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Abstract: Transfer learning via pre-training has become an important strategy for the efficient application of NLP meth-
ods in domains where only limited training data is available. This paper reports on a focused case study in
which we apply transfer learning in the context of neural machine translation (French–Dutch) for cultural
heritage metadata (i.e. titles of artistic works). Nowadays, neural machine translation (NMT) is commonly
applied at the subword level using byte-pair encoding (BPE), because word-level models struggle with rare
and out-of-vocabulary words. Because unseen vocabulary is a significant issue in domain adaptation, BPE
seems a better fit for transfer learning across text varieties. We discuss an experiment in which we compare
a subword-level to a character-level NMT approach. We pre-trained models on a large, generic corpus and
fine-tuned them in a two-stage process: first, on a domain-specific dataset extracted from Wikipedia, and
then on our metadata. While our experiments show comparable performance for character-level and BPE-
based models on the general dataset, we demonstrate that the character-level approach nevertheless yields
major downstream performance gains during the subsequent stages of fine-tuning. We therefore conclude that
character-level translation can be beneficial compared to the popular subword-level approach in the cultural
heritage domain.

1 INTRODUCTION

Many cultural heritage collections are nowadays go-
ing through a phase of mass-digitization, but annota-
tions for these datasets are still expensive and slow to
obtain for smaller institutions, because they have to
be provided manually by subject experts. As such,
many GLAM (Galleries, Libraries, Archives, and
Museums) institutions can share only small datasets
with developers and researchers. Computational ap-
proaches that are effective in low-resource scenarios
can therefore offer important support to cultural her-
itage institutions that lack the means to manually un-
dertake large-scale cataloguing campaigns. The over-
all aim of this paper is to apply neural machine trans-
lation (NMT) in the context of cultural heritage meta-
data where only limited amounts of data are available.

NMT models require large datasets for training.
However, such datasets are usually available only
for the general domain. If a model is trained on
one domain and applied to another one, the domain
mismatch causes a significant drop in performance

(Koehn and Knowles, 2017). A common remedy in
such situations is the application of transfer learning.
The main idea behind this concept is that the knowl-
edge gained from one dataset can be transferred to
another. In the case of neural networks, a generic net-
work trained on a general dataset can for instance be
further fine-tuned on a domain-specific dataset, which
would hopefully lead to improved performance, in
comparison to a system which was only trained on
one of the two domains.

Nowadays, neural sequence-to-sequence net-
works have become a mainstream approach in ma-
chine translation. Standard NMT models operate on
the word level or the subword level. The former
approach requires the explicit tokenization of texts
and does not handle out-of-vocabulary (OOV) words.
The cultural heritage domain may contain a lot OOV
words for a vocabulary obtained on the general do-
main, which means that such systems are not suit-
able for fine-tuning in our case. The subword-level
approaches use byte-pair encoding (BPE) to segment
sentences into tokens (Sennrich et al., 2015). BPE
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is an attractive alternative to a word-level approach
for our task, because it mitigates the problem of rare
and OOV tokens by splitting them into more common
subword units. Overall, BPE has shown strong re-
sults and is considered computationally efficient. The
downside is that it requires the extensive tuning of
hyperparameters for different language pairs and cor-
pora. Additionally, the problem of finding an optimal
segmentation strategy is more complicated for multi-
lingual or zero-shot translation (Johnson et al., 2017).

Character-level models were utilized in an attempt
to overcome these shortcomings. These models no
longer require any explicit segmentation of the in-
put, nor do they need the definition of language-
specific vocabularies of subword items. Character-
level NMT is much less sensitive to the issue of OOV
words and could, in principle, more easily handle
rare morphological variants of words than subword-
level models (Chung et al., 2016; Lee et al., 2017).
These advantages may be extremely important for
the cultural heritage domain as it is very different
from the general one. A character-level approach,
however, also presents significant challenges com-
pared to BPE-based models: (1) character sequences
are longer and are therefore more difficult to model;
(2) mapping character sequences to the more ab-
stract level of semantics requires bigger models with
a highly non-linear mapping function; and (3) such
models come with a considerable increase in train-
ing/decoding time.

While the (dis)advantages mentioned above are
well-known from the previous literature, this paper
focuses on the issue of transfer learning in the cul-
tural heritage domain, which has attracted less atten-
tion. We compare the performance of a BPE-based
model and a character-level model, specifically in the
context of further fine-tuning for the cultural heritage
domain. The downstream flexibility of these mod-
els is crucial for the adaptation of generic background
models to our domain where much more limited train-
ing data is available. Our main contribution is that we
show that a BPE-based model demonstrates compara-
ble performance to a character-level model on a large
and generic corpus, but that this advantage vanishes
downstream, because the BPE proves much harder to
fine-tune for the cultural heritage domain. Hence, the
fine-tuned character-level model shows an outspoken
performance gain.

2 RELATED WORK

There has been previous work comparing character-
level and subword-level NMT models. Costa-Jussa

and Fonollosa applied convolutional layers to charac-
ter embeddings and on top of this output they inserted
highway layers (Costa-Jussa and Fonollosa, 2016).
The model outperformed a NMT baseline. How-
ever, the model required the segmentation of a source
sentence into words and still produced a word-level
translation. Ling et al. applied a bidirectional layer
of long short-term memory units (LSTM) (Hochre-
iter and Schmidhuber, 1997) to produce word embed-
dings from character embeddings (Ling et al., 2015).
At the decoding side, target words were generated
character by character. They showed that the model
can outperform equivalent word-based NMT models.
However, their approach still relied on explicit word
segmentation and was acutely slow to train.

Luong and Manning developed a hybrid word-
character model with a focus on solving OOV is-
sues by using character-level information (Luong and
Manning, 2016). Additionally, they implemented a
fully character-level model which consisted of 4 uni-
directional layers with 512 LSTM units and character-
level attention. This model showed comparable re-
sults to the word-level NMT. However, the training
time of the character-level model was substantially
longer. Chung et al. demonstrated that a character-
level decoder was able to outperform a subword-level
decoder (Chung et al., 2016). This model, how-
ever, was not fully character-based, because the en-
coder in their architecture still resorted to BPE. Lee
et al. also proposed a fully character-level NMT sys-
tem (Lee et al., 2017). They designed a character-
level encoding architecture that was able to efficiently
model longer sequences, via the use of a convolu-
tion layer, a max-pooling layer (over the time dimen-
sion) and highway layers (Srivastava et al., 2015).
Their results demonstrated that the fully character-
level NMT model performed similarly to (or better
than) the subword-level NMT systems.

Cherry et al., finally, demonstrated that standard
character-level sequence-to-sequence models (of suf-
ficient depth), outperformed subword-level models of
comparable size (Cherry et al., 2018). Importantly
for us, they also compared these models in terms of
the amount of training data required. Their learn-
ing curves demonstrated that character-level models
needed relatively less data to produce comparable re-
sults to subword-level models, indicating robustness
in the face of limited training data. However, they did
not investigate the performance of the models in the
context of transfer learning for small corpora that dif-
fer from the general domain. Our research aims to fill
this gap.

Transfer Learning for Digital Heritage Collections: Comparing Neural Machine Translation at the Subword-level and Character-level

523



Table 1: Hyper-parameters of the investigated architec-
tures. The char2char model utilizes 200 filters of width 1,
200 filters of width 2 etc.

Parameters bpe2bpe char2char
Source emb. 512 128
Target emb. 512 512
Conv. - 200-200-250-250
filters - 300-300-300-300
Pool stride - 5
Highway - 2
Encoder 1-layer 1-layer
parameters 512 GRUs 512 GRUs
Decoder 2-layer 2-layer
parameters 1,024 GRUs 1,024 GRUs

Table 2: Vocabulary sizes. For each language we build a
BPE-based vocabulary and a character-level vocabulary.

BPE vocab. Char. vocab.
Vocab. size 24,400 300

3 METHODS

In this contribution, we compare a variant of the
character-level NMT system (CHAR2CHAR) (Lee
et al., 2017) to an established implementation of a
BPE-based model (BPE2BPE), i.e. with a subword-
level encoder (Sennrich et al., 2015). For both mod-
els we utilize Bahdanau Attention (Bahdanau et al.,
2014) and the same architecture of decoder as in the
original model. The attention score is calculated us-
ing the same input vectors as in the original imple-
mentation. We implemented both models in Tensor-
Flow (Abadi et al., 2015). Below, we outline the de-
tails of the encoding and decoding parts of these ar-
chitectures. Further information about architectures
of both models is summarized in Table 1. Addition-
ally, Table 2 provides information about vocabularies.

3.1 Sequence-to-sequence NMT

Both systems implement attentional NMT models
which generally consist of the following parts: an en-
coder, an attention mechanism, and a decoder. Such
models can be trained by minimizing the negative
conditional log-likelihood.
Encoder. The encoder reads a source sentence and
summarizes its meaning, typically by applying a re-
current neural network. Thus, the encoder builds a
continuous representation of the input sentence.
Attention. The attention mechanism allows the
model to search parts of the source sentence that are
relevant for translation of each target token. It calcu-

Table 3: Statistics of the datasets: number of sentence pairs,
mean and standard deviation in sentence lengths.

Dataset sent. pairs mean std
Eubookshop 2,055,656 63.89 33.08
Wiki 18,524 24.95 13.54
Museum 8,342 25.49 18.14

lates the context vector for each decoding time step
as a weighted sum of the source hidden states. Thus,
these weights show an importance of each input token
to the current target token.
Decoder. The decoder generates the output sequence
based on the context vector, its previous hidden states,
and the previously generated token. However, the in-
put of the decoder may vary depending on the NMT
architecture.

3.2 Subword-level NMT Model

As a representative subword-level NMT model, we
utilize a recurrent sequence-to-sequence model. We
briefly highlight the main properties of the encoder
below.
Embedding Layer. The embedding layer maps a se-
quence of source tokens to a sequence of token em-
beddings using an embedding lookup table to create a
rich representation of each token.
Recurrent Layer. Then, a bidirectional gated recur-
rent units (GRU) (Cho et al., 2014) layer is applied to
the output of the embedding layer. A forward GRU
layer reads the input sentence from left to right and a
backward GRU layer reads it from right to left. Fi-
nal source sentence representations are built by con-
catenating these layers at each timestep. We utilize
GRUs because they have less parameters compared to
LSTM units. Thus, the models can be easily fitted in
one GPU.
Byte-Pair Encoding. This model uses BPE to miti-
gate the aforementioned vocabulary issues at the to-
ken level by constructing a vocabulary of the most
frequently encountered word fragments to the entire
word vocabulary. Hence, the length of a BPE token
lies in a range from 1 character to several ones de-
pending on the vocabulary size. BPE tokenizes the in-
put strings by finding the longest possible match from
the vocabulary in the input, or by splitting words into
the longest possible fragments.

3.3 Character-level NMT Model

We implemented a variant of the character-level
model (Lee et al., 2017). However, the input/output of
this model can be based on other types of segmenta-
tion, such as BPE. The encoder uses one-dimensional
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Table 4: Number of sentence pairs per topic extracted from
Wikipedia.

Books Heritage Paintings
Titles/Names 759 10,745 5,520
Descriptions 500 500 500

convolutions, alternating with max-pooling layers, in
order to reduce the considerable length of the input
sequence, but still efficiently capture the presence of
local features. We briefly discuss the main properties
of the encoder below.
Embedding Layer. As is common practice, we apply
the embedding to a sequence of source characters.
Convolutions. Filter banks of one-dimensional con-
volutions are applied to the consecutive character em-
beddings in the input string (with padding). Filters
have a width ranging from 1 to 8, enabling the extrac-
tion of representation of n-grams up to 8 characters.
The outputs of consecutive convolutional layers are
stacked and we apply the rectified linear activation.
Max Pooling. Max pooling is applied to non-
overlapping segments of the output from the convo-
lutional layer. Thus, the model produces segment em-
beddings that contain the most salient features of a se-
ries of characters in a particular sub-sequence of the
source sentence.
Highway Layers. Highway layers (Srivastava et al.,
2015) have been shown to form a crucial part of
character-level models with convolutions and signif-
icantly improve the quality of the models (Kim et al.,
2016). We add a stack of highway layers after the
convolutional part of the encoder.
Recurrent Layer. Similarly to the BPE2BPE model,
the encoder ends in a bidirectional GRU layer, which
is applied to the output of the highway layers.

4 EXPERIMENTAL SETTINGS

4.1 Datasets and Preprocessing

We applied both models to a single language pair
in both directions (French → Dutch and Dutch →
French) in the following way: first, we pre-trained
the models on a large, generic corpus and, next, we
fine-tuned the pre-trained models in two different set-
tings: (1) first, on a domain-specific dataset extracted
from Wikipedia, and only then, on the actual mu-
seum metadata under scrutiny; (2) directly on the mu-
seum metadata. Additionally, we applied BPE to the
CHAR2CHAR model, in order to empirically assess
the influence of the segmentation procedure on this
architecture.

General Corpus. As a generic background corpus,
we utilize the Eubookshop (Skadiņš et al., 2014)
aligned corpus (French-Dutch) to pre-train both mod-
els. We limit the length of sentence pairs to 128
characters, in order to be able to fit the CHAR2CHAR
model onto a single GPU GeForce GTX TITAN X
with 12 GB for a reasonable batch size (see below).
Note, however, that this truncation should not impact
the downstream results much, as the titles under con-
sideration are much shorter than average sentences.
We randomly selected 3,000 sentence pairs as a de-
velopment set and 3,000 sentence pairs in the test set
respectively.
Wikipedia Dataset. For the intermediate fine-tuning,
we constructed a data set that was external to the mu-
seum metadata, but which did belong to the target do-
main (cultural heritage). To this end, we extracted
18,524 sentence pairs from Wikipedia1 as domain-
specific data. We found the following topics to be
close to the target domain: books, heritage, paintings
(see Table 4). We retrieved all pages that contained
useful information and then filtered them by language
while parsing. However, Wikipedia in Dutch and
French is less well developed compared to the English
counterpart and the extracted sentence pairs can be
noisy. Many sentences, for example, are just copies
of each other, and we deleted these duplicates. Ad-
ditionally, descriptions can have the same structure
(see Table 5) and we limit the number of them in
the dataset to avoid overfitting. We use this dataset
to fine-tune the pre-trained networks a first time for 2
epochs.
Museum Dataset. The museum dataset is provided
by the Royal Museums of Fine Arts2 of Belgium
(RMFAB). The RMFAB maintains digital metadata
about this collection via a custom-built content man-
agement system, Fabritius, which can be consulted
online.3 Because the RMFAB is a federal institution,
significant effort is put in trying to offer the meta-
data in multiple languages – minimally in Dutch and
French, and to a lesser degree in English). While
more metadata is available and in more languages, the
present paper is restricted to the titles of artworks in
Dutch and French, without making a distinction be-
tween the different object categories. As the museum
dataset is extremely small (see Table 3), we utilize
5-fold cross-validation to estimate the quality of the
models. Thereby, in each fold, we use 3 parts to fine-
tune the models for 20 epochs, 1 part to evaluate them
and 1 part to control for overfitting.

1http://www.wikidata.org
2https://www.fine-arts-museum.be
3http://www.opac-fabritius.be
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Table 5: Example of sentence pairs from the Wikipedia dataset. Descriptions are not related to Titles/Names in these examples.

Category Language Titles/Names Descriptions
Books Dutch De beginselen van de filosofie boek van Mac Barnett

French Les Principes de la philosophie livre de Mac Barnett
Paintings Dutch Portret van Lorenzo Cybo schilderij door Sophie Gengembre Anderson

French Portrait de Lorenzo Cybo tableau de Sophie Gengembre Anderson
Heritage Dutch station Sonnenallee archeologiemuseum in Valentano, Italië

French gare de Berlin Sonnenallee musée italien

4.2 Metrics

Automated evaluation in machine translation uses es-
tablished metrics to measure the quality of models.
The main goal of these metrics is to replace human
assessment as it is expensive and slow. Generally, the
performance of automatic evaluation metrics in ma-
chine translation is measured by correlating them with
human judgments. Recently, character-level metrics
were observed to show the best performance among
non-trainable metrics (Ma et al., 2018). Therefore,
we utilize CHARACTER4 (Wang et al., 2016) and
CHRF5 (Popović, 2015). Additionally, we apply a
popular metric BLEU-4 (Papineni et al., 2002) on the
character level.
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Iterations
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char2char
bpe2bpe
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Figure 1: Example of learning curve obtained on the gen-
eral dev. set. Both models with default segmentation show
comparable results while training. The CHAR2CHAR model
with BPE segmentation on decoder and encoder sides is
worse by a large margin.

4.3 Training and Models Details

In each phase, both models were trained using the
Adam optimizer (Kingma and Ba, 2014) with an ini-
tial learning rate of 0.0001 and a minibatch size of 64.
The norm of the gradient is clipped with a threshold
of 1. For all other parameters, we used the default
TensorFlow settings. Each model is trained on a sin-
gle GPU. Two epochs for the Wikipedia dataset and

4https://github.com/rwth-i6/CharacTER
5https://github.com/m-popovic/chrF

20 epochs for the Museum dataset of fine-tuning are
conducted for the corresponding experiments.

Our implementation of the CHAR2CHAR model
slightly differs from the original implementation.
Although the Highway layers significantly improve
the performance of character-level language models
based on convolutions, there is a saturation in perfor-
mance after 2 layers (Kim et al., 2016). Accordingly,
we decided to only use 2 (instead of the original 4)
layers to reduce the number of parameters. For de-
coding, we use two-layer, unidirectional decoder with
1024 GRU units and greedy search.
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char2char(bpe)

Figure 2: Example of averaged learning curve obtained in
cross-validation. The CHAR2CHAR model outperforms the
BPE2BPE model by a large margin.

5 RESULTS AND DISCUSSION

5.1 Quantitative Analysis

Pre-training on the General Corpus. As shown in
Table 6 and Figure 1, the BPE2BPE model slightly
outperforms the CHAR2CHAR model on the generic
background corpus and shows at least a comparable
performance for the language pair in both directions.
Another interesting observation is that when changing
segmentation for the CHAR2CHAR model, results sub-
stantially decrease. Additionally, we observe that the
CHAR2CHAR model outperforms the BPE2BPE model
when applying the pre-trained models on the new do-
main (see Table 6 (column gen→mus)).
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Table 6: Results of the experiments for the language pair in both directions. The arrows near the metrics correspond to a
direction of improvement. Training corpora are presented on the left hand side of the horizontal arrows and test corpora are
on the right hand side of them. The column label ”cv” corresponds to the 5-fold fine-tuning. For these columns, the corpora
on the left hand side of the horizontal arrows were used for pre-training the networks before 5-fold fine-tuning.

French→Dutch
metric model seg. gen→gen gen→mus gen, wik→mus gen→cv gen, wik→cv

char2char char 0.484 0.337 0.450 0.644 0.657
BLEU↑ bpe2bpe bpe 0.483 0.268 0.348 0.590 0.596

char2char bpe 0.433 0.142 0.246 0.470 0.481
char2char char 0.461 0.293 0.405 0.585 0.600

CHRF↑ bpe2bpe bpe 0.468 0.245 0.325 0.543 0.551
char2char bpe 0.422 0.151 0.251 0.441 0.451
char2char char 0.543 0.626 0.484 0.308 0.297

C-TER↓ bpe2bpe bpe 0.535 0.659 0.579 0.352 0.341
char2char bpe 0.575 0.784 0.660 0.462 0.450

French→Dutch

metric model seg. gen→gen gen→mus gen, wik→mus gen→cv gen, wik→cv
char2char char 0.474 0.279 0.410 0.603 0.614

BLEU↑ bpe2bpe bpe 0.482 0.248 0.332 0.567 0.578
char2char bpe 0.436 0.127 0.222 0.455 0.462
char2char char 0.453 0.247 0.372 0.549 0.561

CHRF↑ bpe2bpe bpe 0.468 0.239 0.324 0.525 0.534
char2char bpe 0.424 0.145 0.238 0.431 0.436
char2char char 0.559 0.679 0.537 0.351 0.343

C-TER↓ bpe2bpe bpe 0.541 0.676 0.577 0.380 0.371
char2char bpe 0.585 0.803 0.678 0.483 0.475

Additional Pre-training. From Table 6 (column
gen, wik→mus), it can be seen that the CHAR2CHAR
model benefits more from the intermediary pre-
training.
Cross-validation. Downstream, however, an op-
posite trend can be observed and the CHAR2CHAR
model outperforms the BPE2BPE model, as shown in
Table 6 (column gen→cv). The gain from interme-
diary pre-training on the Wikipedia dataset is negli-
gible. We conclude that the character-level model is
better suited for fine-tuning at least in our task which
is a typical example of a relatively small target dataset
from the domain of cultural heritage.

5.2 Qualitative Error Analysis

We extracted randomly 100 sentence pairs from the
Museum dataset (French→Dutch) in order to conduct
a qualitative comparison between the examined mod-
els. Both models were trained using the two-stage
fine-tuning scheme described above. A bilingual
French-Dutch speaker evaluated the sentence pairs.
The speaker was presented with the source, the tar-
get, and the outputs of the BPE2BPE and CHAR2CHAR
models. We focus on differences between the mod-
els. Thus, the evaluator assigned tags to the outputs of

the models where they differed, in the following cat-
egories: content words, morphology, function words
and named entities. Additionally, we counted a num-
ber of fully correct sentences and named entities. Ta-
ble 8 summarizes the most frequent errors that we
found. Below, we highlight the main observed ten-
dencies.
Overall Quality. We can observe that the
CHAR2CHAR model slightly outperforms the
BPE2BPE model in the number of the fully correct
sentences. However, the number of errors that we
were able to find is equal.
Named Entities. An interesting error category are
named entities, such as person names, cities and coun-
tries. We found this category to be important for our
task due to their frequent occurence in our dataset.
We detected 42 named entities per 100 sentences.
The CHAR2CHAR model correctly translated 24 en-
tities compared to 23 entities for the BPE2BPE model.
Named entities in a large majority of cases can in
fact simply be copied from the input string and do
not require translation. A qualitative inspection of the
model outputs showed that the CHAR2CHAR model
was more successful in realizing such literal copy op-
erations. Notwithstanding that copying is not a proper
translation, it may improve human perception of these
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Table 7: Examples of translation from char2char and bpe2bpe models showing the main types of errors. Both models were
fine-tuned on the Wikipedia and Museum datasets.

(a) Named Entities (French→Dutch )
source La bataille de Cassel
target De slag van Kassel
char2char De slag bij Cassel
bpe2bpe De slag bij het Casspunt

(b) Content words (French→Dutch )
source Le baiser
target De kus
char2char De baard
bpe2bpe De bisus

(c) Function words (French→Dutch )
source Le départ pour le marché
target Het vertrek naar de markt
char2char Het vertrek voor de markt
bpe2bpe Het vertrek voor de markt

(d) Morphology (French→Dutch )
source Alchimiste dans son laboratoire
target Alchemist in zijn laboratorium
char2char Alchimist in zijn laboratorium
bpe2bpe Alchist in zijn laboratoria

Table 8: Quantitative error analysis (when only one sys-
tem mistranslates and another one predicts the correct out-
put) and a number of correct sentences for French→Dutch.
Both models were fine-tuned on the Wikipedia and Museum
datasets.

Error type char2char bpe2bpe
Named Entities 5 6
Content words 8 9
Function words 4 0
Morphology 0 2
Total 17 17
Correct sent. 31 28

words even if they are not translated fully correct.
From Table 8(a) we can observe such a case where the
CHAR2CHAR model copied the location name Cas-
sel from the source while the BPE2BPE model tried
to translate it and failed. Both these translations are
wrong, but a human can easily infer the right name
from the CHAR2CHAR translation.

Content Words. According to our observation, both
models often mistranslate content words. This may
be related to the small sizes of the models. From
Table 7(b) we can see that both models mistranslate
the source content. Additionally, we noticed that the
CHAR2CHAR model tends to produce spelling mis-
takes.

Function Words. From the example Table 7(d), we
can see that both models translate the French function
word pour as dutch voor, that may be right in another
context. However, this is a wrong translation here.
Morphology. In the case Table 7(d) the BPE2BPE
model makes a morphological mistake in the word
laboratorium, producing the plural laboratoria.

6 CONCLUSION AND FUTURE
WORK

We compared character-level and subword-level
NMT models on the problem of transfer learning for
small corpora in the domain of cultural heritage. Our
experiments show that character-level NMT models
are more promising at least in the context of our task.
We observed a dramatic drop in performance for the
CHAR2CHAR model when applying it on the subword
level. The cross-validation with intermediary fine-
tuning on the Wikipedia dataset slightly improved re-
sults over the cross-validation without it. However,
the models tested on the Museum dataset just after in-
termediary fine-tuning were much better compared to
the models trained just on the general corpora. Hence,
we assume that a better designed dataset extracted
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from Wikipedia, which was necessary with our small
dataset, may help to avoid the cross-validation re-
sults in future work. Furthermore, the models may
be improved in the following ways. Firstly, overall
improvements may be achieved by simply increas-
ing the sizes of the models and optimizing their hy-
perparameters. Secondly, a named-entity recognition
system could be incorporated, because named-entities
seem to be a bottleneck for both models and cause
important errors. In future research we would also
like to extend the research to multilingual translation.
Finally, our dataset also contains images of the mu-
seum objects concerned. Thus, an interesting exten-
sion would be multi-modal translation in the domain
of cultural heritage.
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