 
equation (7) is used using Kantorovich-Rubinstein 
duality. When this is applied to equation (5) which is 
the GAN's loss function, the WGAN's loss function is 
expressed as an equation (8). 

The ‖𝑓‖ ≤ 𝐾 of equation (7) means K-Lipschitz 
continuous and there is a real value 𝐾 ≥ 0  that 
satisfies |𝑓(𝑥ଵ) − 𝑓(𝑥ଶ)| ≤ 𝐾|𝑥ଵ − 𝑥ଶ|. In WGAN, 
identifiers will not be direct criteria for identifying 
actual and generated data, instead learning K-
Lipschitz continuous to find a good f. The smaller the 
loss function in the learning process, the smaller the 
WD becomes, the closer the constructor's resultant 
value is to the actual data. 

Therefore, oversampling is performed using the 
WGAN until the number of instances in the abnormal 
data is equal to the number of instances in the normal 
data. 

3.3 Step 3: Anomaly Detection in 
Latent Space 

Latent space is the space expressed using a 
combination of attributes that can capture the 
variability of data along the basic assumption of 
manifold learning that normal and abnormal data can 
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Table 1: Performance Comparisons. 

Model 
Raw RO SMOTE GAN AEWGAN 

LR SVM RF LR SVM RF LR SVM RF LR SVM RF LR SVM RF 

Precision 0.786 0.660 0.300 0.843 0.872 0.861 0.855 0.891 0.847 1.000 1.000 0.991 1.000 1.000 1.000

Recall 0.282 0.437 0.034 0.919 0.950 0.982 0.919 0.942 0.963 0.993 0.992 0.991 0.994 0.992 0.997

F-measure 0.384 0.515 0.060 0.879 0.909 0.918 0.886 0.916 0.901 0.996 0.996 0.996 0.997 0.996 0.996

AUC 0.641 0.718 0.517 0.874 0.906 0.912 0.882 0.912 0.894 0.996 0.996 0.995 0.997 0.996 0.995

 
be embedded into a low-dimensional space with 
distinct differences. 

The autoencoder previously learned from normal 
data, will learn how to use a combination of attributes 
that can capture the variability of normal data within 
the latent space. Then, when abnormal data that has 
been oversampled through the WGAN is entered into 
the input value, it appears to be a different 
combination of attributes than it was before, so it is 
judged to be anomaly. Therefore, anomaly detection 
is carried out by utilizing the classifier within the 
latent space. 

4 EXPERIMENTAL SETTING 

The data used in the experiment for performance 
verification in this paper are semiconductor wafer 
data provided by the UEA & UCR Time Series 
Classification Repository (Olszewski, 2001). It 
consists of a set of 152 different sensor values 
measured in the semiconductor manufacturing wafer 
process and is the imbalanced ratio of 10.7% with 762 
abnormal data out of 7,164 data. In order to match 762 
abnormal data similarly to the 3-sigma of the actual 
process, this paper conducted the experiment using 
only 30 data. 

To verify AEWGAN's performance, compare the 
original data, RO, SMOTE, and methods using the 
GAN. Use LR (Logistic regression, SVM (Support 
Vector Machine), and RF (Random Forest) as the 
classifier for performance evaluation. Use the 
equation (9) precision, equation (10) recall, equation 
(11) F-measure, and equation (12) AUC (Area Under 
Curve), depending on the results of the table for the 
confusion matrix in Table 1. 

To check for anomaly detection, the t-SNE (t-
Stochastic Neighbor Embedding) method was used to 
transform the distances between data stochastically. 
Because t-SNE shows stable embedded learning 
results over other algorithms for visualization, it is 

suitable for expressing potential space in two 
dimensions. 

Table 2: Confusion Matrix. 

 Actual: 
Yes 

Actual: 
No 

Predicted: 
Yes 

TP 
(True Positive) 

FP 
(False Positive) 

Predicted: 
No 

FN 
(False Negative) 

TN 
(True Negative) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (9)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (10)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (11)

𝐴𝑈𝐶 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒1 − 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒  (12)
 

Table 2 shows performance comparisons of abnormal 
class between 15 or more detection models of wafer 
data. All the results of the experiment were better 
compared to the raw data. As a result, the 
performance of GAN and AEWGAN is better than 
RO and SMOTE. It also confirmed that AEWGAN, 
the proposed method rather than using the GAN, 
improved the results by improving the shortcomings 
of the GAN. 

In addition, the raw data and the data with 
AEWGAN were compared as t-SNE as way to 
determine if anomaly detection was carried out. 
Figure 4(a) is a result of t-SNE for the raw data, 
resulting in a severe imbalance and difficulty in 
separating normal from abnormalities. The result of 
applying AEWGAN is Figure 4(b). Unclassified data 
has been easily discriminated against, and imbalanced 
data problem has also been solved. 
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(a) Before AEWGAN 

 
(b) After AEWGAN 

Figure 4: Embedding using t-SNE. 

In summary, the proposed method using 
AEWGAN in this paper has shown excellent results 
in terms of sampling and anomaly detection for wafer 
data, which is high-dimension imbalanced data. 

5 CONCLUSIONS 

We observed proposed AEWGAN show an efficient 
abnormal detection method of semiconductor 
manufacturing process data with high dimensional 
imbalance characteristics. AEWGAN first proceeded 
with the autoencoder learning using normal data only. 
Then, the abnormal data was oversampled using the 
WGAN and put into the previously learned model as 
an input value. Finally, we carried out anomaly 
detection within the latent space. 

In the experiment, semiconductor wafer data with 
an extreme imbalance of 152 dimensions were used. 
The results of the experiment showed that the 
AEWGAN of this paper, performed better 
classification performance in abnormal data 
compared to other models and that efficient anomaly 
detection was also performed in visual comparisons 
through t-SNE. 

The method is expected to be applicable to semi- 

conductor manufacturing processes with various 
production systems, i.e. data with many variables and 
few abnormal data, so it is likely to be practical and 
applicable to a wide variety of areas. Future work to 
be undertaken not only will detect the manufacturing 
process sensor data but also time series data affected 
by past values. It is thought that quantitative 
comparisons will be needed in the future. 
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